Constraints on the EOS and nuclear symmetry energy from experiments and observations

J. M. Lattimer

Department of Physics & Astronomy

STONY BROOK UNIVERSITY

The r-process and the nuclear EOS after LIGO-Virgo's third observing run INT, Seattle, WA, May 23-27, 2022

Acknowledgements

Funding Support:

- **DOE** Nuclear Physics
- DOE Toward Exascale Astrophysics of Mergers and Supernovae (TEAMS)
- NASA Neutron Star Interior Composition ExploreR (NICER)
- NSF Neutrinos, Nuclear Astrophysics and Symmetries (PFC N3AS)
- DOE Nuclear Physics from Multi-Messenger Mergers (NP3M)

Recent Collaborators:

Duncan Brown & Soumi De (Syracuse), Christian Drischler (Berkeley), Sophia Han & Sanjay Reddy (INT), Madappa Prakash & Tianqi Zhao (Ohio), Evgeni Kolomeitsev (Matej Bei, Slovakia), Akira Ohnishi (YITP, Kyoto), Achim Schwenk (Darmstadt), Andrew Steiner (Tennessee) & Ingo Tews (LANL)

The Radius – Pressure Correlation

$R_{1.4} - P_{\rm NSM}$ Correlation with Parameterized EOSs

Nuclear Symmetry Energy and the Pressure

The symmetry energy is the difference between the energies of pure neutron matter (x = 0) and symmetric (x = 1/2) nuclear matter: S(n) = E(n, x = 0) - E(n, x = 1/2)

J. M. Lattimer

Constraints on the EOS and nuclear symmetry energy from exp

Energy Expansions

$$\begin{split} S(u) &= E_N(u) - E_{1/2}(u), \qquad u = n/n_s \\ E_{1/2}(u) &= -B + \frac{K_{1/2}}{18}(u-1)^2 + \frac{Q_{1/2}}{162}(u-1)^3 + \cdots \\ E_N(u) &= S_V - B + \frac{L}{3}(u-1) + \frac{K_N}{18}(u-1)^2 + \frac{Q_N}{162}(u-1)^3 + \cdots \\ S(u) &= S_V + \frac{L}{3}(u-1) + \frac{K_{\text{sym}}}{18}(u-1)^2 + \frac{Q_{\text{sym}}}{162}(u-1)^3 + \cdots \\ \text{Empirical saturation properties:} \\ n_s &= 0.155 \pm 0.005 \text{ fm}^{-3}, \quad B = 16 \pm 1 \text{ MeV}, \quad K_{1/2} = 230 \pm 20 \text{ MeV} \\ 261 \text{ nuclear interactions fit to nuclei yield these correlations:} \\ K_{\text{sym}} &= 3.501L - 305.67 \pm 24.26 \text{ MeV} \\ Q_{\text{sym}} &= -6.443L + 708.74 \pm 118.14 \text{ MeV} \end{split}$$

$$Q_{1/2} = -0.870L - 354.71 \pm 178.04 \text{ MeV}$$

æ

Symmetry Parameter Correlation from Masses

24 26 28

 $S_{\rm s}$ is highly correlated with L and $S_{\rm V}$.

30 S (MeV) Constraints on the EOS and nuclear symmetry energy from exp

32 34 36

Correlations from Fitting Nuclei

Theoretical Neutron Matter Studies

Recently developed chiral effective field theory allows a systematic expansion of nuclear forces at low energies based on the symmetries of quantum chromodynamics. It exploits the gap between the pion mass (the pseudo-Goldstone boson of chiral symmetry-breaking) and the energy scale of short-range nuclear interactions established from experimental phase shifts. It provides the only known consistent framework for estimating energy uncertainties.

Symmetry Parameters From Neutron Matter

Pure neutron matter calculations are more reliable than symmetric matter calculations.

Symmetric matter emerges from a delicate cancellation sensitive to short- and intermediate-range three-body interactions at N²LO that are Pauli-blocked in pure neutron matter.

N³LO symmetric matter calculations don't saturate within

empirical ranges for n_s and B, 17 and introduce spurious 16 correlations in symmetric matter. We infer symmetry parameters 15 from $E_N(n_s)$ and $P_N(n_s)$ using 2

$$S_V = E_N(n_s) + B$$

 $L = 3P_N(n_s)/n_s$

and include uncertainties in E_N, P_N, n_s and B.

