# Probing Dense Gluon Matter in Ultra-Peripheral Collisions at the LHC and Insights for the EIC

Wei Li Rice University



BNL-INT 25-93W June 2-6, 2025



Office of Science

# Big picture



Probing the emergent properties of the strong force in the ultra-dense limit at small x

#### Nonlinear gravity



(Top) Kip Thorne; (Bottom) B. P. Abbott et al. [8]; adapted by APS/Carin Cair

Nonlinear QED



### The LHC as a high-energy photon-ion collider



Equivalent Photon Approximation (EPA):

- Photon flux  $\propto Z^2$
- Quasi-real:  $Q^2 \sim 0$ ,  $p_T (\sim \hbar c / R_A) < 30 \text{ MeV}$
- $E_{\gamma}^{max}(\sim\gamma\hbar c/R_A)\sim 80~{\rm GeV}$





#### Exclusive vector meson as a probe of the nucleus



• Well-defined kinematics:

$$(\mathbf{y}, p_T^2) \rightarrow (W_{\gamma p}^2, \mathbf{t})$$
  
 $W^2 = M_{VM} \sqrt{s_{NN}} \cdot e^{\pm y} \quad x = \frac{M_{VM}}{\sqrt{s_{NN}}} e^{\mp y}$ 

 Low Q<sup>2</sup> ~ 0 but heavy quark mass can provide a hard scale for pQCD.

$$Q^2 \sim \frac{Q_0^2 + (m_{VM})^2}{4}$$
, Dipole size:  $r_D^2 \sim 1/Q^2$ 

• [t]-dist. probes spatial structure (GPDs)

|            | Gluon field probed | Nucleus target          | p <sub>T</sub> |
|------------|--------------------|-------------------------|----------------|
| Coherent   | Average            | Ground state            | 50 MeV         |
| Incoherent | Fluctuations       | Excited, often break up | 500 MeV        |

#### The LHC as a high-energy photon-ion collider



#### Exclusive VM production in $\gamma p$ at HERA



Universality and scaling – power-law growth with W or 1/x

VM mass as a scale of probing the soft to hard QCD transition

Heavy VM more sensitive to gluons at small x

# Exclusive $J/\psi$ in $\gamma p$ at the LHC



 $\sigma(W_{\gamma p})$  follows a universal powerlaw rise from HERA to the LHC.

No clear signs of gluon saturation inside a proton to  $x \sim 10^{-5}$ !



### Exclusive coherent $J/\psi$ in $\gamma A$



Overcome by IP-dependent study via EMDs



Not sensitive to very small x region

#### First W dependence of coherent $J/\psi$ in $\gamma A$



Clear nuclear suppression and indication of xsec saturation at high W! No theory quantitatively capture the trend: no more power law!

### Nuclear Shadowing vs Gluon Saturation

#### Leading-twist approximation (LTA)



L. Frankfrut,, V. Guzey, M. Strikman (Physics Reports 512 (2012) 255)

Gribov-Glauber + Collinear factorization (DGLAP) Multi-nucleon interference – absent in  $\gamma p$ 

#### Gluon saturation (all-twist inclusive)



Color glass condensate (CGC) Non-linear evolution (BK, JIMWLK) + sat. scale  $Q_s$ Multi-gluon interference – also occur in  $\gamma p$ ; valid and dominant at small x

Both are formulated within the perturbative (weakly coupled) framework and have dependence on model parameters

#### Nuclear Shadowing vs Gluon Saturation

Gluon saturation (all-twist inclusive)



Leading-twist approximation (LTA)

They often predict qualitatively the same nuclear modification effects

# Latest attempts to fit the data



- Both can find a parameter space to fit the data
- Theoretical uncertainties derived

Important to test its predicative power for future measurements

### Black disk limit (BDL)



Weakly coupled: moderate  $r \sim 1/Q_s$ , nonlinear but perturbative  $\checkmark$ Strongly coupled: large  $r \gg 1/Q_s$ , nonperturbative absorption  $\checkmark$ - New theoretical tools needed!

BDL

#### First W dependence of incoherent $J/\psi$ in $\gamma A$



14

### First W dependence of incoherent $J/\psi$ in $\gamma A$



**S** ~ 0.1 for x < 10<sup>-4</sup>

### First W dependence of incoherent $J/\psi$ in $\gamma A$



Flattening in W for larger ItI  $\rightarrow$  stronger suppression of small-scale fluctuations

#### **Zooming into harder scale** – $\Upsilon$ (nS)





Surprisingly large suppression: **S ~ 0.2-0.4 !?** Best described by EPPS21 nPDF + nGPD

#### **Zooming into harder scale** – $\Upsilon$ (nS)



Large unexpected nuclear suppression: S ~ 0.25 at Q<sup>2</sup> ~ 20 GeV<sup>2</sup> and x ~ 10<sup>-3</sup>!?

