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Different Priors, Different Results

! g g g g nonparametric (astro)

TOV maximum mass and radius of a 1.4 solar mass NS are
correlated among equation of state candidates

= = nonparametric (prior)

spectral (prior)

spectral (astro) due to causality
. . . . — causality
TTTTTINTTTINM_ -agnostic Spectral model sees a “tighter correlation” than the

Nonparametric model — not likely due to causality!

Causality (Kalogera + Baym 1996)



Implicit Correlations - Mock Data
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SO What? “Preliminary”
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Conclusions

* Phenomenological models of the nuclear equation of state can build in (often
hidden) correlations due to the functional form of the EoS

* Nonparametric models (such as the Gaussian Process model), can provide more
flexibility in inference of the EoS (but do not guarantee it)

* Need to be very careful when talking about translating constraints between
variables, both micro and macroscopically



Inferring the EoS — In practice

* Want to establish a probability distribution on candidate equations of state given
observed astrophysical data

Equation of state candidate

P(e |d) = P(e|d,,d,, ...) x P(d,,d,, ... \8i)><

Prior

Astrophysical data



Inferring the EoS — In practice

* Want to establish a probability distribution on candidate equations of state given

Parametrize a functional
form (i.e. Spectral,
Piecewise-polytrope)

observed astrophysical data Phenomenological

Equaiion of state candidate /

Nonparametric methods,
P(e |d) = P(eld,,d5,...) x Pd;,d,, ... |€) X > | i.e. Gaussian process (GP)

I

Tabulated models from
nuclear theory

Astrophysical data



Nonparametric: Gaussian Process
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Gaussian Process Regression (Landry and LT - B
Essick 2018) - nonparametric (psr)

nonparametric (astro)
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Tabulate a draw ¢(p,) = In(1/c(p) — 1) @ |
Pressures p; from a multivariate Gaussian distribution “E 107

>,

p (dyn/
S,

Parameters for the covariance kernel are chosen to
Control “shape” of EoS distribution

’/
L
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Model-Agnostic Prior (broadest range of models)

05 1 > 3 456789
P (pnuC)

00% credible interval for p(p)

psr -> just heavy pulsar mass measurements
astro -> Heaviest pulsar, 2 NICER x-ray, 2 GWs



Parametric 9

Spectral (Lindblom 2010) E.g. for the Spectral Parametrization

10— —
Parametrize the adiabatic index spectral (psr)
n _
. 36| spectral (astro)
p(p) =p'@  T(z) = 7i(log(z))’ 0%
=0 .
. . = 107
Piecewise-polytrope (Read 2008) s
A polytrope with multiple segments =103
< U™
Kip't:p < p S
33|
p(p) = Kap' 2 : p1 < p < p2 0
Ksp'3 : py < p 1032 ;
Direct speed-of-sound (Greif 2018) 05 > 3 4 56789
A bump in the speed of sound before P (Pruc)
asymptotic behavior
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Correlations
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Correlations between astro observables <=> Correlations between density scales

Approximate causality and stability limits

Tight constrainta 2p,_..

O :
nonparametric (psr)

nonparametric (astro+pag) |

nonparametric (astro)

—== spectral (gsr)

spectral (astrodpag) |

spectral (astro)
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Implicit Correlations
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Quantifying correlations — Mutual Information

" How much information is gained about other density
. Scales by knowing the EoS at some fixed density

P (p a’ P b)
P(p,)P(pp)

I(p,,py) = JdpadpbP(pa,pb)ln

- nonpal“ametl"ic (pSI‘)

nonparametric (astro+pag) |

103255 nonparametric (astro)

051 > 3 456789
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Implicit Correlations

IL+ 2022

Quantifying correlations — Mutual Information

" How much information is gained about other density
. Scales by knowing the EoS at some fixed density

P(p,
I(pa,pb) - Jdpadpbp(pa’pb)ln ( (pa pb) )

P(p,)P(pp)

Also a K-L divergence!

_ P
1(pespy) = JdpaP(pa)JdpbP(pb | Mln( (P \pa))

- nonpal”ametl"ic (pSI‘)

_ nonparametric (astro+psg) | P (pb)
1032? nonparametric (astro) ) e e,
0.5 pl(p ) 23 456789 Difference in knowledge about

p;, after learning p,
Changing this analogous to adding a tight
Pressure “mock-measurement”
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Implicit Correlations
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P(p,lp,)
P(py)

I(py>pp) = JdpaP(pa) JdpbP(pb | p,)In

! | Caveats!

~ Scales with overall uncertainty of marginal distributions

// + Want to keep I small even with large entropy in
g - Marginal distributions P(p,), ...
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Implicit Correlations

I(py>pp) = JdpaP(pa) JdpbP(pb | p,)In
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P(p,lp,)
P(py)

! | Caveats!