Correlations from Chiral EFT

Correlations from Chiral EFT

Bounds From The Unitary Gas Conjecture

The Conjecture:

Neutron matter energy is larger than that of the unitary gas $E_{UG} = \xi_0(3/5)E_F$, or

$$E_{UG} \simeq 12.6 \left(\frac{n}{n_s}\right)^{2/3} \mathrm{MeV}$$

(MeV) The unitary gas consists of fermions interacting via a pairwise short-range s-wave interaction with infinite scatterring length and zero range. Cold atom experiments show a universal behavior with the Bertsch parameter $\xi_0 \simeq 0.37$.

 $S_{v} \geq 28.6 \text{ MeV}; L \geq 25.3 \text{ MeV}; P_{N}(n_{s}) \geq 1.35 \text{ MeV fm}^{-3}; R_{1.4} \geq 9.7 \text{ km}$

Before Applying the UG Constraint

After Applying the UG Constraint

Combining Mass Fits With Chiral EFT

$K_N - L$ Correlations

$K_N - L$ Correlations

$K_{sym} - L$ Correlations

$K_{sym} - L$ Correlations

$Q_N - L$ Correlations

$Q_N - L$ Correlations

$Q_{sym} - L$ Correlations

$Q_{sym} - L$ Correlations

Neutron Skin Thickness

The difference between the mean neutron and proton radii in the liquid droplet model is $t_{np} = R_n - R_p$

0.60

0.50

0.40

0.30

0.20

$$t_{np} = \frac{2r_o I}{3} \frac{S_s}{S_V} \left[1 + S_s A^{-1/3} / S_V \right]^{-1}$$

As for masses, this implies an $L - S_V$ correlation for a given t_{np} . Additionally, Brown found that r_{np} was more highly correlated with ,Q dS/dn at $n \sim 2n_s/3$ than with L. $r_{np} \propto \tilde{L}(2n_s/3); \ \tilde{L} = 3ndS/dn.$

$$r_{np}^{208} \simeq \frac{(dS/dn)_{0.1}}{(882 \pm 32) \text{ MeV fm}^{-2}}$$

Since $S(u) \simeq S_V + (u-1)L/3$, this is similar to the mass correlation.

J. M. Lattimer

|=0.1

 $r_{nn} = \sqrt{\langle R_n \rangle^2 - \langle R_n \rangle^2}$

Theoretical Neutron Skin Calculations

J. M. Lattimer

Constraints on the EOS and nuclear symmetry energy from exp

$Ltilde_1 - L$ Correlations

$Ltilde_1 - L$ Correlations

Neutron Skin Data

J. M. Lattimer Constraints on the EOS and nuclear symmetry energy from exp

Extracting the Physics : CREX Weak Form Factor

Charge form factor F_{ch} minus weak form factor F_w for ⁴⁸Ca versus F_{ch} - F_w for ²⁰⁸Pb. The error bands show the CREX and PREX-2 results. The points show a collection of nonrelativistic and relativistic density functional results.

Inferred $L - S_V$ with mean $r_{\rm np}^{208}$

J. M. Lattimer Constraints on the EOS and nuclear symmetry energy from exp

Inferred $L - S_V$ with PREX $r_{\rm np}^{208}$

J. M. Lattimer

Constraints on the EOS and nuclear symmetry energy from exp

$\mathsf{Masses} + \mathsf{N3LO} + \mathsf{PREX}$

J. M. Lattimer

Constraints on the EOS and nuclear symmetry energy from exp

Electric Dipole Polarizability

Trippa et al. (2005) found central energy of giant dipole resonance of ²⁰⁸Pb has highest correlation with symmetry energy at $n_1 = 0.1 \text{ fm}^{-3}$, with $S(n_1) = 24.1 \pm 0.8 \text{ MeV}$. Zhang et al. (2015) found dipole polarizability has highest correlation at $n_2 = 0.05 \text{ fm}^{-3}$, and $S(n_2) = 16.54 \pm 1.0 \text{ MeV}$. $\Rightarrow L = 10.9S_V - 287.3 \pm 8.9 \text{ MeV}, L = 8.05S_V - 206.9 \pm 9.6 \text{ MeV}$

