heavy quark kinetic equilibration from the lattice¹

mikko laine

aec, itp, university of bern

 $^{^{1}}$ supported by the SNSF under grant 200020B-188712

general background

what are we talking about?

 \Rightarrow charm and bottom quarks generated in a heavy ion collision

 \Rightarrow "non-equilibrium": gluons and light quarks thermalized at $T\sim(150-450)$ MeV, heavy quarks probes in this background

 \Rightarrow bottom quark is non-relativistic $[m_b \sim (10-30)~T]$, charm quark is a borderline case $[m_c \sim (2-6)~T]$

conceptual motivations

kinetic equilibration rate: how fast does velocity adjust to hydrodynamic flow?

chemical equilibration rate: how fast does number density adjust to boltzmann weight?

quarkonium dissociation: do $q\bar{q}$ states propagate as scattering or bound states?

phenomenological motivations

kinetic equilibration rate: how can D mesons show large v_2 in heavy ion collisions?

chemical equilibration rate: would we have $N_{\rm f} = 2 + 2$ in future heavy ion experiments?

bottomonium dissociation: precision studies of Υ spectra in the LHC era?

charmonium dissociation: eternal questions on the fate of J/ψ ?

 \Rightarrow can we understand ingredients for these from lattice QCD?

technical challenges

\Rightarrow "usual" lattice systematics:

statistical signal for suppressed observables; finite-volume effects; continuum limit; light dynamical sea quarks; topological freezing; non-perturbative renormalization; ...

 \Rightarrow specific issues for thermal real-time rates:

"easy": derivation of kubo relations, i.e. expressing nonequilibrium physics in terms of equilibrium two-point correlators "exponentially hard": analytic continuation from euclidean to real time, particularly if spectral function contains narrow peaks²

² G. Cuniberti, E. De Micheli and G.A. Viano, *Reconstructing the thermal Green functions at real times from those at imaginary times*, cond-mat/0109175

how to address kinetic equilibration?

basic idea: make use of effective theory concepts

by focussing on essential degrees of freedom, the measurement and control of systematic uncertainties might get facilitated

the practical implementation is quite different from vacuum field theory, however — analogues are often with plasma physics (fast \leftrightarrow slow) rather than with quantum mechanics (heavy \leftrightarrow light)

low-energy dynamics: the langevin equation³

just like in brownian motion, momenta are changed by thermal friction and by random kicks,

$$\dot{p}_i(t) = -\eta \, p_i(t) + \xi_i(t) \,, \quad \langle \, \xi_i(t') \, \xi_j(t) \, \rangle = \kappa \, \delta_{ij} \, \delta(t - t')$$

the parameters η,κ satisfy a fluctuation-dissipation relation,

$$\eta \approx \frac{\kappa \langle \mathbf{v}^2 \rangle}{6T^2}$$

 \Rightarrow task is to measure the "momentum diffusion coefficient", κ (and also to estimate the static $\langle \mathbf{v}^2 \rangle$)

³ B. Svetitsky, *Diffusion of charmed quarks in the quark-gluon plasma*, PRD 37 (1988) 2484; G.D. Moore and D. Teaney, *How much do heavy quarks thermalize in a heavy ion collision?*, hep-ph/0412346

for intuition: electrodynamics

consider particle motion under the lorentz force

$$\dot{\mathbf{p}} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})(t) \equiv \mathbf{F}(t)$$

with $\langle v_i v_j \rangle = \frac{1}{3} \langle \mathbf{v}^2 \rangle \, \delta_{ij}$, its 2-point correlator can be written as $\langle F_i(t')F_j(t) \rangle = q^2 \left\{ \langle E_i(t')E_j(t) \rangle + \frac{1}{3} \langle \mathbf{v}^2 \rangle \, \langle \delta_{ij}B_k(t')B_k(t) - B_j(t')B_i(t) \rangle \right\}$

the low-energy constant κ is given by the IR limit $\omega \to 0$

$$\kappa = \lim_{\omega \to 0} \int_{-\infty}^{\infty} \mathrm{d}t' \, e^{i\omega(t'-t)} \frac{1}{3} \sum_{i} \langle F_i(t') F_i(t) \rangle$$

infinite-mass limit $M \gg T$

basic ingredients

view the problem as an expansion in T/M ("HQET")

for $\langle {f v}^2
angle \sim T/M
ightarrow 0$, κ originates from the electric field 4

