## Hybrid Equations of State for Neutron Stars with Hyperons and Deltas

Rajesh Kumar

Kent State University OH





## Contents

### Hybrid equations of state for neutron stars with hyperons and deltas

A. Clevinger, J. Corkish, K. Aryal, V. Dexheimer<sup>a</sup> Department of Physics, Kent State University, Kent, OH 44242, USA

Eur. Phys. J. A 58 (2022) 5, 96, e-Print: 2205.00559

GW190814 as a massive rapidly rotating neutron star with exotic degrees of freedom

V. Dexheimer, R. O. Gomes, T. Klähn, S. Han, and M. Salinas Phys. Rev. C **103**, 025808 – Published 22 February 2021

## Hybrid equations of state for neutron stars with hyperons and deltas

#### A. Clevinger, J. Corkish, K. Aryal, V. Dexheimer<sup>a</sup>

Department of Physics, Kent State University, Kent, OH 44242, USA

Motivation

- Bulk baryonic matter makes up ~90% of the radii of neutron stars.
- This could all be made of strictly hadronic matter but at high density there may be a phase transition to quark matter.
- At several times saturation density, **baryons begin to overlap** and quark **deconfinement** occurs.
- In my research group's work, we have considered this possibility in our models for neutron star equations of state (EoS).



COMPOSITION OF A TYPICAL NEUTRON STAR

## Chiral Mean Field (CMF)

- Effective relativistic model of QCD that approximates strong force interactions as **exchanges of scalar and vector mesons**.
- Scalar mesons carry attractive part of strong force, while vector mesons carry the repulsive part.
- **Fitted** to reproduce nuclear, astrophysical and lattice QCD data.
- Includes a **deconfinement potential** that allows for hadrons to break down into quark matter at high densities in a **first order phase transition**.
- Reproduces chiral symmetry restoration at high densities.
- This model includes nucleons, leptons, hyperons, deltas and uds quarks.

$$L = L_{Kin} + L_{Int} + L_{Self} + L_{SB} - U,$$

 $M_B^* = g_{B\sigma}\sigma + g_{B\delta}\tau_3\delta + g_{B\zeta}\zeta + M_{0_B} + g_{B\Phi}\Phi^2$  $M_q^* = g_{q\sigma}\sigma + g_{q\delta}\tau_3\delta + g_{q\zeta}\zeta + M_{0_q} + g_{q\Phi}(1-\Phi)$ 

## Chiral Mean Field (CMF)

- In this model, we keep attractive terms fixed to reproduce vacuum masses of hadrons.
- Repulsive (vector) terms are constrained to reproduce isospin-symmetric matter saturation properties.
- We can vary isovector terms and higher order vector terms.

- \* EoS 1 with standard interactions hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.472$  fm<sup>-3</sup>
- \* EoS 2 with standard interactions hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.433$  fm<sup>-3</sup>
- \* EoS 3 with  $\omega \rho$  terms hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.638$  fm<sup>-3</sup>
- \* EoS 4 with  $\omega \rho$  terms hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.561 \text{ fm}^{-3}$

- \* EoS 5 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.688$  fm<sup>-3</sup>
- \* EoS 6 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.629$  fm<sup>-3</sup>
- \* EoS 7 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons, hyperons,  $\Delta$ 's, electrons, and muons hybrid: nucleons, hyperons,  $\Delta$ 's, uds quarks, electrons, and muons with phase transition at  $n_B = 0.689 \text{ fm}^{-3}$
- \* EoS 8 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons,  $\Delta$ 's, and electrons hybrid: nucleons,  $\Delta$ 's, ud quarks, and electrons with phase transition at  $n_B = 0.644$  fm<sup>-3</sup>

#### \* EoS 1 with standard interactions

hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.472$  fm<sup>-3</sup>

\* EoS 2 with standard interactions

hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.433$  fm<sup>-3</sup>

#### \* EoS 3 with $\omega \rho$ terms

hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.638$  fm<sup>-3</sup>

#### \* EoS 4 with $\omega \rho$ terms

hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.561 \text{ fm}^{-3}$ 

#### \* EoS 5 with $\omega \rho$ and $\omega^4$ terms

hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.688$  fm<sup>-3</sup>

#### \* EoS 6 with $\omega \rho$ and $\omega^4$ terms

hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.629 \text{ fm}^{-3}$ 

#### \* EoS 7 with $\omega \rho$ and $\omega^4$ terms

hadronic: nucleons, hyperons,  $\Delta$ 's, electrons, and muons hybrid: nucleons, hyperons,  $\Delta$ 's, uds quarks, electrons, and muons with phase transition at  $n_B = 0.689 \text{ fm}^{-3}$ 

