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 Angularity event shapes in e+e- collisions
Consider Angularities, which can be defined in terms of the rapidity and pT 
of a final state particle ‘i’, with respect to the thrust axis:

Berger, Kucs, Sterman 
[hep-ph/0303051]

Bell, Hornig, CL, Talbert

[1808.07867]

a = 1 <-> `Jet Broadening’ (for us a<1)
a = 0 <-> `Thrust’

IR safe for a ∈ {-∞, 2}

Figure 1. Angularity distributions at NNLLÕ + O(–2
s
) accuracy, convolved with a renormalon-free

non-perturbative shape function, whose calculation is the subject of this paper. We display the
predictions for three values of a (for now without uncertainties), illustrating roughly where two-jet
and three-or-more-jet events lie in each ·a spectrum. For this illustration, the boundary is drawn
at the value of ·a for a four-particle state that is grouped into pairs of jets with opening angle 30¶.
As a becomes larger (smaller), the peak region is more (less) dominated by purely two-jet events.

In the present work we analyze a class of event shapes known as angularities, which
are defined as [29]

·a = 1
Q

ÿ

i

|p
i

‹| e
≠|÷i|(1≠a)

, (1.1)

where Q is the center-of-mass energy of the collision and the sum runs over all final-state
particles i with rapidity ÷i and transverse momentum p

i

‹ with respect to the thrust axis.
The angularities depend on a continuous parameter a, and they include thrust (a = 0)
and total jet broadening (a = 1) as special cases. Whereas infrared safety requires that
a < 2, we restrict our attention to values of a Æ 0.5 in this work, since soft recoil e�ects
which complicate the resummation are known to become increasingly more important as
a æ 1 [30]. It is also possible to define ·a in Eq. (1.1) with respect to an axis other than
the thrust axis, such as the broadening axis or another soft-recoil-insensitive axis [31]. We
stick to the standard thrust-axis-based definition here, to coincide with the available data.
See [32] for a recent calculation with an alternative axis.

The phenomenological e�ect of varying a is to change the proportions of two-jet-like
events and three-or-more-jet-like events that populate the peak region of the ·a distribu-
tions (see Fig. 1). The relevant collinear scale that enters the factorization of angularity
distributions in the two-jet limit then varies accordingly with a, to properly reflect the
transverse size of the jets that are dominating each region of the distributions.

The resummation of Sudakov logarithms for the angularity distributions is based on
the factorization theorem [29, 33–35]
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n̄ dks J
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n, µ) J
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·a ≠

t
a
n + t

a
n̄

Q2≠a
≠

ks

Q

2
,

(1.2)
which arises in the two-jet limit ·a æ 0. Here H is a hard function that contains the
virtual corrections to e

+
e

≠
æ qq̄ scattering at center-of-mass energy Q (normalised to the

Born cross section ‡0); J
a
n,n̄ are quark jet functions that describe the collinear emissions

into the jet directions, and are functions of a variable t
a
n,n̄ of mass dimension (2 ≠ a); and

S
a is a soft function that encodes the low-energetic cross talk between the two jets and
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(for some arbitrary, but uniform, definition of “2-jet”)
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Event shapes to high precision

First N3LL’ resummed event shape distributions with state-of-the-art treatment 
of nonperturbative corrections, e.g.:

Abbate et al.,arXiv:1006.3080 Hoang et al., arXiv: 1501.04111

Makes e+e- event shapes one of the most precise ways, in principle, to determine αs
7



Event shapes  
and the 
strong coupling

Hoang et al. , PRD 
91 (2015) 094018

Event 
shapes

Abbate et al. , PRD 83 (2011) 074021

PDG 2022:

~3𝜎 anomaly?



Factorization, Resummation  
and Nonperturbative Effects in EFT





An all-order dijet factorization theorem for the observable is easily derived in SCET:

Evolving all scales to/from their ‘natural’ settings, one arrives at the resummed cross section:
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RGE

order perturbative contributions and more sophisticated treatment of non-perturbative
e�ects now available, we think that the time is ripe for an updated comparison. In particu-
lar, our setup in Eq. (1.4) allows for a clear separation of perturbative and non-perturbative
e�ects, which is not possible with Monte Carlo hadronization models that were tuned to
LEP data and which entered many of the theory comparisons in [48]. We can therefore
rigorously assess the impact of the non-perturbative corrections in our framework.

This paper is organized as follows: In Section 2 we collect the formulae required for
the resummation of Sudakov corrections in the two-jet region, which includes the new two-
loop ingredients from the soft function calculation in [43, 44]. In order to achieve NNLLÕ

accuracy, one in addition needs to obtain the corresponding two-loop jet function terms,
which we determine from a fit to the EVENT2 generator in Section 3. In this section we also
perform the matching of the resummed distribution to the fixed-order O(–2

s) prediction.
Then, in Section 4, we discuss our implementation of non-perturbative e�ects and we
present the final expressions of our analysis after renormalon subtraction. We further
discuss our scale choices in Section 5, and compare our results to the L3 data in Section 6.
Finally, we conclude and give an outlook about a future –s determination from a fit to the
angularity distributions in Section 7. Some technical details of our analysis are discussed
in the Appendix.

2 NNLLÕ resummation

The formalism for factoring and resumming dijet event shapes within a SCETI factorization
framework is well developed and documented in many places (see, e.g., [33, 35, 50]) and will
not be re-derived here. Below we will simply display the final results of these analyses and
collect the required ingredients to achieve the NNLLÕ resummation we desire. The precise
prescriptions for which parts of Eq. (1.4) are needed to which order in –s will be given in
Table 6 in Sec. 4.3. In particular, to reach NNLLÕ accuracy, we need to know the heretofore
unknown two-loop jet and soft anomalous dimensions “

1

J,S
and finite terms of the two-loop

jet and soft functions c
2

J,S
(in a notation we shall define below). These have recently been

determined or can be obtained from results in [43, 44] and the EVENT2 simulations we
report in this paper. The rest of this section details what these ingredients are and how
they enter the final cross sections that we use to predict the angularity distributions.

2.1 Resummed cross section

The analytic forms for the resummed di�erential or integrated cross sections in ·a, derived
in standard references like [34, 35], are given by

‡sing(·a)
‡0

= e
K(µ,µH ,µJ ,µS)

3
µH

Q

4ÊH(µ,µH)3
µ

2≠a
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42ÊJ (µ,µJ )3
µS

Q·a
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H(Q2
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22 ÂS
1
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2
◊

Y
]

[

1

·a
F(�) ‡ = d‡

d·a

G(�) ‡ = ‡c

, (2.1)
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where the two cases are for ‡ being the di�erential or integrated distributions in Eq. (1.5),
and with the two functions F , G given by

F(�) = e
“E�

�(≠�) , G(�) = e
“E�

�(1 ≠ �) . (2.2)

The Born cross-section
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2
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6
(2.3)

contains a sum over massless quark flavours f = {u, d, s, c, b} with Qf being the charge of
the associated flavour in units of the electronic charge e, and vf and af are the vector and
axial charges of the flavour:

vf = 1
2 sin ◊W cos ◊W

(T 3

f ≠ 2Qf sin2
◊W ) , af = 1

2 sin ◊W cos ◊W

T
3

f . (2.4)

The jet and soft functions ÂJ, ÂS appearing in Eq. (2.1) are the Laplace transforms of J
a
n,n̄, S

a

from Eq. (1.2), with their arguments written in terms of the logarithms on which they
naturally depend (we suppress their indices to simplify the notation). The total evolution
kernels K, � accounting for the running of the hard function H and the jet and soft functions
ÂJ, ÂS are given by