⁴ J. Casalderrey-Solana and D. Teaney, *Heavy quark diffusion in strongly coupled* $\mathcal{N} = 4$ *Yang-Mills*, hep-ph/0605199; S. Caron-Huot, ML and G.D. Moore, A way to estimate the heavy quark thermalization rate from the lattice, 0901.1195

state of the art (until recently)

measurements with multilevel and other such techniques⁵ perturbative renormalization available up to NLO⁶ continuum limit taken within the guenched theory⁷

⁵ H.B. Meyer, The errant life of a heavy quark in the quark-gluon plasma, 1012.0234; D. Banerjee, S. Datta, R. Gavai and P. Majumdar, Heavy Quark Momentum Diffusion Coefficient from Lattice QCD, 1109.5738

⁶ C. Christensen and ML, *Perturbative renormalization of ...*, 1601.01573

⁷ A. Francis et al, Non-perturbative estimate of the heavy quark ..., 1508.04543

colour-electric correlator

$$\begin{split} G_E(\tau) &\stackrel{\beta \equiv 1/T}{\equiv} -\frac{1}{3} \sum_{i=1}^3 \frac{\langle \operatorname{Re} \operatorname{Tr}[U_{\beta;\tau} g E_i(\tau) U_{\tau;0} g E_i(0)] \rangle}{\langle \operatorname{Re} \operatorname{Tr}[U_{\beta;0}] \rangle} \\ & \overbrace{\beta - \tau} \\ G_E(\tau) = \int_0^\infty \frac{\mathrm{d}\omega}{\pi} \rho_E(\omega) \frac{\cosh[(\frac{\beta}{2} - \tau)\omega]}{\sinh\left(\frac{\omega\beta}{2}\right)} \Rightarrow \kappa_E \equiv \lim_{\omega \to 0} \frac{2T \rho_E(\omega)}{\omega} \end{split}$$

getting a signal is non-trivial

but in the end it can be obtained

with multilevel algorithm and tree-level improvement:

clear enhancement at large time separations

extrapolation to the continuum limit

classical simulations yield insight about the spectral shape⁸

⁸ ML, G.D. Moore, O. Philipsen and M. Tassler, *Heavy Quark Thermalization in Classical Lattice Gauge Theory: Lessons for Strongly-Coupled QCD*, 0902.2856

 \Rightarrow take a similar ansatz (but now in continuum)

$$\phi_{
m IR}(\omega) \equiv rac{\kappa_E \, \omega}{2T}$$

$$\phi_{\rm UV}^{(a)}(\omega) \ \equiv \ \frac{g^2(\bar{\mu}_\omega)C_{\rm F}\,\omega^3}{6\pi} \ , \quad \bar{\mu}_\omega \equiv \max(\omega,\pi T)$$

$$\rho_{\rm E}^{(2\mu i)}(\omega) \equiv [1 + \sum_{n=1}^{n_{\rm max}} c_n e_n^{(\mu)}(y)] \sqrt{[\phi_{\rm IR}(\omega)]^2 + [\phi_{\rm UV}^{(i)}(\omega)]^2}$$

fitting with such interpolations yields $\kappa_E > T^3$

$$\kappa_E = (1.8 - 3.4) T^3$$

in the meanwhile other studies find similar results⁹

 \Rightarrow "gradient flow" has turned out to be a useful tool

 \Rightarrow the current drive is towards unquenching

⁹ ...; N. Brambilla, V. Leino, P. Petreczky and A. Vairo, *Lattice QCD constraints on the heavy quark diffusion coefficient*, 2007.10078; L. Altenkort, A.M. Eller, O. Kaczmarek, L. Mazur, G.D. Moore and H.-T. Shu, *Heavy quark momentum diffusion from the lattice using gradient flow*, 2009.13553; *Spectral reconstruction details of a gradient-flowed color-electric correlator*, 2109.11303; D. Banerjee, R. Gavai, S. Datta and P. Majumdar, *Temperature dependence of the static quark diffusion coefficient*, 2206.15471

reminder: why is unquenching important even at high T?

