ePIC/EIC resolutions and systematics

- Tyler Kutz (MIT)
- INT-24-87W: Electroweak and Beyond the Standard Model Physics at the EIC
 - February 12, 2024

Two caveats

Current simulations/reconstruction results subject to improvement!

It's difficult to evaluate systematics for an experiment 10 years in the future.

Reconstruction of *both* scattered electron *and* hadronic final state critical to EIC physics program

ePIC designed to be hermetic, multi-purpose detector

ePIC designed to be hermetic, multi-purpose detector 1.7 T solenoid *p*/*A* beam e^- beam Tracking

ePIC designed to be hermetic, multi-purpose detector 1.7 T solenoid *p*/*A* beam e^- beam Tracking PID

ePIC designed to be hermetic, multi-purpose detector 1.7 T solenoid *p*/*A* beam e^- beam

ePIC designed to be hermetic, multi-purpose detector 1.7 T solenoid Hadronic calorimetry *p*/*A* beam e^- beam

ePIC designed to be hermetic, multi-purpose detector 1.7 T solenoid Hadronic calorimetry *p*/*A* beam e^- beam

Motivation: some EIC observables and related systematics

- Parity-violating asymmetries A_{PV}
- A_1^p from double-spin asymmetries
 - Limited by electron purity
 - Q^2 dependence critical!

- F_L from reduced cross sections
- Fit y dependence for fixed (x_B, Q^2)
 - Must combine multiple beam energies
 - π contamination depends strongly on y

Overview

- Electron energy resolutions
- Calibration of electromagnetic calorimeters
- Kinematic reconstruction
- Electron identification and purity
- Luminosity & polarization

Electron momentum resolutions

Electron momentum resolutions

Electron momentum resolutions across η

ePIC ep 18x275 GeV Pythia8 NC DIS

• Electron $Q^{2}\left(\frac{E'_{e}}{e}, \frac{\theta_{e}}{e}\right), y\left(\frac{E'_{e}}{e}, \frac{\theta_{e}}{e}\right)$

- Electron $Q^2\left(\frac{E'_e, \theta_e}{e}\right), y\left(\frac{E'_e, \theta_e}{e}\right)$
- Jacquet-Blondel $Q^{2}(\delta_{h}, p_{T,h}), y(\delta_{h}, p_{T,h})$

- Electron $Q^{2}\left(\frac{E'_{e}}{e}, \frac{\theta_{e}}{e}\right), y\left(\frac{E'_{e}}{e}, \frac{\theta_{e}}{e}\right)$
- Jacquet-Blondel $Q^{2}(\delta_{h}, p_{T,h}), y(\delta_{h}, p_{T,h})$
- Double-angle $Q^{2}(\gamma_{h}, \theta_{e}), y(\gamma_{h}, \theta_{e})$

- Electron $Q^{2}\left(\frac{E'_{e}}{e}, \frac{\theta_{e}}{e}\right), y\left(\frac{E'_{e}}{e}, \frac{\theta_{e}}{e}\right)$
- Jacquet-Blondel $Q^{2}(\delta_{h}, p_{T,h}), y(\delta_{h}, p_{T,h})$
- Double-angle $Q^{2}(\gamma_{h}, \theta_{e}), y(\gamma_{h}, \theta_{e})$
- $e\Sigma$ $Q^2\left(\frac{E'_e, \theta_e}{e}\right), y\left(\frac{E'_e, \theta_e}{\delta_h}\right)$

 Neutral-current analyses can leverage over-constrained kinematics to optimize resolution

- Neutral-current analyses can leverage over-constrained kinematics to optimize resolution
- Hadronic final state:
 - Only option for charged-current analyses
 - PID needed to determine mass
 - Electron ID needed to eliminate scattered electron (and veto NC)

Kinematic resolutions

Acceptance and bin migration (electron track)

Acceptance

$$C_{acc} = \frac{N_{rec}(x_{gen}, Q_{gen}^2)}{N_{gen}(x_{gen}, Q_{gen}^2)}$$

Bin migration

 $N_{rec}(x_{rec}, Q_{rec}^2)$ C_{bin} $= \frac{1}{N_{rec}(x_{gen}, Q_{gen}^2)}$

Bin stability and purity (electron track)