K(µ, µH , µJ , µS) = KH(µ, µH) + 2KJ(µ, µJ) + KS(µ, µS) ,

� © �(µJ , µS) = 2ÊJ(µ, µJ) + ÊS(µ, µS) ,
(2.5)

constructed out of the individual evolution kernels
KF (µ, µF ) © ≠jF ŸF K�(µ, µF ) + K“F

(µ, µF ) ,

ÊF (µ, µF ) © ≠ŸF ÷�(µ, µF ) ,
(2.6)

which are determined from the anomalous dimensions of the functions F = H, ÂJ, ÂS:

K�(µ, µF ) ©

⁄
µ

µF

dµ
Õ

µÕ �cusp[–s(µÕ)] ln µ
Õ

µF

, (2.7)

÷�(µ, µF ) ©
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µ

µF

dµ
Õ

µÕ �cusp[–s(µÕ)] , K“F
(µ, µF ) ©

⁄
µ

µF

dµ
Õ

µÕ “F [–s(µÕ)] .

The coe�cients jF , ŸF in Eq. (2.6) are given by

jH = 1 , ŸH = 4 , (2.8)

jJ = 2 ≠ a , ŸJ = ≠
2

1 ≠ a
,

jS = 1 , ŸS = 4
1 ≠ a

,

and RG invariance of the cross section Eq. (2.1) imposes two consistency relations on these
anomalous dimension coe�cients,

ŸH + 2jJŸJ + ŸS = 0 , (2.9)
2ŸJ + ŸS = 0 .
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 Evolution and resummation of logs

hep-ph/0303051
hep-ph/1401.4460

Ω = 2ωJ + ωS

ωF = − 2κF ∫
μ

μF

dμ′￼

μ′￼

Γcusp[αs(μ′￼)]

K = ∑
F=H,J,S

∫
μ

μF

dμ′￼

μ′￼

γF(μ′￼)

γF(μ) = − jFκFΓcusp[αs(μ)]ln
QF

μ
+ γF[αs(μ)]

µH = QHard

Jet

Soft

μJ = Qτ1/2

μS = Qτ

pS ∼ Q(τ, τ, τ)

pc ∼ Q(1,τ, τ1/2)



Perturbative scale profiles
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a = 0
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μH default
(μH + μJ)/2 lo
(3μH − μJ)/2 hi

μns =
μJ default
(μJ + μS)/2 lo
μH hi

Will consider two non-singular scale choices “2010” and “2018”:

[1006.3080] [1808.07867, 
1501.04111]



Scale choices for resummed and fixed-order parts:
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Perturbative scale profiles

0.0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

τ

G
eV

Solid: 2018 Central
Dashed: 2010 Central

μHμJ

μS

R*

0.0 0.1 0.2 0.3 0.4 0.5
0
20
40
60
80
100
120

τ

G
eV

2010 Nonsingular
2018 Nonsingular

Solid: ns = 1
Dashed: ns = 0
Dotted: ns = -1

σPT(τ) = σsing(τ; μH, μJ, μS) + σns(τ; μns)
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2010: [1006.3080]

2018: [1808.07867] based on [1501.04111]



The above predicts the (resummed) singular component of the cross section.  
One must then match to fixed-order QCD for large :τ

is given in terms of the Laplace-space constants by

c
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.

This formula immediately gives us c
2

J̃
as soon as we determine c

(2) (which, we recall from
Eq. (3.6), is in momentum space), whose extraction from EVENT2 will be described in the
next subsection.

3.2 Two-loop jet function constant

The program EVENT2 [74, 75] gives numerical results for partonic QCD observables in e
+

e
≠

collisions to O(–2
s). Using the method described by Hoang and Kluth [76], we can extract

the singular constant c
(2) in Eq. (3.6), and thus the unknown jet function constant c

2

J̃
via

Eq. (3.7). For pedagogical purposes, we will give our own description of this method in the
language of continuous distributions, which we find more intuitive to understand, rather
than the language of discrete bins, which we encourage the reader to study in [76], as in
practice one implements the discrete method.

The integrated (cumulative) angularity distribution in full QCD has a fixed-order ex-
pansion of the form:

‡c(·a)
‡0

= ◊(·a)
;

1 + –s(Q)
2fi

#
c12 ln2

·a + c11 ln ·a + c10 + r
1

c (·a)
$

(3.8)

+
1

–s(Q)
2fi

22#
c24 ln4

·a + c23 ln3
·a + c22 ln2

·a + c21 ln ·a + c20 + r
2

c (·a)
$<

,

to O(–2
s). The cnm coe�cients should agree with the SCET prediction in Eq. (3.4) for the

singular terms. The r
n
c functions are the nonsingular remainders that vanish as ·a æ 0 and

which are not predicted by the leading power expansion in SCET. Since SCET predicts
the singular coe�cients correctly, the di�erence of the QCD and SCET results is simply
given by these remainders:

‡c(·a)
‡0

≠
‡c,sing(·a)

‡0

= rc(·a) = ◊(·a)
;

–s(Q)
2fi

r
1

c (·a) +
1

–s(Q)
2fi

22

r
2

c (·a)
<

, (3.9)

which we will use in the next subsection to obtain the nonsingular remainder functions r
n
c

from the di�erence of the EVENT2 output and the SCET prediction. To do this, however,
we must know all the cnm coe�cients in Eq. (3.8), including the constants in c20 © c

(2) in
Eq. (3.7). But we do not yet know c

2

J̃
.

In the limit of zero bin size, EVENT2 is generating an approximation to the di�erential
distribution, which takes the form:

1
‡0

d‡

d·a

= A ”(·a) + [B(·a)]+ + r(·a) , (3.10)

where A is the constant coe�cient of the delta function, B is a singular function, turned into
an integrable plus-distribution, and r = drc/d·a is nonsingular, that is, directly integrable
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Fixed-order tails
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New remainder functions
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Results for 3-loop fixed-order angularity distributions from EERAD3 (IR cutoff ,  events)10−7 1.5 × 1010

LANL Institutional Computing clusters

n = 6 n = 5 n = 4

n = 3 n = 2

n = 2 (zoom)

 coeff.ln τa

N.B.: 3-loop results computed but not included in  determinations presented in this talk: 
single log coefficient for a=0 (thrust) differs from QCD predictions: needs to be revisited

αs

“Finite” remainder functions, a=0:e.g. for :a = − 11
σ

dσ
d ln τ

minus  terms:lnn τa

[1006.3080, 6 x 107 events]
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[this work, 1.5 x 1010 events]



 Non-perturbative effects and gapped soft function

When dominant power corrections come from the soft function, NP effects can be 
parameterized into a shape function fmod:

the domain of ·a considered. For angularities with a < 1, power corrections from the
collinear sector are suppressed with respect to those from the soft sector [23, 24]. The
non-perturbative e�ects can then be parameterized into a soft shape function fmod(k) that
is convolved with the perturbative distribution [38, 39, 50]:

S(k, µ) =
⁄

dk
Õ
SPT(k ≠ k

Õ
, µ) fmod(kÕ

≠ 2�a) , (4.1)

which ultimately leads to Eq. (1.4) for the cross section. Here SPT is the soft function
computed in perturbation theory, and �a is a gap parameter, which we will address in the
next subsection. The shape function fmod(k) is positive definite and normalized. We follow
previous approaches and expand the shape function in a complete set of orthonormal basis
functions [56]:

fmod(k) = 1
⁄

C Œÿ

n=0

bn fn

3
k

⁄

4D2

, (4.2)

where

fn(x) = 8

Û
2x3 (2n + 1)

3 e
≠2x

Pn

!
g(x)

"
, (4.3)

g(x) = 2
3

1
3 ≠ e

≠4x
1
3 + 12x + 24x

2 + 32x
3
22

≠ 1 ,

and Pn are Legendre polynomials. The normalization of the shape function implies that
the coe�cients bn satisfy

qŒ
n=0 b

2
n = 1. In practice, we only keep one term in the sum (4.2),

setting bn = 0 for n > 0 (cf. [16, 18, 81]). The parameter ⁄ is then constrained by the
first moment of the shape function as explained in the next subsection. More terms can in
principle be included in Eq. (4.2) if one wishes to study higher non-perturbative moments
beyond the first one.