Hashimoto (2015) Sn: $\alpha_{D}^{120} = 8.59 \pm 0.37 \text{ fm}^3$ Tamii (2012) Pb: $\alpha_D^{208} = 19.6 \pm 0.6 \text{ fm}^3$ Birkhan (2017) Ca: $\alpha_D^{48} = 2.07 \pm 0.22 \text{ fm}^3$

Roca-Maza et al. (2015) showed (using liquid droplet model as justification) $\alpha_D S_V \propto r_{np}$:

 $\alpha_D^{48} S_V = (355 \pm 44) (r_{nn}^{48}/\text{fm}) + 12 \pm 19 \text{ MeV fm}^3$ $\alpha_D^{120}S_V = (1234 \pm 93) (r_{nn}^{120}/\text{fm}) + 115 \pm 36 \text{ MeV fm}^3$ $\alpha_D^{208} S_V = (1922 \pm 73) (r_{nn}^{208}/\text{fm}) + 301 \pm 32 \text{ MeV fm}^3$

J. M. Lattimer Constraints on the EOS and nuclear symmetry energy from exp

<u>Summary</u> of Constraints on S_V and L

J. M. Lattimer Constraints on the EOS and nuclear symmetry energy from exp

Measuring Neutron Star Masses and Radii

- Pulsar timing in binary systems
 - Accurately measure masses, most being $1.2M_{\odot} 1.5M_{\odot}$. The lowest well-measured mass is $1.174 \pm 0.004M_{\odot}$, the highest are $2.08 \pm 0.07M_{\odot}$ and $2.01 \pm 0.04M_{\odot}$.
 - Moment of inertia measurements via spin-orbit coupling
- ► X-ray observations yield radii, but are uncertain to a few km.
 - Quiescent binary sources in globular clusters
 - Thermonuclear explosions on accreting neutron stars in binaries leading to photospheric radius expansion bursts
 - Pulse profile modeling of hot spots on rapidly rotating neutron stars (NICER).
- Gravitational waves from merging binaries measure masses, tidal deformabilites, and give insights about M_{max}.
- ▶ Gravitational collapse supernova neutrinos measure protoneutron star masses, radii and possibly M_{max}.

・ロ・ ・回・ ・ヨ・ ・ ヨ・

Λ is Highly Correlated With M and R

- $\Lambda = a\beta^{-6}$ $\beta = GM/Rc^2$ $a = 0.0086 \pm 0.0011$
 - for $M = (1.35 \pm 0.25) \ M_{\odot}$
- If $R_1 \simeq R_2 \simeq R_{1.4}$, it follows that $\Lambda_2 \simeq q^{-6} \Lambda_1$.

- 4 同 6 4 日 6 4 日 6

186 Skyrme Interactions

Constraints on the EOS and nuclear symmetry energy from exp

Binary Deformability and the Radius

$$\tilde{\Lambda} = \frac{16}{13} \frac{(1+12q)\Lambda_1 + q^4(12+q)\Lambda_2}{(1+q)^5} \simeq \frac{16a}{13} \left(\frac{R_{1.4}c^2}{G\mathcal{M}}\right)^6 \frac{q^{8/5}(12-11q+12q^2)}{(1+q)^{26/5}}$$

Constraints on the EOS and nuclear symmetry energy from exp

68.3%, 90%, 95.4% and 99.7% Confidence Bounds

68.3%, 90%, 95.4% and 99.7% Confidence Bounds

186 Skyrme Interactions

J. M. Lattimer Constraints on the EOS and nuclear symmetry energy from exp

Relation Between $R_{1.4}$ and L

Model-Dependence of $R_{1.4} - L$ Relation

Many studies show that $R_{1.4}$ is most sensitive to the pressure at about $2n_s$. The usual energy expansion for dense matter ($u = n/n_s$, $x = n_p/n$) is

and RMF are similar, but these L values are disfavored by nuclear systematics (mass fits, neutron matter theory, neutron skin and dipole polarizability measurements).

NICER Results For PSR J0030+0451

PSR J0030+0415 and GW170817 have neutron stars with similar masses $\simeq 1.4 M_{\odot}$, but PSR J0740+6620 has a larger mass $\simeq 2.0 M_{\odot}$, so don't include it in this analysis.

J. M. Lattimer

Constraints on the EOS and nuclear symmetry energy from exp

Recent Moment of Inertia Measurement

J. M. Lattimer

Constraints on the EOS and nuclear symmetry energy from exp