## Impact of nonperturbative effects on <br> determination of $\alpha_{s}$ from event shapes



INT Workshop on Probing OCD at High Energy and Density with Jets


## Collaborators

-G. Bell, Y. Makris, J. Talbert, B. Yan, [arXiv:soon]

- See also G. Bell, A. Hornig, CL, J. Talbert, [arXiv:1808.07867]


## Outline of the talk

-Event shapes and the strong coupling
-EFT, factorization, resummation of perturbative logs

- Nonperturbative corrections and renormalon subtraction schemes
-Effects of perturbative and nonperturbative scale \& scheme choices
on fits for $\alpha_{s}$
- In a nutshell: some of these choices have a few \% effect on the tails of event shape distributions and the values of $\alpha_{s}$ extracted by comparing them to data
- Motivations for more data on more event shapes

HADRONC EvENY SHAPES: Global measunes of "jetty" structure $e^{t} e^{-} \rightarrow$ hadrons
collorear
 collonean
e.g.

Thrust: $\quad T=\frac{1}{Q} \max _{\hat{E}} \sum_{i \in X}|\vec{p}, \hat{t}|$
Broadenng: $\quad B=\frac{1}{Q} \sum_{i \in x}\left|\vec{p}_{i}^{1}\right|$


$$
\tau=1-T
$$



$$
\text { 敛 } T=\frac{1}{2}
$$

## Angularity event shapes in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions

- Consider Angularities, which can be defined in terms of the rapidity and $\mathrm{P}_{T}$

Berger, Kucs, Sterman [hep-ph/0303051]

IR safe for $a \in\{-\infty, 2\}$
$a=-1$


$$
\tau_{a}=\frac{1}{Q} \sum_{i}\left|\mathbf{p}_{\perp}^{i}\right| e^{-\left|\eta_{i}\right|(1-a)}
$$

$$
a=0<->\text { 'Thrust' }
$$

$a=1<->$ 'Jet Broadening' (for us $a<1$ )

$\mathrm{a}=0.5$


[^0]Event Shapes \& SENSITInty to $\alpha_{s}$
$\tau_{a}$ 's and similar event shapes probe QCD effects over wide range of scales, perturbative and nompertusative:


## Event shapes to high precision

- First N3LL' resummed event shape distributions with state-of-the-art treatment of nonperturbative corrections, e.g.:



Makes e+e- event shapes one of the most precise ways, in principle, to determine $\alpha_{s}$

## Event shapes and the strong coupling

## Abbate et al., PRD 83 (20II) 07402 I



PDG 2022


## Event shapes

$\sim 3 \sigma$ anomaly?

## Factorization, Resummation and Nonperturbative Effects in EFT

Factorization in a nutshell


## Evolution and resummation of logs

- An all-order dijet factorization theorem for the observable is easily derived in SCET:

$$
d \sigma \sim H \cdot \mathcal{J} \otimes \mathcal{J} \otimes \mathcal{S} \quad \stackrel{\mathrm{RGE}}{\longleftrightarrow} \frac{d H\left(Q^{2}, \mu\right)}{d \ln \mu}=\left[2 \Gamma_{c u s p} \ln \left(\frac{Q^{2}}{\mu^{2}}\right)+4 \gamma_{H}\left(\alpha_{s}\right)\right] H\left(Q^{2}, \mu\right)
$$

- Evolving all scales to/from their 'natural' settings, one arrives at the resummed cross section:

$$
\begin{array}{rll}
\frac{\sigma_{\text {sing }}\left(\tau_{a}\right)}{\sigma_{0}}= & e^{K\left(\mu, \mu_{H}, \mu_{J}, \mu_{S}\right)}\left(\frac{\mu_{H}}{Q}\right)^{\omega_{H}\left(\mu, \mu_{H}\right)}\left(\frac{\mu_{J}^{2-a}}{Q^{2-a} \tau_{a}}\right)^{2 \omega_{J}\left(\mu, \mu_{J}\right)}\left(\frac{\mu_{S}}{Q \tau_{a}}\right)^{\omega_{S}\left(\mu, \mu_{S}\right)} H\left(Q^{2}, \mu_{H}\right) & \mathcal{F}(\Omega)=\frac{e^{\gamma_{E} \Omega}}{\Gamma(-\Omega)} \\
& \times \widetilde{J}\left(\partial_{\Omega}+\ln \frac{\mu_{J}^{2-a}}{Q^{2-a} \tau_{a}}, \mu_{J}\right)^{2} \widetilde{S}\left(\partial_{\Omega}+\ln \frac{\mu_{S}}{Q \tau_{a}}, \mu_{S}\right) \times\left\{\begin{array}{lll}
\frac{1}{\tau_{a}} \mathcal{F}(\Omega) & \sigma=\frac{d \sigma}{d \tau_{a}} & \mathcal{G}(\Omega)=\frac{e^{\gamma_{E} \Omega}}{\Gamma(\Omega)} \\
\mathcal{G}(1-\Omega) & \sigma=\sigma_{c} &
\end{array}\right.
\end{array}
$$

## Hard

$$
\mu_{H}=Q
$$

$$
p_{S} \sim Q(\tau, \tau, \tau)
$$

$$
\mu_{J}=Q \tau^{1 / 2}
$$

$$
\rightarrow p_{0} p_{c} \sim Q\left(1, \tau, \tau^{1 / 2}\right)
$$

$$
\gamma_{F}(\mu)=-j_{F} \kappa_{F} \Gamma_{\mathrm{Cusp}}\left[\alpha_{s}(\mu)\right] \ln \frac{Q_{F}}{\mu}+\gamma_{F}\left[\alpha_{s}(\mu)\right]
$$

## Perturbative scale profiles



## Full predictor:

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \frac{d \sigma}{d \tau_{a}} & =\int d k \underbrace{\sigma_{P T}\left(\tau_{a}-\frac{k}{a}\right)} \delta_{\text {wP }}(k) \\
& =\sigma_{\text {sing }}^{\text {roue }}\left(\tau_{a} ; \mu_{1, T, s)}\right)+\sigma_{\text {na-pg }}^{\text {poO. }}\left(\tau_{a ;} ; n\right)
\end{aligned}
$$

Will consider two non-singular scale choices "2010" and "2018":

$$
\begin{aligned}
& \mu_{\mathrm{ns}}=\left\{\begin{array}{ll}
\mu_{J} & \text { default } \\
\left(\mu_{J}+\mu_{S}\right) / 2 & \text { lo } \\
\mu_{H} & \text { hi }
\end{array} \quad \mu_{\mathrm{ns}}= \begin{cases}\mu_{H} & \text { default } \\
\left(\mu_{H}+\mu_{J}\right) / 2 & \text { lo } \\
\left(3 \mu_{H}-\mu_{J}\right) / 2 & \text { hi }\end{cases} \right. \\
& {[1006.3080] } {[1808.07867,} \\
&1501.04111]
\end{aligned}
$$

## Perturbative scale profiles

- Scale choices for resummed and fixed-order parts:

2010: [1006.3080]
2018: [1808.07867] based on [1501.04111]


$$
\begin{aligned}
\sigma_{P T}(\tau) & =\sigma_{\text {sing }}\left(\tau ; \mu_{H}, \mu_{J}, \mu_{S}\right)+\sigma_{n s}\left(\tau ; \mu_{n s}\right) \\
\sigma(\tau) & =\sigma_{P T}\left(\tau ; \mu_{i}, R\right) \otimes f_{\text {mod }}(\tau, \Delta(R))
\end{aligned}
$$

## Fixed-order tails

- The above predicts the (resummed) singular component of the cross section.

One must then match to fixed-order OCD for large $\tau$ :

$$
\frac{\sigma_{c}\left(\tau_{a}\right)}{\sigma_{0}}-\frac{\sigma_{\mathrm{c}, \operatorname{sing}}\left(\tau_{a}\right)}{\sigma_{0}}=r_{c}\left(\tau_{a}\right)=\theta\left(\tau_{a}\right)\left\{\frac{\alpha_{s}(Q)}{2 \pi} r_{c}^{1}\left(\tau_{a}\right)+\left(\frac{\alpha_{s}(Q)}{2 \pi}\right)^{2} r_{c}^{2}\left(\tau_{a}\right)\right\}+\ldots
$$





