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Nuclear Symmetry Energy and Pressure
The symmetry energy is the difference between the energies of pure
neutron matter (x = 0) and symmetric (x = 1/2) nuclear matter:

S(n) = E (n, x = 0)− E (n, x = 1/2).

The quadratic term in an expansion
of neutron excess 1− 2x dominates:
E (n, x) = E (n, 1/2)+(1−2x)2S2(n)+. . .

Expanding S2 about saturation ns :

S2(n) = J+
L

3

n − ns
ns

+ . . .

J ≃ 31 MeV, L ≃ 50 MeV

Fuchs & Wolter (2006)

6

?

symmetry energy

Extrapolated to pure neutron matter:
EN = E (ns , 0) ≈ J+E (ns , 1/2) ≡ J−B, PN = P(ns , 0) = Lns/3
Neutron star matter (beta equilibrium) is nearly neutron matter:

∂(E + Ee)

∂x
= 0, PNSM(ns) ≃

Lns
3

[
1−

(
4J

ℏc

)3 4− 3J/L

3π2ns

]
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Why is the Symmetry Energy Important?
The equation of state in a neutron star depends strongly on
the density dependance of the symmetry energy (u = nB/ns):

PNSM(u) ≃ nsu
2

[
L

3
+

KN

9
(u − 1) +

QN

54
(u − 1)2 + · · ·

]
.

A strong correlation exists between radii and PNSM near ns :
R1.4 ∼ PNSM(nB)

1/4.
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Fitting Nuclear Binding Energies

J
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Meaning of J − L Correlations

The slope dL/dJ is an indicator of the most sensitive density
us for the measurement of the symmetry energy S(u).

If the correlation line goes through (J , L), a change dJ can be
compensated by a change dL.

dJ

dL
= −

(
∂S(us)

∂L

)
J

/(
∂S(us)

∂J

)
L

.

Example: S(u) = SKu
2/3 + SVu

γ, SK ≃ 12.5 MeV
J = SK + SV , L = 2SK + 3γSV = SK (2− 3γ) + 3γJ

dJ

dL
= − ln us

3
, us = exp

(
−3

dJ

dL

)
.

For binding energies, dL/dJ ≃ 11, us ≃ 0.76.
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Saturation Properties of Nuclear Interactions

Empirical Saturation Window

B = 16.06± 0.20 MeV

ns = 0.1558± 0.0054 fm−3

K1/2 = 236.5± 15.4 MeV
Data from Dutra (2012, 2014)
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Theoretical Neutron Matter Studies

Recently developed chiral effective field theory allows a systematic
expansion of nuclear forces at low energies based on the symmetries
of quantum chromodynamics. It exploits the gap between the pion
mass (the pseudo-Goldstone boson of chiral symmetry-breaking)
and the energy scale of short-range nuclear interactions established
from experimental phase shifts. It provides the only known
consistent framework for estimating energy uncertainties.
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Symmetry Parameters From Chiral EFT
Two approaches to extracting J and L

1. Take the difference
between pure neutron
and symmetric matter
energies and pressures
at the calculated
saturation density.

2. Use pure neutron
matter energy and
pressure with the
empirical saturation
window from nuclear
mass fits.
J = EN(ns) + B,
L = 3PN(ns)/ns .
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Symmetry Parameters From Neutron Matter

Pure neutron matter calculations are more reliable than symmetric
matter calculations.
Symmetric matter emerges from a delicate cancellation sensitive to
short- and intermediate-range three-body interactions at N2LO
that are Pauli-blocked in pure neutron matter.
N3LO symmetric matter calculations don’t saturate within
empirical ranges for ns and B,

and introduce spurious
correlations in symmetric matter.
We infer symmetry parameters
from EN(ns) and PN(ns) using

J = EN(ns) + B

L = 3PN(ns)/ns

and include uncertainties in
EN ,PN , ns and B.

J. M. Lattimer Experimental, Observational, and Theoretical Constraints on the Nuclear Symmetry Energy



Correlations From Chiral EFT

J
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Bounds From The Unitary Gas Conjecture

The Conjecture (UGC):
Neutron matter energy always
larger than unitary gas energy.
EUG = ξ0(3/5)EF , or

EUG ≃ 12.6

(
n

ns

)2/3

MeV.