This function, when convolved with the perturbative distribution from the previous
sections, reproduces the known shift in the tail region [43, 44, 82], which can be shown rig-
orously via an operator product expansion (OPE) [23] to be the dominant non-perturbative
e�ect,4

d‡

d·a

(·a) ≠æ
NP

d‡

d·a

1
·a ≠ c·a

�1

Q

2
. (4.4)

Here �1 is a universal non-perturbative parameter that is defined as a vacuum matrix
element of soft Wilson lines and a transverse energy-flow operator (for details, see [23]).
On the other hand, c·a

is an exactly calculable observable-dependent coe�cient which, for
the angularities, is given by c·a

= 2/(1 ≠ a) [23, 40, 41].5

4 In the peak region, the OPE does not apply and the full shape function fmod(k) is required to capture
the non-perturbative e�ects. Furthermore, the result in (4.4) is not only leading order in the OPE, it is
also subject to other corrections like finite hadron masses and perturbative renormalization e�ects on the
quantity �1, as described in [26].

5The expression for c·a diverges in the broadening limit a æ 1, where the SCETI factorization theo-
rem we use breaks down. A careful analysis revealed that the non-perturbative e�ects to the broadening
distributions are enhanced by a rapidity logarithm, cBT = ln Q/BT [24].

– 26 –

‘Gap’ parameter accounting for parton -> hadron transition

The effect of  is to shift the first moment of the perturbative distribution:fmod
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This scaling and the universality of  can be proven from QCD / SCET factorization:Ω1
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Additionally, a treatment of non-perturbative effects is critical in e+e- -> hadrons
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However, both the perturbative soft function and gap parameter suffer renormalon ambiguities. 

4.2 Gap parameter and renormalon subtraction

As advocated in [51], we use a soft function with a non-perturbative gap parameter �a,
as already displayed in Eq. (4.1). The gap parameter accounts for the minimum value of
·a for a hadronic spectrum (the distribution can go down to zero for massless partons, but
not for massive hadrons). In the tail region of the distributions, Eq. (4.1) then leads to a
shift of the perturbative cross section, Eq. (4.4), with

2�1

1 ≠ a
= 2�a +

⁄
dk k fmod(k) . (4.5)

Since the first moment is shifted linearly by �a, this parameter was rescaled in [34] from
its default definition in [51] via

�a = �
1 ≠ a

, (4.6)

where � ≥ �QCD is an a-independent parameter. Note that this determines that, with
Eq. (4.2) truncated at n = 0, the model function parameter ⁄ = 2(�1 ≠ �)/(1 ≠ a). Up to
this point, the barred quantities �1, �(a) are taken to be defined in a perturbative scheme
like MS in which SPT has been calculated. In [51] it was pointed out that such a definition
of the gap parameter �a has a renormalon ambiguity, shared by the perturbative soft
function SPT in Eq. (4.1). This is similar but not identical to the renormalon in the pole
mass for heavy quarks (see, e.g. [83]). To obtain stable predictions, it is necessary to cancel
the ambiguity from both SPT and �a in Eq. (4.1). This can be done by redefining the gap
parameter as

�a = �a(µ) + ”a(µ) , (4.7)

where ”a has a perturbative expansion with the same renormalon ambiguity as SPT (but
opposite sign). The remainder �a is then renormalon free, but its definition depends on
the scheme and the scale of the subtraction term ”a. We adopt here the prescription
chosen in [76] and also later implemented by [16, 18, 34], which is based on the position-
space subtraction for the heavy-quark pole-mass renormalon introduced in [84, 85]. We
will translate this notation to the Laplace-space soft function we have been using in this
paper—see Eq. (2.28). The two formulations are completely equivalent with ‹ ¡ ix.

The subtraction and its evolution equations are easier to formulate in Laplace space
than in momentum space. For the Laplace-space soft function6

ÂS(‹, µ) =
⁄ Œ

0

dk e
≠‹k

S(k, µ) , (4.8)

the convolution in Eq. (4.1) becomes

ÂS(‹, µ) =
Ë
e

≠2‹�a(µ) Âfmod(‹)
ÈË

e
≠2‹”a(µ) ÂSPT(‹, µ)

È
, (4.9)

where we have grouped the renormalon-free gap parameter �a with the shape function
Âfmod, and the perturbative subtraction term ”a with ÂSPT, rendering each group of terms

6We prefer to use a dimensionful Laplace variable in this section, which is related to the one introduced
in Sec. 2.3 by ‹ = ‹a/Q.
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Laplace space
renormalon free renormalon free

 ambiguity in gap 𝒪(ΛQCD) Δa

Subtract a series with the same/canceling ambiguity from both PT and NP pieces:

17



Rgap scheme

Choosing the Rgap scheme to cancel the leading renormalon,

in brackets renormalon free. There are a number of schemes one can choose to define ”a

that achieve cancellation of the leading renormalon. A particularly convenient one found
in [76, 84, 85] is a condition that fixes the derivative of the soft function at some value of
‹ to have an unambiguous value:

Re
“E

d

d ln ‹

Ë
ln ‚SPT(‹, µ)

È

‹=1/(Re
“E )

= 0 , (4.10)

where ‚SPT(‹, µ) = e
≠2‹”a(µ) ÂSPT(‹, µ), which is su�cient to render ‚SPT, and thus �a, to be

renormalon-free. This is known as the “Rgap” scheme, and its condition determines ”a as a
function of a new, arbitrary subtraction scale R, which should be taken to be perturbative,
but small enough to describe the characteristic fluctuations in the soft function. Explicitly,
Eq. (4.10) defines the subtraction term as

”a(µ, R) = 1
2Re

“E
d

d ln ‹

Ë
ln ÂSPT(‹, µ)

È

‹=1/(Re
“E )

, (4.11)

and we see that ”a (and thus �a) depends on two perturbative scales, µ and R. Expanding
the subtraction terms as

”a(µ, R) = Re
“E

5
–s(µ)

4fi
”

1

a(µ, R) +
1

–s(µ)
4fi

22

”
2

a(µ, R) + · · ·

6
, (4.12)

we obtain, for the MS Laplace-space soft function ÂSPT, using its expansion in Eq. (2.28),

”
1

a(µ, R) = �0

S ln µ

R
, (4.13a)