## New remainder functions

- Results for 3-loop fixed-order angularity distributions from EERAD3 (IR cutoff $10^{-7}, 1.5 \times 10^{10}$ events)
$\frac{1}{\sigma} \frac{d \sigma}{d \ln \tau}$ minus $\ln ^{n} \tau_{a}$ terms:

$$
\text { e.g. for } a=-1 \text { : }
$$




- "Finite" remainder functions, $a=0$ :


[1006.3080, $6 \times 10^{7}$ events]
- N.B.: 3-loop results computed but not included in $\alpha_{s}$ determinations presented in this talk:

$$
\text { [1006.3080, } 6 \times 10 \text { events] }
$$

## Non-perturbative effects and gapped soft function

- Additionally, a treatment of non-perturbative effects is critical in $e^{+} e^{-}->$hadrons
- When dominant power corrections come from the soft function, NP effects can be parameterized into a shape function $f_{\text {mod }}$ :

$$
S(k, \mu)=\int d k^{\prime} S_{\mathrm{PT}}\left(k-k^{\prime}, \mu\right) f_{\mathrm{mod}}\left(k^{\prime}-2 \bar{\Delta}_{a}\right) \quad \begin{gathered}
\text { [0709.3519] } \\
\text { 'Gap' parameter accounting for parton -> hadron transition }
\end{gathered}
$$

- The effect of $f_{\text {mod }}$ is to shift the first moment of the perturbative distribution:


$$
\left\langle\tau_{a}\right\rangle=\left\langle\tau_{a}\right\rangle_{\mathrm{PT}}+\frac{2 \Omega_{1}}{Q(1-a)} \quad \frac{2 \Omega_{1}}{1-a}=2 \bar{\Delta}_{a}+\int d k k f_{\mathrm{mod}}(k)
$$

- This scaling and the universality of $\Omega_{1}$ can be proven from QCD / SCET factorization:
C. Lee \& G. Sterman [hep-ph/0611061]



## Non-perturbative effects and gapped soft function

- However, both the perturbative soft function and gap parameter suffer renormalon ambiguities.

$$
S(k, \mu)=\int d k^{\prime} S_{\mathrm{PT}}\left(k-k^{\prime}, \mu\right) f_{\mathrm{mod}}\left(k^{\prime}-2 \bar{\Delta}_{a}\right)
$$



$$
\cdots 0 m=m+m O m+\cdots O m O m+\ldots
$$

- $\mathscr{O}\left(\Lambda_{\mathrm{OCD}}\right)$ ambiguity in gap $\bar{\Delta}_{a}$
- Subtract a series with the same/canceling ambiguity from both PT and NP pieces:

$$
\bar{\Delta}_{a}=\Delta_{a}(\mu)+\delta_{a}(\mu) \quad \underset{\text { Laplace space }}{\longrightarrow} \widetilde{S}(\nu, \mu)=\left[e^{-2 \nu \Delta_{a}(\mu)} \widetilde{f}_{\bmod }(\nu)\right]\left[e^{-2 \nu \delta_{a}(\mu)} \widetilde{S}_{\mathrm{PT}}(\nu, \mu)\right]
$$

## $R_{\text {gap }}$ scheme

- Choosing the $\boldsymbol{R}_{\text {gap }}$ scheme to cancel the leading renormalon,

$$
\begin{gathered}
R e^{\gamma_{E}} \frac{d}{d \ln \nu}\left[\ln \widehat{S}_{\mathrm{PT}}(\nu, \mu)\right]_{\nu=1 /\left(R e^{\gamma_{E}}\right)}=0 \quad \longrightarrow \quad \delta_{a}(\mu, R)=\frac{1}{2} R e^{\gamma_{E}} \frac{d}{d \ln \nu}\left[\ln \widetilde{S}_{\mathrm{PT}}(\nu, \mu)\right]_{\nu=1 /\left(R e^{\gamma_{E}}\right)}, \\
\widehat{S}_{\mathrm{PT}}(\nu, \mu)=e^{-2 \nu \delta_{a}(\mu)} \widetilde{S}_{\mathrm{PT}}(\nu, \mu)
\end{gathered}
$$