The unitary gas consists of
fermions interacting via a
pairwise short-range s-wave
interaction with infinite scat-
terring length and zero range.
Cold atom experiments show
a universal behavior with the
Bertsch parameter ξ0 ≃ 0.37.
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For n ≥ ns , one also observes PN > PUG (UGPC).
J ≥ 28.6 MeV; L ≥ 25.3 MeV; PN(ns) ≥ 1.35 MeV fm−3; R1.4 ≥ 9.7 km

Tews, Lattimer, Ohnishi & Kolomeitsev (2017)
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Applying Unitary Gas Constraints

Data from Dutra (2012, 2014) and Tagami (2022)

J
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Neutron Skin Thickness
The difference between the mean
neutron and proton radii in the
liquid droplet model is
tnp = Rn − Rp.
The mean square difference is
r2np =< Rn >2 − < Rp >2.

rnp=

√
3

5

2ro I

3

Ss
J

[
1 + SsA

−1/3/J
]−1

fC

Implies strong L− rnp correlation.

ρ
/
ρ
s

fC = 1− 3Ze2

140ISS ro

(
1 + 10SS

3JA1/3

)
For 208Pb: rnp ≃ 0.13 fm

∆(SS/J)
∆J ≃ −0.020

∆L
∆J = ∆(SS/J)

∆J
1

0.0234 ≃ −0.84
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Calculated L− rnp Correlations
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Implied L Values

Historical experimental weighted average 208Pb
r 208np = 0.166± 0.017 fm, implying L = 45± 13 MeV.

Historical experimental weighted average 48Ca
r 48np = 0.137± 0.015 fm, implying L = 14± 21 MeV.

Combined L = 36± 11 MeV.

Parity-violating electron scattering measurements at JLab:

PREX I+II 208Pb (Adhikari et al. 2021):
r 208np = 0.283± 0.071 fm, implying L = 119± 46 MeV.

CREX 48Ca (Adhikari et al. 2022):
r 48np = 0.121± 0.035 fm, implying L = −5± 42 MeV.

Combined L = 51± 31 MeV.
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r 208np − r 48np Linear Correlation

68%

90%

J. M. Lattimer Experimental, Observational, and Theoretical Constraints on the Nuclear Symmetry Energy



Detail

68%

90%
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Implied J − L

J
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The Radius – Pressure Correlation

Lattimer & Prakash (2001) Lattimer & Lim (2013)

(k
m

fm
3
/
4
M
eV

−
1
/
4
)

5.68± 0.14

7.06± 0.24

9.52± 0.49

J. M. Lattimer Experimental, Observational, and Theoretical Constraints on the Nuclear Symmetry Energy



Implied R1.4 − L
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Neutron Star Interior Composition ExploreR (NICER)
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GW170817

▶ LVC detected a signal consistent
with a BNS merger, followed 1.7 s
later by a weak gamma-ray burst.

▶ ≃ 10100 orbits observed over 317 s.
▶ M = 1.186± 0.001 M⊙
▶ MT,min = 26/5M = 2.725M⊙
▶ EGW > 0.025M⊙c

2

▶ DL = 40+8
−14 Mpc

▶ 75 < Λ̃ < 560 (90%)
▶ Mejecta ∼ 0.06± 0.02 M⊙
▶ Blue ejected mass: ∼ 0.01M⊙
▶ Red ejected mass: ∼ 0.05M⊙
▶ Probable r-process production
▶ Ejecta + GRB: Mmax

<∼ 2.22M⊙ Drout et al. (2017)

Abbott et al. (2017)

GRB

kilonova v
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Binary Deformability and the Radius

Λ̃=
16

13

(1 + 12q)Λ1+q4(12 + q)Λ2

(1 + q)5
≃16a

13

(
R1.4c

2

GM

)6
q8/5(12−11q+12q2)

(1 + q)26/5
.

This is very insensitive to q for q > 0.5, so

Λ̃ ≃ a′
(
R1.4c

GM

)6

.

For M = (1.2± 0.2) M⊙, a
′ = 0.0035± 0.0006,

R1.4 = (11.5±0.3)
M
M⊙

(
Λ̃

800

)1/6

km.

For GW170817, M = 1.186M⊙, a
′ = 0.00375± 0.00025,

R1.4 = (13.4± 0.1)

(
Λ̃

800

)1/6

km.
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Implied Λ1.4 − L
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Summary of Astrophysical Observations
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Figure adapted from Tan et al. (2021)

NS not confirmed

NS not confirmed

black widow pulsar
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Moment of Inertia

▶ Spin-orbit coupling is of same magnitude as
post-post-Newtonian effects (Barker & O’Connell 1975,
Damour & Schaeffer 1988).