”
2

a(µ, R) = �0

S—0 ln2
µ

R
+ �1

S ln µ

R
+ “

1

S
(a)
2 + c

1

S̃
(a)—0 , (4.13b)

where from Eq. (2.29), �n

S
= ≠2�n/(1 ≠ a), and “

1

S
and c

1

S̃
are given by Eq. (2.32) and

Eq. (2.36).
Eq. (4.13) exhibits logarithms of µ/R that appear in the subtraction term ”a and thus

the renormalon-free gap parameter �a. Since µ = µS will be chosen in the next section to
be a function of ·a, which varies over a large range between µ0 ≥ 1 GeV and Q, a fixed
value of R can only minimize these logarithms in one region of ·a, but not everywhere.
We therefore need to allow R to vary as well to track µS , and so we need to know the
evolution of �a in both µ and R. The µ-RGE is simple to derive. Since �a in Eq. (4.7) is
µ-independent, we obtain

µ
d

dµ
�a(µ, R) = ≠µ

d

dµ
”a(µ, R) © “

µ

�
[–s(µ)] , (4.14)

where from the perturbative expansion of ”a in Eq. (4.13), we can determine

“
µ

�
[–s(µ)] = ≠Re

“E �S [–s(µ)] , (4.15)

explicitly to O(–2
s), and which can be shown to hold to all orders [76]. The solution of this

RGE is given by
�a(µ, R) = �a(µ�, R) + Re

“E
ŸS

2 ÷�(µ, µ�) , (4.16)
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the second line of Eq. (4.29)), and at NNLL(Õ) we keep “
µ

�
, “R to O(–2

s) (i.e up to the last
line). These rules are summarized with all other truncation rules in Table 6 below. Note
that this means that ÷� is actually kept to one order of accuracy lower than indicated by
Eq. (2.18). This is because the µ-evolution of �a in Eq. (4.16) is not multiplied by an
extra logarithm as for the hard, jet, and soft functions in the full factorized cross section.7

Transforming the renormalon-free soft function in Eq. (4.9) back to momentum space,
we obtain the shifted version of Eq. (4.1),

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
≠ 2”a(µ, R), µ

"
fmod

!
k

Õ
≠ 2�a(µ, R)

"
. (4.30)

Then the parameter �1 in Eq. (4.5), describing the non-perturbative shift of the perturba-
tive cross section induced by the shape function, turns into a renormalon-free shift:

2�1(µ, R)
1 ≠ a

= 2�a(µ, R) +
⁄

dk k fmod(k) , (4.31)

We will take the input gap parameter at a reference scale R� = 1.5 GeV to be �(R�, R�) =
0.1 GeV in our phenomenological analysis below. The exact value of this parameter is not
particularly relevant to the tail region in which we focus our comparisons to data [18].

The shift in the perturbative part of Eq. (4.30) can also be expressed in terms of a
di�erential translation operator that acts on the perturbative soft function SPT:

S(k, µ) =
⁄

dk
Õ
Ë
e

≠2”a(µ,R)
d

dk SPT

!
k ≠ k

Õ
, µ

"È
fmod

!
k

Õ
≠ 2�a(µ, R)

"
, (4.32)

which, after integrating by parts, gives

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
, µ

" Ë
e

≠2”a(µ,R)
d

dkÕ fmod

!
k

Õ
≠ 2�a(µ, R)

"È
. (4.33)

In the final cross section, the renormalon-subtracted shape function then enters as a con-
volution against the perturbative distribution,

1
‡0

‡(·a) =
⁄

dk ‡PT

1
·a ≠

k

Q

2Ë
e

≠2”a(µS ,R)
d

dk fmod

!
k ≠ 2�a(µS , R)

"È
, (4.34)

which is the expression we anticipated in Eq. (1.4). This implies we convolve both the
singular and nonsingular parts of the cross section Eq. (1.6) with the same, renormalon-
subtracted shape function. In doing this we follow [18] and ensure a smooth transition from
the resummation to fixed-order regime even after non-perturbative e�ects are included.

7In comparing to the R-evolution for quark masses in [85], it may also appear that we keep one fewer
order at NkLL accuracy than in that paper. But the counting for the logarithms is di�erent in the two
cases, since the logarithms appear as single logarithms for quark masses, but as double logarithms for event
shapes; so the terms we call NkLL correspond to terms that are called Nk≠1LL in [85]. Also, our truncation
scheme seems to di�er from the one applied for the gap parameter in [16, 18], as described in Eq. (A31) of
[18] or Eq. (56) of [16]. However, it is consistent with the corresponding tables in these papers and with
the actual numerical implementations used by these authors in their results [86].
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the second line of Eq. (4.29)), and at NNLL(Õ) we keep “
µ

�
, “R to O(–2

s) (i.e up to the last
line). These rules are summarized with all other truncation rules in Table 6 below. Note
that this means that ÷� is actually kept to one order of accuracy lower than indicated by
Eq. (2.18). This is because the µ-evolution of �a in Eq. (4.16) is not multiplied by an
extra logarithm as for the hard, jet, and soft functions in the full factorized cross section.7

Transforming the renormalon-free soft function in Eq. (4.9) back to momentum space,
we obtain the shifted version of Eq. (4.1),

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
≠ 2”a(µ, R), µ

"
fmod

!
k

Õ
≠ 2�a(µ, R)

"
. (4.30)

Then the parameter �1 in Eq. (4.5), describing the non-perturbative shift of the perturba-
tive cross section induced by the shape function, turns into a renormalon-free shift:

2�1(µ, R)
1 ≠ a

= 2�a(µ, R) +
⁄

dk k fmod(k) , (4.31)

We will take the input gap parameter at a reference scale R� = 1.5 GeV to be �(R�, R�) =
0.1 GeV in our phenomenological analysis below. The exact value of this parameter is not
particularly relevant to the tail region in which we focus our comparisons to data [18].

The shift in the perturbative part of Eq. (4.30) can also be expressed in terms of a
di�erential translation operator that acts on the perturbative soft function SPT:

S(k, µ) =
⁄

dk
Õ
Ë
e

≠2”a(µ,R)
d

dk SPT

!
k ≠ k

Õ
, µ

"È
fmod

!
k

Õ
≠ 2�a(µ, R)

"
, (4.32)

which, after integrating by parts, gives

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
, µ

" Ë
e

≠2”a(µ,R)
d

dkÕ fmod

!
k

Õ
≠ 2�a(µ, R)

"È
. (4.33)

In the final cross section, the renormalon-subtracted shape function then enters as a con-
volution against the perturbative distribution,

1
‡0

‡(·a) =
⁄

dk ‡PT

1
·a ≠

k

Q

2Ë
e

≠2”a(µS ,R)
d

dk fmod

!
k ≠ 2�a(µS , R)

"È
, (4.34)

which is the expression we anticipated in Eq. (1.4). This implies we convolve both the
singular and nonsingular parts of the cross section Eq. (1.6) with the same, renormalon-
subtracted shape function. In doing this we follow [18] and ensure a smooth transition from
the resummation to fixed-order regime even after non-perturbative e�ects are included.

7In comparing to the R-evolution for quark masses in [85], it may also appear that we keep one fewer
order at NkLL accuracy than in that paper. But the counting for the logarithms is di�erent in the two
cases, since the logarithms appear as single logarithms for quark masses, but as double logarithms for event
shapes; so the terms we call NkLL correspond to terms that are called Nk≠1LL in [85]. Also, our truncation
scheme seems to di�er from the one applied for the gap parameter in [16, 18], as described in Eq. (A31) of
[18] or Eq. (56) of [16]. However, it is consistent with the corresponding tables in these papers and with
the actual numerical implementations used by these authors in their results [86].
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Final cross section is expanded order-
by-order in bracketed term
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Figure 9. Predictions for the central values of the integrated cross sections at NNLLÕ accuracy in
the low ·a domain, shown here for seven values of the angularity parameter a. Left: Predictions
from the purely perturbative cross section. Right: Predictions after renormalon subtraction as
implemented in Eq. (4.41).

kernels contained in each expression are to be evaluated to the appropriate resummed
logarithmic accuracy as described in Sec. 2.