Bin purity

$$P = \frac{N_{gen+rec}}{N_{rec}}$$

Bin stability

$$S = \frac{N_{gen+rec}}{N_{gen}}$$

Bin stability and purity (electron track)

Bin purity

$$P = \frac{N_{gen+rec}}{N_{rec}}$$

HERA F_L analyses: >30% required, >70% typical Bin stability

N_{gen+rec} S = -Ngen

Bin stability and purity (electron cluster)

Bin purity

$$P = \frac{N_{gen+rec}}{N_{rec}}$$

Bin stability

$$S = \frac{N_{gen+rec}}{N_{gen}}$$

Bin stability and purity (electron cluster)

Bin purity

Bin stability

provement in and ECAL region

N_{gen+rec} S = -Ngen

• Kinematic fitting: reconstruct $\overline{\lambda} = \{x_B, y \}$ function (Stephen Maple, et al.)

Proof of concept: Smeared DJANGOH events with ISR

• Kinematic fitting: reconstruct $\overline{\lambda} = \{x_B, y, E_{\gamma}\}$ from $\overline{D} = \{E'_e, \theta'_e, \delta_h, p_{T,h}\}$ using likelihood

- function (Stephen Maple, et al.)
- Machine learning: use simulation to train neural network (M. Diefenthaler, A. Farhat, A. Verbytskyi and Y. Xu)

• Kinematic fitting: reconstruct $\overline{\lambda} = \{x_B, y, E_{\gamma}\}$ from $\overline{D} = \{E'_e, \theta'_e, \delta_h, p_{T,h}\}$ using likelihood

- function (Stephen Maple, et al.)
- Machine learning: use simulation to train neural network (M. Diefenthaler, A. Farhat, A. Verbytskyi and Y. Xu)
- Particle-flow: optimize combination of all detector information (Derek Anderson, et al.)

• Kinematic fitting: reconstruct $\overline{\lambda} = \{x_B, y, E_{\gamma}\}$ from $\overline{D} = \{E'_e, \theta'_e, \delta_h, p_{T,h}\}$ using likelihood

*Images by Gemini (the AI chatbot formerly known as Bard)

Impact of pion contamination on observables

- Pions passing all electron ID cuts give contamination $f_{\pi/e}$
- Contamination can be corrected or treated as dilution

Cross sections (correct contamination):

 $\approx 0.1 \times f_{\pi/e}$

Impact of pion contamination on observables

- Pions passing all electron ID cuts give contamination $f_{\pi/e}$
- Contamination can be corrected or treated as dilution

Cross sections (correct contamination):

 $\approx 0.1 \times f_{\pi/e}$

Asymmetries (treat as dilution factor):

$$\left(\frac{\sigma_{A^e}}{A^e}\right)_{\pi^-} = \sqrt{(\Delta f_{\pi/e})^2 + \left(f_{\pi/e}\frac{|A^{\pi}| + \Delta A^{\pi}}{A^e}\right)^2}$$

$$\approx 0.1 \times f_{\pi/e} - 1 \times f_{\pi/e}$$

Impact of pion contamination on observables

- Pions passing all electron ID cuts give contamination $f_{\pi/e}$
- Contamination can be corrected or treated as dilution

Cross sections (correct contamination):

 $\approx 0.1 \times f_{\pi/e}$

Asymmetries (treat as dilution factor):

$$\left(\frac{\sigma_{A^e}}{A^e}\right)_{\pi^-} = \sqrt{(\Delta f_{\pi/e})^2 + \left(f_{\pi/e}\frac{|A^{\pi}| + \Delta A^{\pi}}{A^e}\right)^2}$$

$$\approx 0.1 \times f_{\pi/e} - 1 \times f_{\pi/e}$$
Large A^e , f Small A^e , $|A^{\pi}| \approx 0$

Electron to pion ratios e⁻ DIS

- Signal e^- from DJANGOH DIS

• Background π^- from DJANGOH DIS, Pythia6 photoproduction ($Q^2 < 2 \text{ GeV}^2$)