▶ Precession alters orbital inclination angle (observable if
system is face-on) and periastron advance (observable if
system is edge-on).

▶ More EOS sensitive than R : I ∝ MR2.

▶ Measurement requires system to be extremely relativistic.

▶ Double pulsar PSR J0737-3037 is an edge-on candidate;
MA = 1.338185+12

−14M⊙.

▶ Even more relativistic systems are likely to be found,
based on faintness and nearness of PSR J0737-3037.
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Recent Moment of Inertia Measurement
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S190426c: First Black Hole-Neutron Star Merger?

Information from LVC indicated a marginal case, with 58%
chance of being ’terrestrial anomaly’.

Assuming it is cosmic in origin, GCN circular 24411 stated
pBHNS = 0.60, pgap = 0.35, pBNS = 0.15, pBBH < 0.01,
pHasNS > 0.99 and prem = 0.72.

LVC defined BNS if both M1,2 ≤ 3M⊙, BH if both M1,2 ≥ 5M⊙
and gap if either mass satisfied 3M⊙ < M < 5M⊙.

LVC won’t immediately release the chirp mass M (even
though it’s known precisely), the mass ratio q = M1/M2 > 1
(and therefore M1 and M2, known much less precisely), and
the spin parameter χ if one component is a BH.

But it is still possible to recover M,M1,M2 and χ in cases
where pBHNS, pgap, pBNS and/or prem are nonzero.
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Suitable Variables

M has small
uncertainty σM.

q has large
uncertainty, but
q ∈ [1,∞].

q̄ = ln(q − 1) has
q̄ ∈ [−∞,∞] and
large uncertainty σq.

σq is the most
important parameter.
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Probabilities
Assume

d2p

dMdq̄
=

1

2πσMσq
exp

[
−(M−M0)

2

2σ2
M

− (q̄ − q̄0)
2

2σ2
q

]
.
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Spin

LVC uses model of Foucart et al. (2012, 2018) to determine
mass Md remaining outside the remnant more than a few ms
after a BHNS merger:

Md/M
b
NS ≃ α′η−1/3(1− 2β)− R̂ISCOββ

′η−1 + γ′,

β = GMNS/RNSc
2, η = q(1 + q)−2 and

R̂ISCO = RISCOc
2/GMBH. α

′ ≃ 0.406, β′ ≃ 0.139, γ′ = 0.255.

For the Kerr metric

χ =

√
R̂ISCO

(
4/3−

√
R̂ISCO/3− 2/9

)
.

Md = 0 implies

R̂ISCO = (β′β)−1(α′η2/3(1− 2β) + γ′η).

χ is found from pd =
∫ ∫

Md≥0
d2p

dMdq̄
dMdq̄.
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Convergence For Large σq
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New LIGO/VIRGO/KAGRA Detections 2023

HasGap: probability that one object
is between 3M⊙ and 5M⊙.

HasNS: probability that one object
is between 1M⊙ and Mmax .

rem: probability of disc formation.

source pBNS pBHNS pBBH pGap pNS prem FAR−1
yr DMpc

230518h 0.0 0.96 0.04 0.0 1.0 0.0 98 204± 57
230528a 0.31 0.69 0.0 0.97 1.0 0.02 9.6 261± 108
230529ay 0.33 0.67 0.0 0.98 1.0 0.12 160 201± 63
230615az 1.0 0.0 0.0 0.00 1.0 1.0 4.7 124± 34
230627c 0.0 0.51 0.49 0.26 0.0 0.0 100 278± 68
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S230518h
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S230529ay
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S230529ay
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S230627c
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S230627c
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Conclusions
Nuclear experiments and theory, including EDF fits to nuclear
binding energies, chiral EFT calculations, and neutron skin and
dipole polarizability measurements of 48Ca and 208Pb, consistently
predict narrow ranges for the symmetry energy parameters without
any astrophysical inputs:

J = (32±2) MeV, L = (50±10) MeV, KN = (140±70) MeV.

Neutron star radius predictions are about R1.4 = (11.5± 1.0) km.

This is consistent with inferences from GW170817, NICER X-ray
timing measurements and X-ray observations of quiescent thermal
and photospheric radius expansion burst sources.

We eagerly anticipate new neutron skin and dipole polarizability
experiments, LIGO/Virgo/Kagra observations of neutron star
mergers, radio pulsar timing measurements of masses and
moments of inertia measurements, and NICER and other planned
X-ray telescope observations of neutron stars.
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