#### \* EoS 8 with $\omega \rho$ and $\omega^4$ terms

hadronic: nucleons,  $\Delta$ 's, and electrons hybrid: nucleons,  $\Delta$ 's, ud quarks, and electrons with phase transition at  $n_B = 0.644$  fm<sup>-3</sup>

- \* EoS 1 with standard interactions hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.472$  fm<sup>-3</sup>
- \* EoS 2 with standard interactions hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.433$  fm<sup>-3</sup>
- \* EoS 3 with  $\omega \rho$  terms hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.638$  fm<sup>-3</sup>
- \* EoS 4 with  $\omega \rho$  terms

hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.561 \text{ fm}^{-3}$ 

- \* EoS 5 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.688 \text{ fm}^{-3}$
- \* EoS 6 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.629$  fm<sup>-3</sup>
- \* EoS 7 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons, hyperons,  $\Delta$ 's, electrons, and muons hybrid: nucleons, hyperons,  $\Delta$ 's, uds quarks, electrons, and muons with phase transition at  $n_B = 0.689$  fm<sup>-3</sup>
- \* EoS 8 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons,  $\Delta$ 's, and electrons hybrid: nucleons,  $\Delta$ 's, ud quarks, and electrons with phase transition at  $n_B = 0.644$  fm<sup>-3</sup>

- \* EoS 1 with standard interactions hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.472$  fm<sup>-3</sup>
- \* EoS 2 with standard interactions hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.433$  fm<sup>-3</sup>
- \* EoS 3 with  $\omega \rho$  terms hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.638$  fm<sup>-3</sup>
- \* EoS 4 with  $\omega \rho$  terms hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.561 \text{ fm}^{-3}$

- \* EoS 5 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.688$  fm<sup>-3</sup>
- \* EoS 6 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.629 \text{ fm}^{-3}$
- \* EoS 7 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons, hyperons,  $\Delta$ 's, electrons, and muons hybrid: nucleons, hyperons,  $\Delta$ 's, uds quarks, electrons, and muons with phase transition at  $n_B = 0.689$  fm<sup>-3</sup>
- \* EoS 8 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons,  $\Delta$ 's, and electrons hybrid: nucleons,  $\Delta$ 's, ud quarks, and electrons with phase transition at  $n_B = 0.644$  fm<sup>-3</sup>

- \* EoS 1 with standard interactions hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.472$  fm<sup>-3</sup>
- \* EoS 2 with standard interactions hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.433$  fm<sup>-3</sup>
- \* EoS 3 with  $\omega \rho$  terms hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.638$  fm<sup>-3</sup>
- \* EoS 4 with  $\omega \rho$  terms hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.561 \text{ fm}^{-3}$

- \* EoS 5 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons, hyperons, electrons, and muons hybrid: nucleons, hyperons, uds quarks, electrons, and muons with phase transition at  $n_B = 0.688$  fm<sup>-3</sup>
- \* EoS 6 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons and electrons hybrid: nucleons, ud quarks, and electrons with phase transition at  $n_B = 0.629 \text{ fm}^{-3}$
- \* EoS 7 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons, hyperons,  $\Delta$ 's, electrons, and muons hybrid: nucleons, hyperons,  $\Delta$ 's, uds quarks, electrons, and muons with phase transition at  $n_B = 0.689$  fm<sup>-3</sup>
- \* EoS 8 with  $\omega \rho$  and  $\omega^4$  terms hadronic: nucleons,  $\Delta$ 's, and electrons hybrid: nucleons,  $\Delta$ 's, ud quarks, and electrons with phase transition at  $n_B = 0.644$  fm<sup>-3</sup>

## Nuclear Properties

#### For isospin symmetric matter:

- Saturation density,  $n_B = 0.15 \text{ fm}^{-3}$
- Binding energy per nucleon, B = -16 MeV
- Compressibility, K = 300 MeV
- Symmetry Energy,  $E_{sym} = 30 \text{ MeV}$

Hyperon potentials for symmetric matter at saturation are:

- $U_{\Lambda}$  = -28 or -27 MeV ( $\omega^4$ )
- $U_{\Sigma}$  = 5 or 6 MeV ( $\omega^4$ )
- $U_{\Xi}$  = -18 or -17 MeV ( $\omega^4$ )
- $U_{\Delta} = 64 \text{ MeV} (\omega^4)$
- The symmetry energy slope, L = 88 MeV or 75 MeV when ωρ interactions are included.