Gapped and renormalon free soft function $S(k, \mu)=\int d k^{\prime} S_{\mathrm{PT}}\left(k-k^{\prime}, \mu\right)\left[e^{-2 \delta_{\alpha}(\mu, R) \frac{d}{d k^{\prime}}} f_{\bmod }\left(k^{\prime}-2 \Delta_{a}(\mu, R)\right)\right]$
Final cross section is expanded order-
by-order in bracketed term

$$
\frac{1}{\sigma_{0}} \sigma\left(\tau_{a}\right)=\int d k \sigma_{\mathrm{PT}}\left(\tau_{a}-\frac{k}{Q}\right)\left[e^{-2 \delta_{a}\left(\mu_{S}, R\right) \frac{d}{d k}} f_{\bmod }\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right]
$$

- Improves small $\tau_{a}$ behavior and perturbative convergence:




## $R_{\text {gap }}$ scheme

- Choosing the $\boldsymbol{R}_{\text {gap }} \boldsymbol{s c h e m e}$ to cancel the leading renormalon,

$$
\begin{aligned}
R e^{\gamma_{E}} \frac{d}{d \ln \nu}\left[\ln \widehat{S}_{\mathrm{PT}}(\nu, \mu)\right]_{\nu=1 /\left(R e^{\gamma_{E}}\right)}=0 \longrightarrow \quad \delta_{a}(\mu, R) & =\frac{1}{2} R e^{\gamma_{E}} \frac{d}{d \ln \nu}\left[\ln \widetilde{S}_{\mathrm{PT}}(\nu, \mu)\right]_{\nu=1 /\left(R e^{\gamma_{E}}\right)}, \\
\delta(\mu, R) & =\frac{R e^{\gamma_{E}}}{2} \sum_{n=1}^{\infty}\left(\frac{\alpha_{S}(\mu)}{4 \pi}\right)^{n} \delta^{n}\left(\mu_{S}, R\right) \\
\delta^{1}\left(\mu_{S}, R\right) & =2 \Gamma_{s}^{0} \ln \frac{\mu_{S}}{R} \\
\delta^{2}\left(\mu_{S}, R\right) & =2 \Gamma_{s}^{0} \beta_{0} \ln ^{2} \frac{\mu_{S}}{R}+2 \Gamma_{S}^{1} \ln \frac{\mu_{S}}{R}+\gamma_{S}^{1}+2 c_{\tilde{S}}^{1} \beta_{0} \\
\delta^{3}\left(\mu_{S}, R\right) & =\cdots
\end{aligned}
$$

## R-evolution

- Want to keep $R$ near IR scales, but also avoid large logs $\ln \frac{\mu_{S}}{R}$ in subtraction terms
- but $\mu_{S}$ grows to be as large as Q :
- Sum logs by $\mu$ and R evolution: $\mu \frac{d}{d \mu} \Delta_{a}(\mu, R)=-\mu \frac{d}{d \mu} \delta_{a}(\mu, R) \equiv \gamma_{\Delta}^{\mu}\left[\alpha_{s}(\mu)\right]$


$$
\frac{d}{d R} \Delta_{a}(R, R)=-\frac{d}{d R} \delta_{a}(R, R) \equiv-\gamma_{R}\left[\alpha_{s}(R)\right]
$$

- Anomalous dimensions:

$$
\begin{aligned}
\gamma_{\Delta}^{\mu}\left[\alpha_{s}(\mu)\right] & =-R e^{\gamma_{E}} \Gamma_{S}\left[\alpha_{s}(\mu)\right] \\
\gamma_{R}\left[\alpha_{s}(R)\right] & =\sum_{n=0}^{\infty}\left(\frac{\alpha_{s}(R)}{4 \pi}\right)^{n+1} \gamma_{R}^{n} \quad \gamma_{R}^{0}=0, \quad \gamma_{R}^{1}=\frac{e^{\gamma_{E}}}{2}\left[\gamma_{S}^{1}(a)+2 c_{\widetilde{S}}^{1} \beta_{0}\right]
\end{aligned}
$$



## Effective non-perturbative shifts

- Before considering gapped renormalons, the leading-order NP effect is a constant shift:

$$
\frac{d \sigma}{d \tau_{a}}\left(\tau_{a}\right) \underset{\mathrm{NP}}{\longrightarrow} \frac{d \sigma}{d \tau_{a}}\left(\tau_{a}-c_{\tau_{a}} \frac{\Omega_{1}}{Q}\right) \quad c_{\tau_{a}}=\frac{2}{1-a} \quad \Omega_{1}=\frac{1}{N_{C}} \operatorname{Tr}\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(0) Y_{n} \bar{Y}_{\bar{n}}|0\rangle
$$

Note: this is only valid in the tail region!

