How pQCD constrains EoS at low densities:

How pQCD constrains EoS at low densities:

• Why does QCD at $40n_s$ constrain the EoS at NS densities:

How pQCD constrains the equation of state at neutron star densities

Komoltsev & AK, PRL128 (2022) 20, 2111.05350

• How QCD affects EoS infrerence

Ab-initio QCD calculations impact the inference of neutron-star equation of state

Gorda, Komoltsev & AK 2204.11877

Robust EoS constraints:

General considerations:

- Mechanical stability: $c_s^2 > 0$
- Causality: $c_s^2 < 1$

Lope-Oter, Windisch, Llanes-Estrada, Alford, J. Phys. G (2019) Lope-Oter, Llanes-Estrada, EPJA 58 (2022)

Robust EoS constraints:

General considerations:

- Mechanical stability: $c_s^2 > 0$
- Causality: $c_s^2 < 1$
- Consistency:

 $P(\epsilon)$ vs. $\Omega(\mu)$

Reduced EoS

Full EoS Information of $\{P, \epsilon, n\}$

Komoltsev & AK, PRL128 (2022)

 $\partial^2_{\mu}\Omega(\mu) \leq 0 \quad \Rightarrow \ \partial_{\mu}n(\mu) \geq 0$

Stability

pQCD 6 Baryon density n [fm⁻³] ∽ G pQCD CET 3 2 CET 0 1.5 2.0 2.5 1.0 Baryon chemical potential μ [GeV]

Stability •

6

pQCD

- Stability •
 - $\partial^2_{\mu}\Omega(\mu) \le 0 \quad \Rightarrow \quad \partial_{\mu}n(\mu) \ge 0$
- Baryon density n [fm⁻³] Causality ● $c_s^{-2} = \frac{\mu}{n} \frac{\partial n}{\partial \mu} \ge 1 \quad \Rightarrow \quad \partial_\mu n(\mu) \ge \frac{n}{\mu}$ Consistency \bullet ſ^μQCD $n(\mu) d\mu = p_{QCD} - p_{CET} = \Delta p$ $J_{\mu_{CET}}$ CET

1.0

1.5

2.0

Baryon chemical potential μ [GeV]

6

2.5

pQCD

CET

pQCD

Stability

 $\partial_{\mu}^{2}\Omega(\mu) \leq 0 \quad \Rightarrow \quad \partial_{\mu}n(\mu) \geq 0$

- Causality $c_s^{-2} = \frac{\mu}{n} \frac{\partial n}{\partial \mu} \ge 1 \implies \partial_{\mu} n(\mu) \ge \frac{n}{\mu}$
- Consistency

$$\int_{\mu_{CET}}^{\mu_{QCD}} n(\mu) \ d\mu = p_{QCD} - p_{CET} = \Delta p$$

Stability

 $\partial_{\mu}^{2}\Omega(\mu) \leq 0 \quad \Rightarrow \quad \partial_{\mu}n(\mu) \geq 0$

- Causality $c_s^{-2} = \frac{\mu}{n} \frac{\partial n}{\partial \mu} \ge 1 \implies \partial_{\mu} n(\mu) \ge \frac{n}{\mu}$
- Consistency

```
\int_{\mu_{CET}}^{\mu_{QCD}} n(\mu) \, d\mu = p_{QCD} - p_{CET} = \Delta p
```


Komoltsev & AK, PRL128 (2022)

Stability

 $\partial_{\mu}^{2}\Omega(\mu) \leq 0 \quad \Rightarrow \quad \partial_{\mu}n(\mu) \geq 0$

- Causality $c_s^{-2} = \frac{\mu}{n} \frac{\partial n}{\partial \mu} \ge 1 \implies \partial_{\mu} n(\mu) \ge \frac{n}{\mu}$
- Consistency

 $\int_{\mu_{CET}}^{\mu_{QCD}} n(\mu) \, d\mu = p_{QCD} - p_{CET} = \Delta p$

Mapping to $\epsilon - p$ -plane

Constraints for fixed *n* on $\epsilon - p$ -plane

Komoltsev & AK, PRL128 (2022)

Summary I:

- { n, p, ε } carries more information than $p(\varepsilon)$
- Stability, causality and consistency
- QCD at $n = 40 n_s$ offers a robust constraint down to $n = 2.5 n_s$

How pQCD constrains at low densities:

• Why does QCD at 40n_s constrain the EoS at NS densities:

How pQCD constrains the equation of state at neutron star densities

Komoltsev & AK, PRL128 (2022) 20, 2111.05350

• How QCD affects EoS infrerence

Ab-initio QCD calculations impact the inference of neutron-star equation of state

Gorda, Komoltsev & AK 2204.11877

Implementing pQCD to EoS inference:

 Standard EoS Inference setup where QCD can be turned on/off

Gaussian process similar to Landry & Essick PRD 99 (2019), but for function of n instead of ϵ . Details on demand

 Conservative QCD likelihood function

Use this area to construct a likelihood function

P(QCD | EoS)

QCD likelihood function:

• Uncertainty in pQCD given by renormalization scale variation: $X = \frac{\Lambda}{\mu_q}$

Cacciari & Houdeau, JHEP 09, (2011), Duhr et al. JHEP 122, (2021)

• Bayesian interpretation of scale variation error: scale marginalization, Log-uniform in X

Gorda, Komoltsev & AK 2204.11877

Effect of QCD:

Gorda, Komoltsev & AK 2204.11877

Summary I:

- { n, p, ε } carries more information than $p(\varepsilon)$
- Stability, causality, and consistency
- QCD at $n = 40 n_s$ offers a robust constraint down to $n = 2.5 n_s$

Summary II:

• Results support findings of earlier works with QCD

Annala et al. Phys.Rev.X 12 (2022), Altiparmak, Ecker, Rezzolla 2112.08157, ...