Eqs. (4.40) and (4.41) represent our final expression for the renormalon-free resummed
and matched cross section that is convolved with a non-perturbative shape function. We
should point out that we will perform the convolution in k prior to choosing particular
values for the scales µH,J,S,ns and R. We have clearly exhibited the dependence on these
scales versus the explicit dependence on ·a appearing in Eqs. (4.38) and (4.39). In the
next section we will describe how we choose these scales, but for now it su�ces to say
that they are functions of the measured ·a in the cross section, and not functions of the
convolution variable ·a ≠ k/Q. Thus the ·a dependence inside the scales µH,J,S,ns and R

are not convolved over in Eq. (4.41). In our numerical code, the convolution between the
explicit ·a ≠ k/Q dependence from Eqs. (4.38) and (4.39) and the k dependence in fmod is
then computed for a given set of scales µi(·a), R(·a).

Fig. 9 illustrates the practical e�ect of implementing the renormalon subtraction and
the convolution with the non-perturbative shape function as described above. We present
the central theory curves at NNLLÕ accuracy for the cumulant cross sections at seven values
of the parameter a, all in the low-·a domain. The curves in the left panel reflect the purely
perturbative calculation, which exhibit unphysical (negative) values for the cross section.
The curves in the right panel, on the other hand, represent the calculation performed with
Eq. (4.41). It is clear that the renormalon cancellation is successful and no unphysical
behavior is observed.

5 Scale choices

5.1 Profile functions

From the arguments of the logarithms in the fixed-order hard, jet, and soft functions
appearing in Eq. (2.11), one can identify the natural scales at which these logarithms are
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Figure 9. Predictions for the central values of the integrated cross sections at NNLLÕ accuracy in
the low ·a domain, shown here for seven values of the angularity parameter a. Left: Predictions
from the purely perturbative cross section. Right: Predictions after renormalon subtraction as
implemented in Eq. (4.41).

kernels contained in each expression are to be evaluated to the appropriate resummed
logarithmic accuracy as described in Sec. 2.

Eqs. (4.40) and (4.41) represent our final expression for the renormalon-free resummed
and matched cross section that is convolved with a non-perturbative shape function. We
should point out that we will perform the convolution in k prior to choosing particular
values for the scales µH,J,S,ns and R. We have clearly exhibited the dependence on these
scales versus the explicit dependence on ·a appearing in Eqs. (4.38) and (4.39). In the
next section we will describe how we choose these scales, but for now it su�ces to say
that they are functions of the measured ·a in the cross section, and not functions of the
convolution variable ·a ≠ k/Q. Thus the ·a dependence inside the scales µH,J,S,ns and R

are not convolved over in Eq. (4.41). In our numerical code, the convolution between the
explicit ·a ≠ k/Q dependence from Eqs. (4.38) and (4.39) and the k dependence in fmod is
then computed for a given set of scales µi(·a), R(·a).

Fig. 9 illustrates the practical e�ect of implementing the renormalon subtraction and
the convolution with the non-perturbative shape function as described above. We present
the central theory curves at NNLLÕ accuracy for the cumulant cross sections at seven values
of the parameter a, all in the low-·a domain. The curves in the left panel reflect the purely
perturbative calculation, which exhibit unphysical (negative) values for the cross section.
The curves in the right panel, on the other hand, represent the calculation performed with
Eq. (4.41). It is clear that the renormalon cancellation is successful and no unphysical
behavior is observed.

5 Scale choices

5.1 Profile functions

From the arguments of the logarithms in the fixed-order hard, jet, and soft functions
appearing in Eq. (2.11), one can identify the natural scales at which these logarithms are
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Rgap scheme

Choosing the Rgap scheme to cancel the leading renormalon,

in brackets renormalon free. There are a number of schemes one can choose to define ”a

that achieve cancellation of the leading renormalon. A particularly convenient one found
in [76, 84, 85] is a condition that fixes the derivative of the soft function at some value of
‹ to have an unambiguous value:

Re
“E

d

d ln ‹

Ë
ln ‚SPT(‹, µ)

È

‹=1/(Re
“E )

= 0 , (4.10)

where ‚SPT(‹, µ) = e
≠2‹”a(µ) ÂSPT(‹, µ), which is su�cient to render ‚SPT, and thus �a, to be

renormalon-free. This is known as the “Rgap” scheme, and its condition determines ”a as a
function of a new, arbitrary subtraction scale R, which should be taken to be perturbative,
but small enough to describe the characteristic fluctuations in the soft function. Explicitly,
Eq. (4.10) defines the subtraction term as

”a(µ, R) = 1
2Re

“E
d

d ln ‹

Ë
ln ÂSPT(‹, µ)

È

‹=1/(Re
“E )

, (4.11)

and we see that ”a (and thus �a) depends on two perturbative scales, µ and R. Expanding
the subtraction terms as

”a(µ, R) = Re
“E

5
–s(µ)

4fi
”

1

a(µ, R) +
1

–s(µ)
4fi

22

”
2

a(µ, R) + · · ·

6
, (4.12)

we obtain, for the MS Laplace-space soft function ÂSPT, using its expansion in Eq. (2.28),

”
1

a(µ, R) = �0

S ln µ

R
, (4.13a)

”
2

a(µ, R) = �0

S—0 ln2
µ

R
+ �1

S ln µ

R
+ “

1

S
(a)
2 + c

1

S̃
(a)—0 , (4.13b)

where from Eq. (2.29), �n

S
= ≠2�n/(1 ≠ a), and “

1

S
and c

1

S̃
are given by Eq. (2.32) and

Eq. (2.36).
Eq. (4.13) exhibits logarithms of µ/R that appear in the subtraction term ”a and thus

the renormalon-free gap parameter �a. Since µ = µS will be chosen in the next section to
be a function of ·a, which varies over a large range between µ0 ≥ 1 GeV and Q, a fixed
value of R can only minimize these logarithms in one region of ·a, but not everywhere.
We therefore need to allow R to vary as well to track µS , and so we need to know the
evolution of �a in both µ and R. The µ-RGE is simple to derive. Since �a in Eq. (4.7) is
µ-independent, we obtain

µ
d

dµ
�a(µ, R) = ≠µ

d

dµ
”a(µ, R) © “

µ

�
[–s(µ)] , (4.14)

where from the perturbative expansion of ”a in Eq. (4.13), we can determine

“
µ

�
[–s(µ)] = ≠Re

“E �S [–s(µ)] , (4.15)

explicitly to O(–2
s), and which can be shown to hold to all orders [76]. The solution of this

RGE is given by
�a(µ, R) = �a(µ�, R) + Re

“E
ŸS

2 ÷�(µ, µ�) , (4.16)
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Eq. (4.13) exhibits logarithms of µ/R that appear in the subtraction term ”a and thus

the renormalon-free gap parameter �a. Since µ = µS will be chosen in the next section to
be a function of ·a, which varies over a large range between µ0 ≥ 1 GeV and Q, a fixed
value of R can only minimize these logarithms in one region of ·a, but not everywhere.
We therefore need to allow R to vary as well to track µS , and so we need to know the
evolution of �a in both µ and R. The µ-RGE is simple to derive. Since �a in Eq. (4.7) is
µ-independent, we obtain
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where from the perturbative expansion of ”a in Eq. (4.13), we can determine
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[–s(µ)] = ≠Re