- Define an 'effective shift' of the distribution in the $R_{\text {gap }}$ scheme:

$$
\int d k k e^{-2 \delta_{a}\left(\mu_{S}, R\right) \frac{d}{d k}} f_{\bmod }\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)=\int d k k\left[\sum_{i} f_{\bmod }^{(i)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right] \equiv \frac{2}{1-a} \Omega_{1}^{\mathrm{eff}}
$$

- Shape function expanded order-by-order depending on logarithmic accuracy:

$$
\begin{aligned}
f_{\bmod }^{(0)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right) & =f_{\bmod }\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right), \\
f_{\bmod }^{(1)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right) & =-\frac{\alpha_{S}\left(\mu_{S}\right)}{4 \pi} 2 \delta_{a}^{1}\left(\mu_{S}, R\right) R e^{\gamma_{E}} f_{\bmod }^{\prime}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right), \\
f_{\bmod }^{(2)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right) & =\left(\frac{\alpha_{s}\left(\mu_{S}\right)}{4 \pi}\right)^{2}\left[-2 \delta_{a}^{2}\left(\mu_{S}, R\right) R e^{\gamma_{E}} f_{\bmod }^{\prime}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right. \\
& \left.\quad+2\left(\delta_{a}^{1}\left(\mu_{S}, R\right) R e^{\gamma_{E}}\right)^{2} f_{\bmod }^{\prime \prime}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right],
\end{aligned}
$$

## Growing shifts in event shape tails

- Distributional shifts at NNLL' accuracy (central profile scales):


- Effectively, we shift the distribution to the right by larger amounts as we move from the 2-jet region out to the multi-jet tail. Is this reasonable? What might be the effect on extracting $\alpha_{s}$ ?


## Limiting the growth of the shift

- Can we find a way to cut off the growth of this shift? i.e. turn off $R$-evolution above some $\tau=\tau_{\text {max }}$ :

$$
\begin{array}{ll} 
& \gamma_{R} \rightarrow \theta\left(R_{\max }-R\right) \gamma_{R} \quad R=R(\tau) \\
\text { need: } & \frac{d}{d R} \delta_{a}(R, R)=\gamma_{R}\left[\alpha_{s}(R)\right] \theta\left(R_{\max }-R\right) \\
\text { recall: } & \delta_{a}(R, R)=\operatorname{Re}^{\gamma_{E}}\left[\frac{\alpha_{s}(R)}{4 \pi} \delta_{a}^{1}(R, R)+\left(\frac{\alpha_{s}(R)}{4 \pi}\right)^{2} \delta_{a}^{2}(R, R)+\cdots\right]
\end{array}
$$

to the order we need, just change $R$ to:

$$
R^{*} \equiv \begin{cases}R & R<R_{\max } \\ R_{\max } & R \geq R_{\max }\end{cases}
$$


however this can reintroduce large logs of $\mu_{S} / R_{\max } \cdots$

$$
\begin{aligned}
& \delta^{1}\left(\mu_{S}, R\right)=2 \Gamma_{s}^{0} \ln \frac{\mu_{S}}{R} \\
& \delta^{2}\left(\mu_{S}, R\right)=2 \Gamma_{s}^{0} \beta_{0} \ln ^{2} \frac{\mu_{S}}{R}+2 \Gamma_{s}^{1} \ln \frac{\mu_{S}}{R}+\gamma_{s}^{1}+2 c_{\tilde{S}}^{1} \beta_{0}
\end{aligned}
$$