 $N_{\rm f} = 0$: $T_{\rm c} \approx 1.24 \Lambda_{\overline{
m MS}}$

 $m_{0_{++}}\gg 1~{\rm GeV}\Rightarrow$ need to heat the system "a lot" in order for something to happen $\Rightarrow T_{\rm c}$ is large

 $N_{\rm f} = 3$: $T_{\rm c} \approx 0.45 \Lambda_{\overline{\rm MS}}$

 $m_\pi \ll 1~{\rm GeV} \Rightarrow$ already a mild heating excites (exponentially) many hadrons $\Rightarrow T_{\rm c}$ is low

this leads to quite different values of an effective coupling 10

 10 ML and Y. Schröder, ... gauge coupling at high temperatures, hep-ph/0503061

corrections of $\mathcal{O}(T/M)$

motivation

with $m_c\sim (2-6)\,T$, the expansion parameter $\sim T/M$ is not small, so the convergence of the HQET expansion is questionable

(as is the case for charm quarks also in vacuum settings)

most important corrections at $\mathcal{O}(T/M)$

including the magnetic field part of the lorentz force yields¹¹

$$\kappa_{\,
m tot}\ \simeq\ \kappa_{E} + rac{2}{3} \langle {f v}^2
angle \, \kappa_{B}$$

here the velocity reads

$$\langle \mathbf{v}^2 \rangle \approx \frac{3T}{M_{\rm kin}} \left(1 - \frac{5T}{2M_{\rm kin}} + \ldots \right)$$

a more general definition of $\langle \mathbf{v}^2 \rangle$ can be given in terms of the ratio of the almost constant (τ -independent) part of the spatial vector current correlator, normalized to the susceptibility¹²

 ¹¹ A. Bouttefeux and ML, Mass-suppressed effects in heavy quark diffusion, 2010.07316
 ¹² S. Caron-Huot, ML and G.D. Moore, A way to estimate the heavy quark thermalization rate from the lattice, 0901.1195

colour-magnetic correlator

$$G_B(\tau) \equiv \frac{1}{3} \sum_{i=1}^{3} \frac{\langle \operatorname{Re} \operatorname{Tr}[U_{\beta;\tau} gB_i(\tau) U_{\tau;0} gB_i(0)] \rangle}{\langle \operatorname{Re} \operatorname{Tr}[U_{\beta;0}] \rangle}$$

magnetic fields are best discretized as clovers \widehat{F}_{jk} ,

$$gB_i \equiv \frac{\sum_{j,k} \epsilon_{ijk} \widehat{F}_{jk}}{2i}$$

 κ_B again originates from the IR limit,

$$G_B(\tau) = \int_0^\infty \frac{\mathrm{d}\omega}{\pi} \rho_B(\omega) \frac{\cosh\left[\left(\frac{\beta}{2} - \tau\right)\omega\right]}{\sinh\left(\frac{\omega\beta}{2}\right)} \Rightarrow \kappa_B \equiv \lim_{\omega \to 0} \frac{2T\rho_B(\omega)}{\omega}$$

renormalization

unlike the electric field, gB_i displays a logarithmic divergence

the physical correlator is obtained by multiplying the $\overline{\rm MS}$ one 13 with c_B^2 , where 14

$$c_B = 1 + \frac{g^2 N_{\rm c}}{(4\pi)^2} \left[2 \ln \left(\frac{\bar{\mu} e^{\gamma_{\rm E}}}{4\pi T} \right) - 2 \right] + \mathcal{O}(g^4)$$

this implies that $\overline{\mathrm{MS}}$ operators need to be run to the scale

 $\bar{\mu} \approx 19.179T$

¹³ D. Guazzini, H.B. Meyer and R. Sommer, Non-perturbative renormalization of the chromo-magnetic operator in Heavy Quark Effective Theory and the B^* – B mass splitting, 0705.1809

¹⁴ ML, 1-loop matching of a thermal Lorentz force, 2103.14270

example of a measurement [after renormalization]¹⁵

 \Rightarrow comparing with pQCD, there is a huge non-perturbative effect

¹⁵ D. Banerjee, S. Datta, ML, *Lattice study of a magnetic contribution to heavy quark momentum diffusion*, 2204.14075