“E �S [–s(µ)] , (4.15)

explicitly to O(–2
s), and which can be shown to hold to all orders [76]. The solution of this

RGE is given by
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δ1(μS, R) = 2Γ0
s ln

μS

R

δ(μ, R) =
ReγE

2

∞

∑
n=1

( αS(μ)
4π )

n

δn(μS, R)

δ2(μS, R) = 2Γ0
s β0 ln2 μS

R
+ 2Γ1

s ln
μS

R
+ γ1

s + 2c1
S̃β0

δ3(μS, R) = ⋯



R-evolution

in brackets renormalon free. There are a number of schemes one can choose to define ”a

that achieve cancellation of the leading renormalon. A particularly convenient one found
in [76, 84, 85] is a condition that fixes the derivative of the soft function at some value of
‹ to have an unambiguous value:
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be a function of ·a, which varies over a large range between µ0 ≥ 1 GeV and Q, a fixed
value of R can only minimize these logarithms in one region of ·a, but not everywhere.
We therefore need to allow R to vary as well to track µS , and so we need to know the
evolution of �a in both µ and R. The µ-RGE is simple to derive. Since �a in Eq. (4.7) is
µ-independent, we obtain

µ
d

dµ
�a(µ, R) = ≠µ

d

dµ
”a(µ, R) © “

µ

�
[–s(µ)] , (4.14)

where from the perturbative expansion of ”a in Eq. (4.13), we can determine

“
µ

�
[–s(µ)] = ≠Re

“E �S [–s(µ)] , (4.15)

explicitly to O(–2
s), and which can be shown to hold to all orders [76]. The solution of this
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with an initial condition at some scale µ�, and where ŸS = 4/(1≠a) was given in Eq. (2.8)
and the kernel ÷� was defined in Eq. (2.7).

The evolution of the gap parameter �a(µ, R) in R is a bit more involved, and was
solved in [85] for quark masses and applied to the soft gap parameter in [76]. We follow
this derivation here (in our own notation). Since from Eq. (4.16) we know how to evolve
�a(µ, R) in µ, we just need to derive the evolution of �a(R, R) in R. Since �a in Eq. (4.7)
is also R-independent, we can derive from the perturbative expansion of ”a in Eq. (4.13)
the “R-evolution” equation:

d

dR
�a(R, R) = ≠

d

dR
”a(R, R) © ≠“R[–s(R)] , (4.17)

where “R has a perturbative expansion,

“R[–s(R)] =
Œÿ

n=0

1
–s(R)

4fi

2n+1

“
n

R , (4.18)

whose first two coe�cients we read o� from Eqs. (4.12) and (4.13),

“
0

R = 0 , “
1

R = e
“E

2
#
“

1

S(a) + 2c
1

ÂS—0

$
. (4.19)

Even though “
0

R
= 0 for the soft gap parameter (since “

0

S
(a) = 0), we will keep it symboli-

cally in the solution below for generality (and for direct comparison with the quark mass
case in [85]).

To solve Eq. (4.17), we integrate:

�a(R1, R1) ≠ �a(R�, R�) = ≠

⁄
R1

R�

dR

R
R “R[–s(R)] , (4.20)

multiplying and dividing by R in the integrand, anticipating using Eq. (2.21) to change
integration variables to –s. But first we need to invert –s(R) to express R. To this end,
we write Eq. (2.21) in the form

ln R

R�

=
⁄

–s(R)

–s(R�)

d–

—[–] = G[–s(R)] ≠ G[–s(R�)] , (4.21)

where G[–] is the antiderivative of 1/—[–],

G
Õ[–] = 1

—[–] = ≠
2fi

—0

1
–2

1
1 + –

4fi

—1
—0

+
!

–

4fi

"2 —2
—0

+ · · ·

. (4.22)

This determines G up to a constant of integration (we e�ectively choose it such that
G[–] æ 0 as – æ Œ). If R, R� are scales for which –s is perturbative, we can determine
G explicitly order by order,

G[–] = 2fi

—0

5 1
–

+ —1

4fi—0

ln – ≠
B2

(4fi)2
– + · · ·

6
, (4.23)
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Sum logs by μ and R evolution:

Want to keep R near IR scales, but also avoid large logs  in subtraction termsln
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Before considering gapped renormalons, the leading-order NP effect is a constant shift:

where α = e−η′

, as n → αn and n̄ → α−1n̄. (This is also known in SCET as type-III
reparametrization invariance [46].) The only change is in the operator ET (η):

U(Λ(η′))ET (η)U(Λ(η′))† = ET (η + η′) , (57)

which follows from the defining relation for the ET operators, Eq. (46). Thus, the argument of
the operator ET (η) in the shape function in Eq. (55) may be shifted to any value of rapidity,
ET (η) → ET (η + η′). At this stage, this does not yet allow us to perform the rapidity
integral of fe(η) inside the delta function. Thus we do not find that the leading power
correction simply shifts the argument of the perturbative event shape distributions, as the
delta function is a highly nonlinear function of the energy flow operator and sits sandwiched
between Wilson lines in the matrix element. If we do neglect correlations between these
operators, we derive a delta function for the shape function, and reproduce the shift in the
distribution, Eq. (52) [9, 44].

The boost property (57) of a single operator, however, gives a strong result when applied
to the first moment of an event shape distribution [14]. Taylor expanding the delta function
in Eq. (55) (which is valid if we integrate the distribution over a sufficiently large region
near the endpoint), we find

Se(e) = δ(e) − δ′(e)
1

Q

∫

dη fe(η)
1

NC

Tr 〈0|Y
†
n̄Y

†
nET (η + η′)YnY n̄ |0〉 + · · · . (58)

Recalling the boost properties of the Wilson lines and the energy flow operators ET (η), we
are free to choose any value for η′ in this expression. Then, choosing η′ = −η, we find that,
remarkably, we may take the matrix element of the ET operator out of the integral over η,
leaving the result

Se(e) = δ(e) − δ′(e)ce

A

Q
+ · · · , (59)

where the coefficient ce is given by the integral,

ce =

∫ ∞

−∞

dη fe(η), (60)

and the universal quantity A is

A =
1

NC

Tr 〈0|Y
†
n̄Y †

nET (0)YnY n̄ |0〉 . (61)

For the C-parameter and angularities τa, the integrals of the corresponding weight functions,

fC(η) =
3

cosh η
, fτa = e−|η|(1−a), (62)

over all rapidities give the coefficients,

cC = 3π, cτa =
2

1 − a
. (63)

When convoluted with the perturbative distribution, Se(e) reproduces the universality re-
lations of Eq. (51) for the first moments of the distributions. We have thus established

20

Note:  this is only valid in the tail region!

Define an ‘effective shift’ of the distribution in the Rgap scheme:

 Effective non-perturbative shifts

Accuracy �cusp “F , “µ
�, “R — H, J̃, S̃, ”a

LL –s 1 –s 1

NLL –
2
s –s –

2
s 1

NNLL –
3
s –

2
s –

3
s –s

N3LL –
4
s –

3
s –

4
s –

2
s

Accuracy H, J̃, S̃, ”a

NLLÕ
–s

NNLLÕ
–

2
s

N3LLÕ
–

3
s

Matching r
n(·a)

+O(–s) –s

+O(–2
s) –

2
s

+O(–3
s) –

3
s

Table 6. Ingredients we include at various orders of unprimed NkLL (Left), primed NkLLÕ (Middle),
and matched (Right) accuracies, up to a given fixed order O(–n

s
). The tables apply to the inte-

grated distribution in Eq. (4.38) and the Laplace-transformed distribution, but not, for unprimed
accuracies, directly to the di�erential form in Eq. (2.1)—see [35] for details. We have included
a counting for the renormalon subtractions terms ”a in Eq. (4.12) and the µ- and R-evolution
anomalous dimensions “

µ

�, “R in Eqs. (4.15) and (4.18) as described in the text.

