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Robust phenomenon: no fine tuning



Examples:
e Systems with (discrete) symmetry breaking
e 1D topological superconductors (with open b.c.)

e 2D fractional quantum Hall systems (in torus geometry)



Main question

Arguments for robust, exponentially small splitting
require short-range interactions



Main question

Arguments for robust, exponentially small splitting
require short-range interactions

What about long-range (power law) interactions?



Why worry about long-range
interactions?

e Relevant to many experimental systems

e Conceptual question: how much locality is necessary
for topological phenomena?



A simple 1D model
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A = 0: symmetry breaking, exact GSD

What happens when we turn on small A # 07

1. Does the gap stay open?

2. How does ground state splitting o
scale with system size?



Physical motivation for model

Map to fermion model via Jordan-Wigner transformation:
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—> Kitaev model for a 1D topological superconductor
with long-range density-density interactions



Why long-range interactions
are different

Denote ground states of H(\ = 0) by:
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(Hastings, Wen, 2005)

Suppose energy gap stays open for small A # O:
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Suppose energy gap stays open for small A # O:

If interactions are short-range, can use quasi-adiabatic
continuation to construct unitary U) with:

£, A) = Uxl#)



(Hastings, Wen, 2005)

In short-range case, U) is locality preserving:

Uy: O — UOU,

local “superpolynomially local”

(derived from Lieb-Robinson bounds)
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In short-range case, U) is locality preserving:

Uy: O — UOU,

local “superpolynomially local”

(derived from Lieb-Robinson bounds)

Energy splitting:
§ = (+|UTHUA+) — (—|UJHU,|-)

=2 Re (111 [U{HUL| 1 -+ 1))
— O(L™™) N

sum of “superpolynomially local”
operators



(Michalakis, Zwolak, 2013)

However, if f is long-range (power law) then:

Uyn: O — UloU,
local “polynomially local”

— U iH Uy has power-law tails

— can only get power-law bound: § = O(L™")



Should we even expect exponentially small splitting
for power law interactions?



Should we even expect exponentially small splitting
for power law interactions?

Yes! (for sufficiently high power laws)



(Lapa, ML, arXiv:2107.11396)

Stability Theorem: Suppose that f obeys:

L .
Z (k)| < C “summability
k=1

condition”

(e.g. f(r)~ # with a > 1)

Then, there exists A\g > 0 such that, if |A| < Ag, then:
1. H has a unique ground state and a finite energy gap in H.

2. The ground state splitting between sectors obeys the bound

() — B_(\)| = O(e™*%)



Beyond the stability theorem

What happens if f(r) = % with a < 17

=T



Beyond the stability theorem

What happens if f(r) = % with o < 17

=
Focus on the case A > 0

(A < 0 = instability at infinitesimal \)



Toy model for power-law
Interactions
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(corresponds to f(r) = 577)

How does ground state splitting scale with L7



(Granet, ML, in prep.)

Exact (asymptotic) result

logo = _\/EL(I—FQ)/? 4 O(L(1+a)/2)
A

e.g. for a =1/2,
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— stretched exponential scaling



(Coleman, 1977)

Warm-up: Particle in a symmetric
double well potential

V(x)
P2

H = ——I—V(X)
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How can we compute GS splitting ¢ in
semi-classical limit (A — 0)?



Let S = reflection operator (i.e. S|x) = | — x))

2 Tr(e PHS)
0~ 5 Tr(c=FH) for large




Let S = reflection operator (i.e. S|x) = | — x))

2 Tr(e PHS)
0~ 5 Tr(c=FH) for large

Path integral representation:
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Path integrals controlled by saddle points



a
Saddle point for denominator:

-

x(7)
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Saddle point for numerator: .
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“instanton”

(obtain by solving classical eq. of motion \ 7
in potential —V (x)) /\/\
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Saddle point for denominator:
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x(7)
— a
Saddle point for numerator: .
u J
“instanton”

(obtain by solving classical eq. of motion \ 7
in potential —V (x)) /\/\
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Back to spin model

A
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Back to spin model

A

H = Hy + — (M?)?
LO:
L—1 1 L
HOZ_ZJ§0;+17 M$=§Z"f

j=1 g=1

2 Trle P S]
)~ —

B Trle=PH]

2 Trle=F(Hot 2w (M) 5]
N E Tr[e—ﬁ(Ho-l-L%(Mﬂ?)]




/6)M—>oo




Tr[(e_%HOe_%%( )2) 8]
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Use Hubbard-Stratonovich identity:
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Use Hubbard-Stratonovich identity:
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Make change of variables:  0(7) = / o(7hdr'
0



Make change of variables:  0(7) = / o(7hdr'
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Expect S, 0], Sp|0] o< L

—> can use saddle-point approximation in limit L — oo



Saddle point for denominator:

Saddle point for numerator:
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2D model
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A = 0: exact topological GSD on torus

Turn on small A > 0 = degeneracy will split

How does splitting scale with L7



(Levin, Burnell, Koch-Janusz, Stern, 2011)

Motivation for model

Exact mapping onto (another) 2D model with:

e U(1) charge conservation
e Fractionally charged excitations

e Long-range density-density interactions

—> captures many features of FQH systems



Results for 2D model

Case 1: Any f(r) such that >, [f(r —1")] < Cy
(e.g. f(r) ~ = with a > 2)

6 = O(e ) (generalized stability theorem)

Case 2: f(r) ~ 7= with a < 1:

5§~ e cLUTV2/VN (instanton calculation)



Summary

fr)=1/lr]*, a>1 § <e L (theorem)
1D Ising fr)y=1/r]%, a<1 § e LT (conjecture)
model:

flr)=1/r]%,  a=1 77

f(r)=1/r]*, a>2 § < el (theorem)
2D toric (14a)/2 :

=1 @ 1 o =L

code model: 1) [lr]*, a< on~e (conjecture)

fr)=1/lr]*, 1<a<?2 77