our data set

eta	N_{τ}	$N_{\mathbf{S}}$	subs	sub-ups	confs	streams	$^{ au}$ int	r_0/a	$T/T_{\rm C}$
6.860	20	48	5	500	500	5	13	17.7	1.2
	20	56	5	500	905	5	13	17.7	1.2
	20	64	5	500	1020	6	11	17.7	1.2
7.010	24	64	6	500	1465	10	7	21.3	1.2
	24	72	6	500	1051	15	4	21.3	1.2
7.050	20	48	5	500	875	4	5	22.4	1.5
	20	56	5	500	706	5	5	22.4	1.5
	20	64	5	500	1000	8	8	22.4	1.5
7.135	28	84	7	1000	1225	9	11	24.8	1.2
7.192	24	60	4	500	1530	9	5	26.6	1.5
	24	72	4	500	1448	7	5	26.6	1.5
	30	96	5	1000	1256	12	12	26.6	1.2
7.300	20	48	4	500	1000	4	5	30.2	2.0
	20	64	4	500	1120	8	5	30.2	2.0
7.330	28	84	7	1000	1256	10	11	31.3	1.5
7.457	24	60	4	500	1645	9	4	36.4	2.0
	24	72	4	500	1038	7	4	36.4	2.0
7.634	30	96	5	1000	1130	9	7	44.9	2.0

spectral modelling

employ ansätze with two parameters like for ρ_{E} , e.g.

$$\phi_{
m IR}(\omega) \equiv rac{\kappa_B \, \omega}{2T}$$

$$\phi_{\rm UV}(\omega) \; \equiv \; \frac{g^2(\bar{\mu}_B) \, C_{\rm F} \, \omega^3}{6\pi} \; , \quad \bar{\mu}_B \equiv \max[\omega^{1 - \frac{\gamma_0}{b_0}} (\pi T)^{\frac{\gamma_0}{b_0}} , \pi T]$$

$$ho_B(\omega) \;\equiv\; \sqrt{\phi_{
m IR}^2(\omega) \;+\; a_B^{}\,\phi_{
m UV}^2(\omega)}$$

we have tested finite-V and finite-a dependences

 \Rightarrow both moderate compared with spectral reconstruction

our final results

$T/T_{\rm C}$	$\kappa_E^{}/T^3$	$\kappa_B^{}/T^3$	$\langle {\bf v}^2 \rangle_{\text{c}}$	$\langle {\bf v}^2 \rangle_{ \text{b}}$	$\kappa_{\rm C}/T^3$	$\kappa_{\rm b}/T^3$	η_{C}/T	$\eta_{{\rm b}}/T$
1.2	1.5-3.4	1.0-2.6	0.52	0.20	1.8-4.3	1.6-3.8	0.16-0.38	0.05-0.13
1.5	1.3-2.8	1.0-2.1	0.59	0.24	1.7-3.7	1.4-3.2	0.16-0.36	0.05-0.13
2.0	1.0-2.5	0.6-1.8	0.67	0.30	1.2-3.4	1.1-2.9	0.14-0.37	0.05-0.15

these can be contrasted with the non-EFT formulation,¹⁶ where the spectral function contains a very narrow transport peak

$$\eta_{\rm c}/T \stackrel{[16]}{\simeq} 0.9 - 5.3$$
 at $T/T_{\rm c} = 1.5 - 2.25$
 $\eta_{\rm b}/T \stackrel{[16]}{\simeq} 0.3 - 4.0$ at $T/T_{\rm c} = 1.3 - 2.25$

¹⁶ H.-T. Ding, O. Kaczmarek, A.-L. Lorenz, H. Ohno, H. Sandmeyer and H.-T. Shu, *Charm and beauty in the deconfined plasma from quenched lattice QCD*, 2108.13693

remark: renormalization involves uncertainties as well

\Rightarrow would be nice to measure the same with gradient flow¹⁷

¹⁷ J. Mayer-Steudte, N. Brambilla, V. Leino, P. Petreczky, Chromoelectric and chromomagnetic correlators ... from gradient flow, 2111.10340; L. Altenkort, A.M. Eller, O. Kaczmarek, L. Mazur, G.D. Moore, H.-T. Shu, Continuum extrapolation of ... color-magnetic correlator at 1.5T_c, 2111.12462; N. Brambilla, V. Leino, J. Mayer-Steudte, P. Petreczky, Heavy quark diffusion coefficient with gradient flow, 2206.02861

summary

- \Rightarrow nice playground for theoretical and numerical progress
- $\Rightarrow \mathcal{O}(T/M)$ is $\sim 30\%$ for charm, $\sim 10\%$ for bottom
- \Rightarrow systematics needs to be scrutinized further
- \Rightarrow unquenching is important indeed