In practice we expand out the shape function terms to the order we work in –s,

e
≠2”a(µS ,R)

d

dk fmod(k ≠ 2�a(µS , R)) = f
(0)

mod
(k ≠ 2�a(µS , R)) + f

(1)

mod
(k ≠ 2�a(µS , R))

+ f
(2)

mod
(k ≠ 2�a(µS , R)) , (4.35)

where

f
(0)

mod
(k ≠ 2�a(µS , R)) = fmod(k ≠ 2�a(µS , R)) , (4.36a)

f
(1)

mod
(k ≠ 2�a(µS , R)) = ≠

–s(µS)
4fi

2”
1

a(µS , R)Re
“E f

Õ
mod(k ≠ 2�a(µS , R)) , (4.36b)

f
(2)

mod
(k ≠ 2�a(µS , R)) =

1
–s(µS)

4fi

22Ë
≠2”

2

a(µS , R)Re
“E f

Õ
mod(k ≠ 2�a(µS , R)) (4.36c)

+ 2(”1

a(µS , R)Re
“E )2

f
ÕÕ
mod(k ≠ 2�a(µS , R))

È
,

with ”
1,2
a (µS , R) from Eq. (4.13). The order to which these terms are kept at each accuracy

are included in Table 6.

4.3 Final resummed, matched, and renormalon-subtracted cross section

We now collect all pieces described above, giving our final expressions for the resummed
cross section, matched to fixed-order and convolved with a renormalon-free shape function.

In evaluating the convolution in Eq. (4.34), we must truncate the product of the
fixed-order perturbative pieces contained in Eqs. (2.11) and (3.13) along with the non-
perturbative pieces in Eq. (4.35) to the appropriate order in –s for NkLL(

Õ
) accuracy.

Namely, starting with Eq. (2.11) for the integrated distribution, we expand the fixed-order
coe�cients in powers of –s:

‡c,PT(·a)
‡0

= ‡
LO

c (·a) + ‡
NLO

c (·a) + ‡
NNLO

c (·a) , (4.37)
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Z
dk k e�2�a(µS ,R) d

dk fmod (k � 2�a (µS , R)) =

Z
dk k

"
X

i

f (i)
mod (k � 2�a (µS , R))

#
(1)

1

Shape function expanded order-by-order depending on logarithmic accuracy:
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Z
dk k e�2�a(µS ,R) d

dk fmod (k � 2�a (µS , R)) =

Z
dk k

"
X

i

f (i)
mod (k � 2�a (µS , R))

#
(1)

d�

d⌧a
(⌧a) �!

NP

d�

d⌧a

✓
⌧a � c⌧a

⌦1

Q

◆
(2)
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Z
dk k e�2�a(µS ,R) d

dk fmod (k � 2�a (µS , R)) =

Z
dk k

"
X

i

f (i)
mod (k � 2�a (µS , R))

#
(1)

d�

d⌧a
(⌧a) �!

NP

d�

d⌧a

✓
⌧a � c⌧a

⌦1

Q

◆
(2)

⌦1 =
1

NC
Tr h0|Y †

n̄Y
†
nET (0)YnY n̄ |0i (3)

1

≡
2

1 − a
Ωeff

1



Growing shifts in event shape tails
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Distributional shifts at NNLL’ accuracy (central profile scales):

Effectively, we shift the distribution to the right by larger amounts as we move from the 2-jet region out to the multi-jet tail. 
Is this reasonable? What might be the effect on extracting ?αs
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Limiting the growth of the shift

23

Can we find a way to cut off the growth of this shift? i.e. turn off R-evolution above some :τ = τmax

γR → θ(Rmax − R)γR R = R(τ)

d
dR

δa(R, R) = γR[αs(R)]θ(Rmax − R)need:

δa(R, R) = ReγE[ αs(R)
4π

δ1
a(R, R) + (αs(R)

4π )2δ2
a(R, R) + ⋯]recall:

to the order we need,  
just change R to:

R* ≡ {R R < Rmax
Rmax R ≥ Rmax

however this can reintroduce large logs of  …μS /Rmax
δ1(μS, R) = 2Γ0

s ln
μS

R
δ2(μS, R) = 2Γ0

s β0 ln2 μS

R
+ 2Γ1

s ln
μS

R
+ γ1

s + 2c1
S̃β0



Another scheme
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δ*a (R) =
1
2

R*eγE
d

d ln ν [ln SPT(ν, μ = R*)]ν=1/(R*eγE)“R* scheme”

γ*R = eγE[ αs(R)
4π

⋅ 0 + ( αS(R)
4π )

2

(γ1
S + 2c1

S̃β0) + 𝒪(α3
s )]

γΔ[αs(μ)] = 0

To the order we work:

R-evolution:

-evolution:μ

Nothing special about this scheme, just a way to test the impact of changing the effective shift in event shapes.

we are not forced to set  in the 
subtraction series, we can pick  

μ = μS
μ = R

Bachu, Hoang, 
Mateu, Pathak, 
Stewart [2012.12304]

δ*a (R) =
ReγE

2 [ αs(R)
4π

⋅ 0 + ( αS(R)
4π )

2

(γ1
S + 2c1

S̃β0) + 𝒪(α3
s )]

Bell et al. [this work]



R vs R* profiles
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hard jet muNS R R*(Rmax
= R(t1))

soft
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In our results, we let R* grow until we hit , where we finish transitioning from “shape 
function” region to “resummation region” in profile functions:

τa = t1(a)

Different Rmax values are probed in tandem with variation of the t1 profile parameter

t1



Flattened shifts in tails
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Rmax = ∞ (Rgap)

Rmax = R(t1), μsub = R (R*)

constant shift
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Constant Shift (Eq.(1))

N3LL'+ (αs
2)

}

This can be compared to studies of models of hadronization corrections to 3-jet events in the far tail region, 
e.g. Luisoni et al. [2012.00622].