Measurements to be improved:

- ~ 4x statistics by end 2025
- W dependence

#### Zooming out to lighter scales – $\rho$ , $\phi$

Dipole size for  $J/\psi$  too small? e.g.,  $Q^2 \sim Q_0^2 + (m_{VM})^2$ 



 $\phi$  mass near the boundary of weak and strong coupling  $\rightarrow$  More sensitive to saturation?

# Exclusive $\phi$ in $\gamma p$



Not very well measured even in  $\gamma p$ 

 Difficult to measure due to soft kaon daughters (p<sub>T</sub> ~ 100 MeV)

Being used for input to  $\gamma A$  models  $\rightarrow$  large uncertainties

First LHC measurements (pO, pPb) expected soon

#### First observation of exclusive $\phi$ in $\gamma A$



#### First observation of exclusive $\phi$ in $\gamma A$

#### Coherent $\phi$ cross section



Strong nuclear suppression: S ~ 0.2 at x ~10<sup>-4</sup>

All perturbative approaches seem to fail STARLight gives the best description

Full W dependence to come!➢ Flat in y indicates flat in W or BDL?

# Exclusive $\rho$ in $\gamma A$



#### A brief summary so far

#### Modifications of gluons in the Pb nucleus

|                                        | X                       | $\phi$   | J        | $\psi$     | Υ <b>(1S)</b> |
|----------------------------------------|-------------------------|----------|----------|------------|---------------|
|                                        |                         | coherent | coherent | incoherent | coherent      |
| $S \equiv \frac{\sigma^{\gamma A}}{M}$ | 10 <sup>-2</sup>        |          | 0.8      | 0.4        |               |
|                                        | 10 <sup>-3</sup>        |          | 0.4      | 0.2        | 0.25          |
| $\sigma^{IA}$                          | 10-4                    | 0.2      | 0.2      | 0.1        |               |
|                                        | <b>10</b> <sup>-5</sup> |          | 0.2      |            |               |

Neither linear nor nonlinear evolution models fully describe the data

An exciting comprehensive program ahead!

#### Semi-inclusive UPCs



#### First open heavy flavors in UPCs



New and clean constraints on nuclear PDF Sensitivity to saturation effects?

# Future LHC program



#### Future LHC program: Run 3&4 (2025-2035)

Comprehensive scans in a broad range of  $x (<10^{-5})$  and  $Q^2 (m_{VM})$ 



Critical tests of theoretical predictions before EIC starts

### Future LHC program: Run 5 (2035+)



#### The ultimate QCD frontier: 2045+



A TeV-scale DIS machine will provide unmatched access to the non-linear, high-density regime of QCD.

#### The ultimate QCD frontier: 2045+



Strong synergies with the HEP community (<u>Muon shot</u>!)

#### The ultimate QCD frontier: 2045+



If you do small-x calculations, don't stop at EIC kinematics! Dream Big!

# Summary

- The LHC as a photon-ion collider provides strong synergy with the EIC in exploring small-x QCD and the dynamics of dense gluon matter.
- Significant gluon modification in dense environments are observed via photon-induced VM production across a range of energy (mass) scales.
- The **future LHC UPC program** will offer precision tests of theoretical frameworks that underpin the **EIC's small-x** physics goals.
- A **TeV-scale lepton-ion collider** (e.g., a muon-ion collider) would be the ultimate dream and push toward the **ultimate QCD frontier.**

# Backups

#### A recent experimental discrepancy!?



40% discrepancy between ALICE and ATLAS at midrapidity



ATLAS agrees better with CGC IPsat but incompatible with CMS and ALICE

Don't jump on it yet! Stay tuned for CMS midrapidity results

### A Solution To The "Two-way Ambiguity"

Proposed by Guzey et al., EPJC 74 (2014) 2942

Control the impact parameter or "centrality" of UPCs via forward neutron multiplicity



### A Solution To The "Two-way Ambiguity"

Control the impact parameter or "centrality" of UPCs via forward neutron multiplicity



#### A Solution To The "Two-way Ambiguity"