## Another scheme

" $R^{*}$ scheme"

$$
\delta_{a}^{*}(R)=\frac{1}{2} R^{*} e^{\gamma_{E}} \frac{d}{d \ln \nu}\left[\ln S_{\mathrm{PT}}\left(\nu, \mu=R^{*}\right)\right]_{\nu=1 /\left(R^{*} e^{\left.\gamma_{E}\right)}\right.} \quad \text { Bell etal. [this work] }
$$

we are not forced to set $\mu=\mu_{S}$ in the subtraction series, we can pick $\mu=R$

Bachu, Hoang, Mateu, Pathak, Stewart [2012.12304]

To the order we work: $\quad \delta_{a}^{*}(R)=\frac{R e^{\gamma_{E}}}{2}\left[\frac{\alpha_{s}(R)}{4 \pi} \cdot 0+\left(\frac{\alpha_{S}(R)}{4 \pi}\right)^{2}\left(\gamma_{S}^{1}+2 c_{\tilde{S}}^{1} \beta_{0}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right)\right]$
R-evolution:

$$
\gamma_{R}^{*}=e^{\gamma_{E}}\left[\frac{\alpha_{s}(R)}{4 \pi} \cdot 0+\left(\frac{\alpha_{S}(R)}{4 \pi}\right)^{2}\left(\gamma_{S}^{1}+2 c_{\tilde{S}}^{1} \beta_{0}\right)+\mathcal{O}\left(\alpha_{S}^{3}\right)\right]
$$

$\mu$-evolution: $\quad \gamma_{\Delta}\left[\alpha_{s}(\mu)\right]=0$

- Nothing special about this scheme, just a way to test the impact of changing the effective shift in event shapes.


## $R$ vs $R^{*}$ profiles

- In our results, we let $R^{\star}$ grow until we hit $\tau_{a}=t_{1}(a)$, where we finish transitioning from "shape function" region to "resummation region" in profile functions:

- Different $R_{\max }$ values are probed in tandem with variation of the $t_{1}$ profile parameter


## Flattened shifts in tails



- This can be compared to studies of models of hadronization corrections to 3-jet events in the far tail region, e.g. Luisoni et al. [2012.00622].
- Our method is a way to study variations of how we treat power corrections within a 2-jet factorization framework


## Scale variations

- Random scans over profile function parameters:

2010: [1006.3080]
2018: [1808.07867] based on [1501.04111]


$$
\begin{aligned}
\sigma_{P T}(\tau) & =\sigma_{\text {sing }}\left(\tau ; \mu_{H}, \mu_{J}, \mu_{S}\right)+\sigma_{n s}\left(\tau ; \mu_{n s}\right) \\
\sigma(\tau) & =\sigma_{P T}\left(\tau ; \mu_{i}, R\right) \otimes f_{\text {mod }}(\tau, \Delta(R))
\end{aligned}
$$

## Convergence in $R$ vs $R^{*}$ schemes

$R_{\text {gap }}$ scheme:





## Variation in different schemes



## Comparison with data and determination of $\alpha_{s}$

## Data sets

## -For thrust:

ALEPH-2004: 133. GeV (7) ALEPH-2004: 161. GeV (7) ALEPH-2004: 172. GeV (7) ALEPH-2004: 183. GeV (7) ALEPH-2004: 189. GeV (7) ALEPH-2004: 200. GeV (6) ALEPH-2004: 206. GeV (8) ALEPH-2004: 91.2 GeV (26) AMY-1990: 55.2 GeV (5) DELPHI-1999: 133. GeV (7) DELPHI-1999: 161. GeV (7) DELPHI-1999: 172. GeV (7) DELPHI 190: 93. GeV (12) L3-2004: 91.2 GeV (10) DLIPH 1999: 93. GeV (12) OPAL-1997: 161. GeV (7) DELPHI-2000: 91.2 GeV (12) OPAL-2000: 172. GeV (8) DELPHI-2003: 183. GeV (14) OPAL-2000: 183. GeV (8) DELPHI-2003: 189. GeV (15) OPAL-2000: 189. GeV (8) DELPHI-2003: 192. GeV (15) OPAL-2005: 133. GeV (6 DELPHI-2003: 196. GeV (14) OPAL-2005: 177. GeV (8) DELPHI-2003: 200. GeV (15) OPAL-2005: 197. GeV (8) DELPHI-2003: 202. GeV (15) OPAL-2005: 91. GeV (5) DELPHI-2003: 205. GeV (15) SLD-1995: 91.2 GeV (6) DELPHI-2003: 207. GeV (15) TASSO-1998: 35. GeV (4) DELPHI-2003: 45. GeV (5) TASSO-1998: 44. GeV (5) DELPHI-2003: 66. GeV (8) DELPHI-2003: 76. GeV (9) JADE-1998: 35. GeV (5) JADE-1998: 44. GeV (7) L3-2004: 130.1 GeV (11) L3-2004: 136.1 GeV (10) L3-2004: 161.3 GeV (12)