Our method is a way to study variations of how we treat power corrections within a 2-jet factorization 
framework 
  



Random scans over profile function parameters:
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Scale variations
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2010: [1006.3080]

2018: [1808.07867] based on [1501.04111]

σPT(τ) = σsing(τ; μH, μJ, μS) + σns(τ; μns)
σ(τ) = σPT(τ; μi, R) ⊗ fmod(τ, Δ(R))



Convergence in R vs R* schemes
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Q = MZ, a = 0

Rgap scheme:

R* scheme:
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Variation in different schemes
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Q = MZ, a = 0
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Comparison with data  
and determination of αs



Data sets
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------ Summary ------
Totlal: 516
Q > 95 : 345
Q < 88 : 89
Q ~ MZ : 82

ALEPH-2004: 133. GeV (7)
ALEPH-2004: 161. GeV (7)
ALEPH-2004: 172. GeV (7)
ALEPH-2004: 183. GeV (7)
ALEPH-2004: 189. GeV (7)
ALEPH-2004: 200. GeV (6)
ALEPH-2004: 206. GeV (8)
ALEPH-2004: 91.2 GeV (26)
AMY-1990: 55.2 GeV (5)
DELPHI-1999: 133. GeV (7)
DELPHI-1999: 161. GeV (7)
DELPHI-1999: 172. GeV (7)
DELPHI-1999: 89.5 GeV (11)
DELPHI-1999: 93. GeV (12)
DELPHI-2000: 91.2 GeV (12)
DELPHI-2003: 183. GeV (14)
DELPHI-2003: 189. GeV (15)
DELPHI-2003: 192. GeV (15)
DELPHI-2003: 196. GeV (14)
DELPHI-2003: 200. GeV (15)
DELPHI-2003: 202. GeV (15)
DELPHI-2003: 205. GeV (15)
DELPHI-2003: 207. GeV (15)
DELPHI-2003: 45. GeV (5)
DELPHI-2003: 66. GeV (8)
DELPHI-2003: 76. GeV (9)
JADE-1998: 35. GeV (5)
JADE-1998: 44. GeV (7)
L3-2004: 130.1 GeV (11)
L3-2004: 136.1 GeV (10)
L3-2004: 161.3 GeV (12)
L3-2004: 172.3 GeV (12)
L3-2004: 182.8 GeV (12)
L3-2004: 188.6 GeV (12)
L3-2004: 194.4 GeV (12)
L3-2004: 200. GeV (11)
L3-2004: 206.2 GeV (12)
L3-2004: 41.4 GeV (5)
L3-2004: 55.3 GeV (6)
L3-2004: 65.4 GeV (7)
L3-2004: 75.7 GeV (7)
L3-2004: 82.3 GeV (8)
L3-2004: 85.1 GeV (8)
L3-2004: 91.2 GeV (10)
OPAL-1997: 161. GeV (7)
OPAL-2000: 172. GeV (8)
OPAL-2000: 183. GeV (8)
OPAL-2000: 189. GeV (8)
OPAL-2005: 133. GeV (6)
OPAL-2005: 177. GeV (8)
OPAL-2005: 197. GeV (8)
OPAL-2005: 91. GeV (5)
SLD-1995: 91.2 GeV (6)
TASSO-1998: 35. GeV (4)
TASSO-1998: 44. GeV (5)

ALEPH-2004: 133. GeV (7)
ALEPH-2004: 161. GeV (7)
ALEPH-2004: 172. GeV (7)
ALEPH-2004: 183. GeV (7)
ALEPH-2004: 189. GeV (7)
ALEPH-2004: 200. GeV (6)
ALEPH-2004: 206. GeV (8)
ALEPH-2004: 91.2 GeV (26)
AMY-1990: 55.2 GeV (5)
DELPHI-1999: 133. GeV (7)
DELPHI-1999: 161. GeV (7)
DELPHI-1999: 172. GeV (7)
DELPHI-1999: 89.5 GeV (11)
DELPHI-1999: 93. GeV (12)
DELPHI-2000: 91.2 GeV (12)
DELPHI-2003: 183. GeV (14)
DELPHI-2003: 189. GeV (15)
DELPHI-2003: 192. GeV (15)
DELPHI-2003: 196. GeV (14)
DELPHI-2003: 200. GeV (15)
DELPHI-2003: 202. GeV (15)
DELPHI-2003: 205. GeV (15)
DELPHI-2003: 207. GeV (15)
DELPHI-2003: 45. GeV (5)
DELPHI-2003: 66. GeV (8)
DELPHI-2003: 76. GeV (9)
JADE-1998: 35. GeV (5)
JADE-1998: 44. GeV (7)
L3-2004: 130.1 GeV (11)
L3-2004: 136.1 GeV (10)
L3-2004: 161.3 GeV (12)
L3-2004: 172.3 GeV (12)
L3-2004: 182.8 GeV (12)
L3-2004: 188.6 GeV (12)
L3-2004: 194.4 GeV (12)
L3-2004: 200. GeV (11)
L3-2004: 206.2 GeV (12)
L3-2004: 41.4 GeV (5)
L3-2004: 55.3 GeV (6)
L3-2004: 65.4 GeV (7)
L3-2004: 75.7 GeV (7)
L3-2004: 82.3 GeV (8)
L3-2004: 85.1 GeV (8)
L3-2004: 91.2 GeV (10)
OPAL-1997: 161. GeV (7)
OPAL-2000: 172. GeV (8)
OPAL-2000: 183. GeV (8)
OPAL-2000: 189. GeV (8)
OPAL-2005: 133. GeV (6)
OPAL-2005: 177. GeV (8)
OPAL-2005: 197. GeV (8)
OPAL-2005: 91. GeV (5)
SLD-1995: 91.2 GeV (6)
TASSO-1998: 35. GeV (4)
TASSO-1998: 44. GeV (5)

For thrust: For angularities:

Data for a = {-1.0, -0.75. -0.5, -0.25, 0.0, 0.25, 0.5, 0.75} at 91.2 and 197 GeV

Total number of bins = (bins per a) x (number of a) = 25 x 7 = 175 bins @ Q = 91.2 GeV

e.g. a = -1 and 0.5, Q = 91.2 GeV, compared to our NNLL’ prediction:
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Effect on thrust fits
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[N3LL’+ ]𝒪(α2
s )
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[N3LL’+ ]𝒪(α2
s )
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Fit in a narrower 2-jet region
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Q = mZVariability by scheme lessened in more 2-jet like region vs multi jet tail


Try limiting fit window to, e.g, :


Not too much shift in the fit ellipses, but improved quality of fit:


τ < 0.225



Fit in a narrower 2-jet region
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[N3LL’+ ]𝒪(α2
s )

Variability by scheme lessened in more 2-jet like region vs multi jet tail


Try limiting fit window to, e.g, :


Not too much shift in the fit ellipses, but improved quality of fit:
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In tail region, leading nonperturbative effect is a shift by ceΩ1/Q

Future outlook: angularities break degeneracies

𝛼s

Agreement area 
is still large, 
uncertain.

𝝮1

𝛼s

Varying slopes = 
smaller overlap.𝝮1

Use different Q’s. 
Or different event shapes.

36

Angularities: 
Leading nonperturbative shift is 

: changing a is like 

changing Q. 

We have preliminary fits based 
on angularities, but with quite a 
small amount of data. More 
would be welcome!

2Ω1

Q(1 − a)



Looking ahead
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Welcome more work to understand robust estimation of theoretical uncertainty due to renormalon schemes


Encouraging signs pointing to the purely 2-jet-like region for fitting, welcome more analysis / data from 
future LC


Better computation of 3-loop fixed-order thrust distribution also welcome, extracting small contributions out 
of large singular background challenging


You (and we!) are not allowed to quote a value of  or  coming from this talk!! [our results limited to 
N3LL’+ ]


We observe a shift in  of up to a few percent when switching from standard Rgap to R* scheme or 
between some perturbative scale choices.

Shifted values are within uncertainties, but might alleviate tension with PDG value.


 Similar conclusion, from different considerations, as G. Luisoni, P. Monni, G. Salam [2012.00622]  
who tried varying size of nonperturbative shift in C-parameter distribution as function of C  
(smaller shifts for large C larger values of  by a few percent)


Dedicated new analyses or measurements of data in the true two-jet region may yield the best results for 
fits from two-jet event shapes, complementing more rigorous understanding of nonperturbative effects on 
3-jet tail to reduce uncertainties that may be induced by variations in that region

αs Ω1
𝒪(α2

s )
αs

⇒ αs



Backups
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(Angularities:)