Scales with overall uncertainty of marginal distributions

Want to keep I small even with large entropy in

Marginal distributions P(p ), ...

[ (111(]?1.0)» In(py 5), In(py,0): In(p3.0). In(ps )

PSR Astro Astro+ps.g
Nonparametric 3.7 3.1 2.9
Spectral 6.6 5.5 4.7
Polytrope 5.7 4.6 3.8
Speed of sound 5.0 4.7 4.3
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Simulated Astrophysical Data

We inject gravitational-wave (gw) and x-ray-radio (em)
observations on top of existing constraints

We intentionally choose an EoS that we expect the
model to fail to recover

Gives a sense of tension that may arise from combining
constraints using models with unphysical correlations
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Simulated Astrophysical Data

—— nonparametric (+gw)

= = nonparametric (+em)

spectral (4+em)

spectral (4+gw)

nonparametric (+gw+nicer)

causality

We inject gravitational-wave (gw) and x-ray-radio (em)
observations on top of existing constraints

Inverse Problem : Spectral Eos -> NP analysis

Slow convergence, but no bias



Modified parametric priors

Why not just modify the parametric models to get more flexibility?

E.g.

I

3
pip)=p; I'(p)= Z Y; log(p/po)i + more terms

1=0
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R1_4 [km]

Modified parametric priors

- = piecewise (prior)

We find changing the
Prior on parameters doesn’t
Remove the correlations

(

piecewise (astro)

—— piecewise (astro+gaussian-reweighted)
(

- = piecewise (prior+gaussian-reweighted)

R1.4 [km]

4!
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Modified parametric priors

IL+ 2022

With the current data we only
AN - = piecewise (prior)

Really only infer v, & 7,

(
piecewise (astro)
piecewise (astro+gaussian-reweighted)
(

piecewise (prior+gaussian-reweighted)

More like a

2-parameter
Model

1
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Modified parametric priors

Why not just modify the parametric models to get more flexibility?

Models are either

(1) fine-tuned => extending them without breaking is difficult (spectral + speed of sound)
(2) Need overhaul-type improvements (piecewise-polytrope + speed of sound)

This is already being done!
i.e. Steiner+ 2016 -> better piecewise-polytrope models

But... Extensions are nontrivial.
Best to understand limitations of each model while using it
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http://arxiv.org/abs/1510.07515

Not all Correlations are Bad!

Physical theories have correlations between quantities “F=ma”

\ /

Correlated

Goal is to give flexibility in the choice of correlations

See e.g. Miller+2021 : GP with
“tight” correlations

Eventually one should infer the
correlations

model-agnostic

-

10t ¢

Essick, Landry, and Holz 2019 10
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.063007
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(Backup) : Strong Phase Transitions

Parametric models struggle to model phase transitions
Piecewise-polytope models with variable stitching densities may be able to -> need fine tuning

The GP model can produce EoSs mimicking phase transitions generically

103 ——————
| — Marginalized Composition
1 Stable Branch
1036{ — 2 + Stable Branches o
f _ — Unlikely to have very strong PT here
C%\ 1035:_ /
S 5 Al NS cores have a|PT | ,
= We haven’t seen the PT yet
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spectral (astro-causal)

(
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causality

(Backup): Causality in Parametric Models
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causality
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Astrophysical Data (Brief Aside)

[deally : Population
Infer
Infer / /Sample
Lots of details
EoS lndnvndual parameters
(1) Selection Effects
Infer C ompute (2) Interpreting data (GW waveforms, x-ray pulse profiles)
Infer (3) Poorly characterized population of NSs
NS Properties

P(e |d) = P(e|d,,d,, ...) x|P(d,,d,, ... | &)|X P(e)
Infer Obsel‘ve

P(d,,d,, ...| &) = P(d, | &) X P(d, | €))...

Astro hvysical Data

P, |¢g;) = Z P(d; | NS source) X P(NS Source | ¢;, (Population Model))
NS sources
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Astrophysncal Data (Brlef Aside)

Assumption 1 BHs are just small NSs
In praCtlce: Popu]atl()n
Assumption 3 TQV mass Imtd.
Sample PRIOR
FOS Individual parameters
IL+ 2021
Infer Compute 16
15
NS Properties 14
E 13
Infer Observe 12
e
\/ 1 : Z Z Z Z
Astrophysical Data (] SRR ZANN P S
olis 1
SR
Minax [ Mo] Ry4 [km]

P, |¢g;) = Z P(d; | NS source) X|P(NS Source | ¢;, (Population Model))

NS sources
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PRIOR
PSR+GW+J0030
PSR+GW+J0030+J0740

(Backup): Corner Plot
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