- QCD offers **complementary** info at NS densities.
- QCD softens the EoS at high densities. Quark Matter?

Annala, Gorda, Kurkela, Nättilä, Vuorinen, Nature Phys. 16 (2020)

Discussion:

Complementary systematics. No model uncertainites

no transport models, no stellar models, no extrapolation in proton fraction, no GR ...

• The propagation of pQCD to NS densities the **most conservative possible**, but can include assumptions

How long of a density range can be $c_s^2=1$? How large phase transition is in the cards?

Discussion:

- Complementary systematics. No model uncertainites no transport models, no stellar models, no extrapolation in isospin, no GR ...
- The propagation of pQCD to NS densities the **most conservative possible**, but can include assumptions

How long of a density range can be c_s²=1? How large phase transition is in the cards?

Conclusion:

QCD input should be part of any complete EoS inference setup

Jupyter notebook available on Github: OKomoltsev/QCD-likelihood-function

Comparison with recent work

PT at n_{TOV} +0.2 n_s of $\Delta n = 30 n_s$, followed by c_s^{21} until pQCD at 40 n_s

Somasundaram, Tews, Margueron (2204.14038) perform conservative analysis with QCD input:

- Results broadly consistent with us
- Different:
 - No Bayesian treatment of input
 - Apply QCD input at $n = n_{TOV}$ instead of $n = 10n_s$
- For QCD not to constrain:
 - Extreme value of X = 1-1.3
 - Very extreme behavior immediately after nTOV

c.f. Fujimoto + 2205.03882 for signatures of such PTs

Density-chemical potential posterior

Astro only

Astro with QCD

$$P(\text{EoS} | \text{data}) = \frac{P(\text{EoS})P(\text{data} | \text{EoS})}{P(\text{data})}$$

• Gaussian process between 1-10
$$n_s$$
: $\varphi(n) = -\ln(c_s^{-2}(n) - 1)_{c_s^2}^{0.6}$

$$\rho(n) \sim \mathcal{N}\left(-\ln(\bar{c}_s^{-2}-1), K(n,n')\right), K(n,n') = \eta e^{-(n-n')^2/2l^2}$$

Similar to Landry & Essick PRD 99 (2019), but for function of n instead of ϵ

• Hierarchial model:

 $\bar{c}_{s}^{2} \sim \mathcal{N}(0.5, 0.25^{2}), \ l \sim \mathcal{N}(1.0n_{s}, (0.25n_{s})^{2}), \ \eta \sim \mathcal{N}(1.25, 0.25^{2}).$

• Conditioned to CET at $n \sim 1.1 n_s$

P(QCD | EoS)

1. Scale variation introduces uncertainty:

 $\vec{\beta}_{\text{QCD}}(X) = \{ p_{\text{QCD}}(\mu_H, X), n_{\text{QCD}}(\mu_H, X), \mu_H \}, \quad X = \frac{3\Lambda}{2\mu_H}$

2. Scale marginalization: Duhr et al. JHEP 122, (2021) $P(\vec{\beta}_H) = \int d(\ln X) w(\log X) \delta^{(3)}(\vec{\beta}_H - \vec{\beta}_{QCD}(X))$

Log-uniform weight: Cacciari & Houdeau, JHEP 09, (2011)

 $w(\ln X) = \mathbf{1}_{[\ln(1/2), \ln(2)]}(\ln X)$ 3. Compute Δp_{\min} , Δp_{\max} between $\mathbf{10}n_s$ and pQCD for each β_H $P(\text{QCD} | \text{EoS}) = \int d\vec{\beta}_H P(\vec{\beta}_H) \mathbf{1}_{[\Delta p_{\min}, \Delta p_{\max}]}(\Delta p)$

Mass-radius with QCD

Maximal mass stars

Prediction of QCD:

QCD predicts black hole a binary merger product

Consistent with current modelling of the electromagnetic counterpart of GW170817

Neutron star EoS:

Neutron star EoS:

EoS tells us about the phases of matter

From nuclei to nuclear matter

From hadronic matter to quark gluon plasma

EoS tells us about the phases of matter

From hadronic matter to quark matter

Softening as onset of Quark Matter phase Annala, Gorda, Kurkela, Nättilä, Vuorinen, Nature Phys. 16 (2020)

- Is the softening feature there?
- If yes, are cores of neutron stars in QM phase?

Interpolation vs. extrapolation:

Speed of sound

Landry, Essick, Chatziioannou PRD 101 (2020)

Effect of QCD:

Softening caused by QCD, not by interpolation

Softening caused by QCD, not by interpolation

Softening caused by QCD, not by interpolation