## **Population Plots**

- 1D tables
- Charge Neutral
- Zero Temperature
- In chemical equilibrium

# Hadronic



14

## Hybrid



15

## Results

- $\omega \rho$  reduces the cost of producing isospin asymmetry thus lowering the L = 75 MeV.
- This cause hyperons to appear in a different order.
- $\omega \rho$  softens EoS at lower density, while  $\omega^4$  stiffens at high density.
- Adding the  $\omega \rho$  and  $\omega^4$  terms **pushed** the phase transition to **higher** densities.
- Absence of hyperons makes the phase transition stronger.
- Strange quarks do not appear in very large quantities due to its large bare mass.

## Effects on Neutron Star Properties

- To consider **macroscopic** properties, we must include the effects of **nuclei**.
- We added a zero-temperature **beta-equilibrated crust** to each EoS from Gulminelli and Raduta.
- We chose these crusts so that the symmetry energy slope does not jump between crust and core.
- Using the TOV equation, we obtained MR curves for each EoS and compared hadronic vs hybrid for each EoS.





## Results

|                       | EoS        | $M_{\rm max}$ | $R \text{ of } M_{\max}$ | $n_{Bc}$ of $M_{max}$ | R of 1.4 $M_{\odot}$ | $	ilde{\Lambda}$ of 1.4 ${ m M}_{\odot}$ |
|-----------------------|------------|---------------|--------------------------|-----------------------|----------------------|------------------------------------------|
|                       |            | $(M_{\odot})$ | $(\mathrm{km})$          | $({\rm fm}^{-3})$     | $(\mathrm{km})$      |                                          |
|                       | 1 hadronic | 2.07          | 11.87                    | 0.916                 | 13.55                | 889                                      |
|                       | 1 hybrid   | 1.96          | 11.11                    | 1.079                 | 13.55                | 889                                      |
|                       | 2 hadronic | 2.13          | 11.95                    | 0.751                 | 13.67                | 904                                      |
|                       | 2 hybrid   | 1.96          | 11.11                    | 1.079                 | 13.67                | 904                                      |
| ωρ                    | 3 hadronic | 2.00          | 11.55                    | 0.964                 | 13.15                | 702                                      |
|                       | 3 hybrid   | 1.99          | 11.20                    | 1.040                 | 13.15                | 702                                      |
|                       | 4 hadronic | 2.05          | 11.59                    | 0.956                 | 13.24                | 739                                      |
|                       | 4 hybrid   | 1.98          | 11.21                    | 1.040                 | 13.24                | 739                                      |
|                       | 5 hadronic | 2.07          | 11.42                    | 0.988                 | 13.18                | 723                                      |
| ωρ,<br>ω <sup>4</sup> | 5 hybrid   | 2.02          | 11.89                    | 0.892                 | 13.18                | 723                                      |
|                       | 6 hadronic | 2.11          | 11.58                    | 0.946                 | 13.27                | 754                                      |
|                       | 6 hybrid   | 2.01          | 11.94                    | 0.892                 | 13.27                | 754                                      |
|                       | 7 hadronic | 2.07          | 11.42                    | 0.988                 | 13.18                | 723                                      |
|                       | 7 hybrid   | 2.02          | 11.90                    | 0.892                 | 13.18                | 723                                      |
|                       | 8 hadronic | 2.09          | 11.58                    | 0.950                 | 13.27                | 754                                      |
|                       | 8 hybrid   | 2.01          | 11.94                    | 0.892                 | 13.27                | 754                                      |

## Results

- EoS's with hyperons produced lower  $M_{max}$ , as well as EoS's with quark deconfinement.
- Regardless of composition,  $\omega \rho$  term decreases stellar radii and tidal deformability, while increasing central density of  $M_{max}$ .
- $\omega^4$  increases the stellar mass and slightly increases stellar radii.
- Most of our EoS's have  $M_{max} \ge 2.0 M_{\odot}$ , which is consistent with observations.
- Hybrid star maximum masses only vary by 0.06  $M_{\odot}$ , but the hybrid branches differ significantly in size.