3-2004: 85.1 GeV (8)
L3-2004: 172.3 GeV (12) L3-2004: 182.8 GeV (12) L3-2004: 188.6 GeV (12) L3-2004: 194.4 GeV (12) L3-2004: 200. GeV (11) L3-2004: 206.2 GeV (12 L3-2004: 41.4 GeV (5) L3-2004: 55.3 GeV (6) L3-2004: 65.4 GeV (7) L3-2004: 65.4 GeV (7) L3-2004: 75.7 GeV (7) L3-2004: 82.3 GeV (8) PAL-1997: 161. GeV (7) (8)
$(8)$ (8) (6) (8)
(8) (5)

Totlal: 516

Q > 95 : 345
$\mathrm{Q}<88: 89$
Q ~ MZ : 82

## -For angularities:

Generalized event shape and energy flow studies in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation at $\sqrt{s}=91.2-208.0 \mathrm{GeV}$

L3 Collaboration

## JHEP 10 (2011) 143

Also see PhD thesis
by P. Jindal, Panjab University

- Data for $a=\{-1.0,-0.75 .-0.5,-0.25,0.0,0.25,0.5,0.75\}$ at 91.2 and 197 GeV
- Total number of bins $=($ bins per a) $\times($ number of $a)=25 \times 7=175$ bins $@ \mathrm{Q}=91.2 \mathrm{GeV}$
- e.g. $\mathrm{a}=-1$ and $0.5, \mathrm{Q}=91.2 \mathrm{GeV}$, compared to our NNLL' prediction:




## Effect on thrust fits



## Effect on thrust fits

$\left[\mathrm{N}^{3} \mathrm{LL}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right]$

Vary profiles:


Vary renormalon schemes:


## Fit in a narrower 2-jet region

- Variability by scheme lessened in more 2-jet like region vs multi jet tail
- Try limiting fit window to, e.g, $\tau<0.225$ :
- Not too much shift in the fit ellipses, but improved quality of fit:





## Fit in a narrower 2-jet region

- Variability by scheme lessened in more 2-jet like region vs multi jet tail
- Try limiting fit window to, e.g, $\tau<0.225$ :
- Not too much shift in the fit ellipses, but improved quality of fit:



## Future outlook: angularities break degeneracies

- In tail region, leading nonperturbative effect is a shift by $c_{e} \Omega_{1} / Q$

- Angularities:

Leading nonperturbative shift is $\frac{2 \Omega_{1}}{Q(1-a)}$ : changing a is like changing $Q$.

- We have preliminary fits based on angularities, but with quite a small amount of data. More would be welcome!


## Looking ahead

- Welcome more work to understand robust estimation of theoretical uncertainty due to renormalon schemes
- Encouraging signs pointing to the purely 2-jet-like region for fitting, welcome more analysis / data from future LC
- Better computation of 3-loop fixed-order thrust distribution also welcome, extracting small contributions out of large singular background challenging
- You (and we!) are not allowed to quote a value of $\alpha_{s}$ or $\Omega_{1}$ coming from this talk!! [our results limited to $\left.\mathrm{N}^{3} \mathrm{LL}^{\prime}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right]$
- We observe a shift in $\alpha_{s}$ of up to a few percent when switching from standard $\mathbf{R}_{\text {gap }}$ to $\mathbf{R}^{*}$ scheme or between some perturbative scale choices.
- Shifted values are within uncertainties, but might alleviate tension with PDG value.
- Similar conclusion, from different considerations, as G. Luisoni, P. Monni, G. Salam [2012.00622]
who tried varying size of nonperturbative shift in $C$-parameter distribution as function of $C$
(smaller shifts for large $C \Rightarrow$ larger values of $\alpha_{s}$ by a few percent)
- Dedicated new analyses or measurements of data in the true two-jet region may yield the best results for fits from two-jet event shapes, complementing more rigorous understanding of nonperturbative effects on 3-jet tail to reduce uncertainties that may be induced by variations in that region