10⁹ 10⁸ 10^{7} 10^{6} 10⁵ **10**⁴ 10³ 10² 10

Electron to pion ratios e⁻ DIS

- Signal e^- from DJANGOH DIS

• Background π^- from DJANGOH DIS, Pythia6 photoproduction ($Q^2 < 2$ GeV²)

10⁹ 10⁸ 10^{7} 10⁶ 10⁵ **10**⁴ 10³ 10² 10

Pion suppression cuts

Detector:

• Electrons deposit most/all energy in ECAL

Pion suppression cuts

Detector:

• Electrons deposit most/all energy in ECAL

Required suppression for 90% purity

- $E p_z$ cut reduces required suppression by up to 20x
- Electron ID depends on how well ePIC reconstructs hadronic final state
- Barrel critical region due to large raw π^{-}/e^{-} ratio

Pion contamination in the barrel

- DIRC assists at low momentum
- Further EMCal suppression possible from shower shape

Luminosity determination from bremsstrahlung

Luminosity detectors for the EIC

- Two methods to detect bremsstrahlung photons:
 - Unconverted photons detected in preshower calorimeter
 - Converted e^+e^- pairs detected in spectrometer
- EIC goal is 1% precision:
 - Naive assumption is that uncertainty is correlated between beam configurations • However, relative performance of each method could depend on hadron type,
 - beam energy

Polarization measurements at

- Hadron polarimetry:
 - Hydrogen jet
 - p-carbon
 - Low-energy polarimeter
- Electron polarimetry:
 - Møller
 - Compton (transverse and longitudinal)
 - Mott

Scattered electron

Compton polarimetry performance

Polarimeter	Energy	Sys. Uncertainty	leter including the agnets are require
CERN LEP*	46 GeV	5%	ntur analyze the transve
HERA LPOL	27 GeV	1.6%	ed to measure
HERA TPOL*	27 GeV	1.9-3.5%	technique relies
SLD at SLAC	45.6 GeV	0.5%	ngitudinal ana
JLAB Hall A	1-6 GeV	1-3%	green) laser col ection shows on
JLab Hall C	1.1 GeV	0.6%	lyzing power ch
At the kinematic endpoint, $E_{\gamma} = E_{\gamma}^{\max}$, the analyzing			

1 GeV to 58.8% at 27 GeV.

Goal for EIC is $\delta P/P = 1$ for the set of 4.2. Apparatus and Measurement Techniques

Theory systematics

- Bin-centering C
- Radiative corrections Δ
 - Liu, Melnitchouk, Qiu, Sato PRD 104, 094033 (2021)
 - Electroweak radiation...?
- Traditional approach is binned unfolding of experiment, but event-by-event *folding* of theory becoming more feasible

experiment $\sigma(x_B, Q^2) = \frac{N - B}{\mathcal{L} \cdot \mathcal{A}} \cdot \mathcal{C} \cdot (1 + \Delta)$ theory

Recent efforts to unify QED radiative effects with QCD radiation

Concluding remarks

- Optimum electron, kinematic reconstruction methods differ across detector • Comparing kinematic bins will have different systematics
- Electron ID is critical for EIC physics
 - Asymmetry measurements limited by electron purity
 - Especially important in the barrel region, where pion background is largest
- High-precision polarimetry critical to polarized asymmetry measurements
- Absolute measurements require precise luminosity

Backup

Definitions of reconstruction methods

Electron Jacquet-Blondel

 $Q^2 = 2E_e E'_e (1 + \cos \theta_e)$ $Q^2 = \frac{p_T}{1}$

Double-angle

$$\frac{h}{E_e} \qquad \qquad y = \frac{\sin \theta_e (1 - \cos \gamma_h)}{\sin \gamma_h + \sin \theta_e - \sin(\gamma_h + \theta_e)}$$

$$\frac{Q^2}{-y} \qquad \qquad Q^2 = 4E_e^2 \frac{\sin \gamma_h (1 + \cos \theta_e)}{\sin \gamma_h + \sin \theta_e - \sin(\gamma_h + \theta_e)}$$