## **Rotating Neutron Stars**

#### Introduction

- GW190814 reported merger of Black Hole 23.2+1.1-1.0 M<sub>sun</sub> a compact object having mass 2.59+0.08-0.09 M<sub>sun</sub>.
- The companion object lies within the **mass-gap category**.

#### **CMF Model**

- Higher order vector coupling  $\omega^{4}$  and  $\omega^{6}$  .
- Deconfinement potential parameterization.

$$U = (a_o T^4 + a_1 \mu_B^4 + a_2 T^2 \mu_B^2) \Phi^2 + a_3 T_o^4 \ln(1 - 6\Phi^2 + 8\Phi^3 - 3\Phi^4),$$

## **Observations:** Population Plots



V. Dexheimer, R. O. Gomes, T. Klähn, S. Han, and M. Salinas Phys. Rev. C 103, 025808, 2021.

## Observations: Mass of NSs

![](_page_22_Figure_1.jpeg)

V. Dexheimer, R. O. Gomes, T. Klähn, S. Han, and M. Salinas Phys. Rev. C 103, 025808, 2021.

## Results

- A neutron star can have mass ~ 2.5 M<sub>sun</sub> and still can have exotic degrees of freedom.
- For  $\omega^4$  interactions the star can have **considerable** amount of quarks and hyperons.
- For  $\omega^{6}$  interactions the star can have **considerable** amount of hyperons but quarks become **insignificant**.

TABLE II. Gravitational mass M, rotational frequency f, and central stellar density  $n_c$  for the most massive maximally spinning configuration involved.

| EoS model                                           | $M(M_{Sun})$ | f (kHz) | $n_c(n_0)$ |
|-----------------------------------------------------|--------------|---------|------------|
| $\overline{\text{CMF}\omega^4 \neq 0\text{ H+Q *}}$ | 2.474        | 1.38    | 0.88       |
| CMF $\omega^6 \neq 0$ H+Q *                         | 2.455        | 1.39    | 0.89       |

## Conclusions and Future Work

- CMF model offers a way to produce EoS's for astrophysical purposes.
- To **fit** EoS's to particular nuclear and astrophysical properties, an EoS may not be just stiff or soft but **sum** of both.
- Inclusion of exotic degrees of freedom in the CMF can attain  $M_{max} \simeq 20 M_{\odot}$ .
- Higher order of vector couplings can support the heavy  $M_{max} \simeq 2.5 M_{\odot}$  with rotations.
- We are in the process of extending some of the EoS's into 3D tables allowing for finite temperature and out of beta-equilibrium charge fractions.
- We then are working to **run** simulations of **neutron-star mergers** with these EoS's.

## Thanks

## CompOSE

- Compstar Online Supernovae Equations of State
- Provides tables of thermodynamical, compositional, microscopic, and other data for EoS's in a common format.
- Format allows for 1D, 2D and 3D tables for astrophysical applications.
- Has instruction manual for users and providers.
- Our EoS's with and without crust are available on CompOSE.
- https://compose.obspm.fr/

![](_page_27_Figure_0.jpeg)

![](_page_27_Figure_1.jpeg)

Hung Tan, Travis Dore, Veronica Dexheimer, Jacquelyn Noronha-Hostler, and Nicolás Yunes Phys. Rev. D **105**, 023018, 2021

## In-medium mesons in the CMF model

• Analysis of pseudoscalar and scalar D mesons and charmonium decay width in hot magnetized asymmetric nuclear matter.

Rajesh Kumar and Arvind Kumar, Phys. Rev. C 101, 015202 (2020).

Kaons and phi meson mass and decay width in strange hadronic matter.
 *Rajesh Kumar* and Arvind Kumar, <u>Phys. Rev. C 102, 045206 (2020)</u>.

To encourage necessary developments, needed for putting a meaningful constraint on the EOS, the following questions will be considered at the workshop:

- Can we reconcile data from current and previous experiments?

- What other observables could enable the extraction of the EOS?

– Are the nuclear matter EOSs from astrophysics consistent with heavy-ion collision observables in the range rho < 4.0rho\_0?</p>

– Can we find a flexible common parametrization of the EOS, applicable to neutron star calculations and different types of heavy-ion collisions simulations?

– What improvements on the constraints on the EOS can we expect from future heavy-ion experiments?

– What development is necessary for transport codes to address the above questions?