## Backups

Relevant Physical Scales

Thrust: $\quad M^{2}=M_{A}^{2}+M_{B}^{2}=Q^{2} r \quad\binom{i f}{\ll Q^{2}}$


Broadening:

coll $\mathrm{PC}_{C} \sim\left(Q, Q B^{2}, Q B\right)$
sot $k_{5} \sim Q(B, B, B)$ same

Scales \& Modes:


Angularities:


$$
\begin{aligned}
\tau_{a} & \sim \frac{P_{1}}{Q}\left(\frac{p^{+}}{p^{-}}\right)^{\frac{1-a}{2}} \\
& \sim \frac{1}{Q}\left(p^{+}\right)^{-\frac{a}{2}}\left(p^{-}\right)^{\frac{a}{2}} \\
& \frac{2}{}
\end{aligned}
$$

$\Rightarrow$ coll $\tau_{a} \sim\left(\frac{p+}{a}\right)^{1-\frac{a}{2}}$
$\Rightarrow p^{+} \sim Q \tau_{L}^{\frac{2}{2-a}}$

$$
P_{1} \sim Q C_{a}^{\frac{1}{2}-a}
$$

$$
P_{c} \sim Q\left(1, \tau_{a}^{\frac{2}{2-a}}, \tau_{a}^{\frac{1}{2-a}}\right)
$$

soft $\tau_{a} \sim \frac{k_{s}}{Q} \Rightarrow P_{s} \sim Q\left(\tau_{a}, \tau_{a}, \tau_{a}\right)$

NP Shape Functive $S_{N D}$
Key propertes:

- $\Omega_{1}$ has a fild theny df:

$$
\Omega_{1}=\frac{1}{N} \operatorname{N}_{c} \operatorname{Tr}\langle 0| y_{n} y_{n}^{\dagger} \hat{\xi}_{c} y_{n} y_{n}^{\dagger}|0\rangle
$$

Sup

technial details: needs renounclos subtracton
V

$$
\begin{aligned}
\left\langle\tau_{a}\right\rangle= & \left\langle\tau_{a}\right\rangle_{p 7} \\
& +\frac{2 \Omega_{1}}{Q(1-a)}
\end{aligned}
$$

il, Steumans (2006)
unitesal!
(appeass in thustic $C$ pacentus)
SCaling $\frac{1}{Q} \cdot \frac{1}{1-a}$ is a predicton of $Q C D$ factrizaton

Proof of Universal Shlet $\quad$ Sa, stumm 2ool

$\hat{\varepsilon}_{1}(n)(x)$
$\left.=\sum_{i \in x}\left|p_{i}^{f}\right| \sin \eta_{i}\right)|x\rangle$
Lounts boosts: $M_{n^{-1}}^{-1} \eta^{\prime}$

$$
\begin{aligned}
y_{n}=P \exp \left[i g \int_{0}^{\infty} d s n \cdot A_{s}(n s)\right] & \rightarrow y_{n} \\
|0\rangle & \rightarrow|0\rangle \\
\hat{\varepsilon}_{1}(\eta) & \rightarrow \hat{\varepsilon}_{T}\left(\eta+\eta^{\prime}\right)
\end{aligned}
$$

$$
\Rightarrow \Delta\langle e\rangle_{s}=\frac{1}{a} \underbrace{\int_{-\infty}^{\infty} d \eta f_{e}(x)}_{=C_{e}} \underbrace{\frac{1}{N_{c}} T r\langle 0| \mp\left[y_{n}^{T} Y_{n}^{t}\right] \hat{\varepsilon}_{T}(0) T\left(Y_{n} Y_{n}\right)|10\rangle}_{\Omega_{1}}
$$

(manders parom cose)
Pick $\eta^{\prime}$ to be anyllans!
generalizes sighe emistsion moomes e.g. Dodshitro -Wester 95-96


[^0]:    (for some arbitrary, but uniform, definition of "2-jet")

