Acknowledgements: R. Bernstein, A. Bodek, B. Casey, V. Cirigliano, J. Erler, A. Kotwal, J. Singh...

Many thanks to numerous collaborators for ideas, photos, slides, text....

BSM Searches at the Intensity Frontier <u>______</u> **Experimental Overview**

Krishna Kumar **University of Massachusetts, Amherst**

EIC BSM Workshop, INT, Seattle February 12, 2024

Broad Context for the Experiments Pursued and the Tools 0

• A closer look at Precision Electroweak Physics

BSM Searches at the Intensity Frontier - Experiment

Outline

Overview of the 4 Classes of Measurements (my classification)

General Framework: Neutral Current Electron-Nucleon scattering

Krishna Kumar, February 12, 2024

- information! Apologies!
- and/or in Fundamental Symmetries in NP
- calling out relevant talks.

I have had to work hard to find resources for this talk; I havent done that in a while! Disclaimers

* I wish I had planned better to spend more time to gather the relevant

* I have taken the point of view that this talk is to give EIC practitioners a better feel for the broader context of BSM searches world-wide; apologies to those who are already close to such initiatives in HEP

* The organizers are to be commended: there is a great program over the next few days. I have not really attempted to call out all the talks; obviously all are relevant! I apologize in advance for not specifically

* There is some overlap with Vincenzo's talk. Sorry for the repetition!

Must be as model-independent as possible

Comprehensive Experimental Strategy

- The High Energy Frontier: Collider Physics
- The Cosmic Frontier: Particle, Nuclear and Gravitational Astrophysics
 - A comprehensive search for clues requires, in addition:
 - The Intensity/Precision Frontier
 - Measurements of Neutrino Properties
 - Direct and Indirect Searches for Dark Matter
 - Violation of Accidental (?) Symmetries
 - Precise Measurements of SM observables

BSM Searches at the Intensity Frontier - Experiment

Measurements push several experimental parameters to the extreme such as intensity, luminosity, volume, radio-purity, resolution, precision, accuracy....

In most cases, observables exploit a symmetry principle

BSM Searches at the Intensity Frontier - Experiment

 $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \cdots$

higher dimensional operators can be systematically classified

Intense beams, ultra-high precision, exotic nuclei, table-top experiments, rare processes.... Tools

Experimental Facilities/Initiatives/Programs

• Electron Beams: Weak charged and neutral current couplings, precision weak mixing angle, dark photons, charged lepton flavor violation → JLab, Mainz MESA, Electron Ion Collider

Universality, muon g-2, EDMs

➡ BNL, PSI, TRIUMF, FNAL, J-PARC

• Neutrons: Lifetime, Asymmetries, EDM ➡ LANSCE, NIST, SNS, other international labs..

• Underground Detectors: Direct Dark Dark Matter, Double-Beta Decay SURF, SNOLAB, LNGS, Jinping, Kamioka...

Nuclei: Precision Weak Decays, Atomic Parity Violation, EDMs •

FRIB, ANL, TAMU, Tabletop...

• Muons, Kaons, Pions: Lifetimes, Precision Branching ratios, Flavor

P5 Report: Relevant Facts

• Highest Priority

- First phase of DUNE and PIP-II 1.2 MW
- **Continued support for medium scale:**
 - 1. NOVA, SBN, T2K
 - 2. DarkSide-20k, LZ, SuperCDMS, XENONnT
 - 3. Belle-II, LHCb, Mu2e
- Next Priority

 - Reach the "neutrino fog" with ultimate G3 dark matter experiment
- Third Priority
 - ASTAE, MSRI, MRI...

BSM Searches at the Intensity Frontier - Experiment

DUNE phase-II, 2 MW upgrade ACE-MIRT, third far detector, upgraded near detector

Create an improved balance between small-, medium- and large-scale projects

2023 NSAC LRP: Relevant Facts

Recommendation 1 **Effective operation of CEBAF and FRIB** • Enhanced research budget Recommendation 2 Ton-scale neutrinoless double-beta decay PROGRAM Recommendation 3 **Expeditious completion of the EIC** Recommendation 4 **Strategic Opportunities** 1. SOLID 2. Smaller scale EDM projects 3. Other neutrino, beta decay and rare decay projects

BSM Searches at the Intensity Frontier - Experiment

Neutrino Properties Summary

Neutrino Oscillation Program 0

- **DUNE:** Definitive measurement of mass ordering in a decade of operation
- Combine DUNE with short baseline and upgraded solar neutrino detectors to probe non-standard (beyond 3 neutrino) scenarios with high sensitivity
- Envisioned upgrades to both long and short baseline program into the 2040's will allow exploration of non-standard neutrino interactions and precision EW physics with neutrino scattering

Coherent Neutrino Scattering

- Large number of experiments pursuing both accelerator and reactor-based measurements over a range of nuclei
- New exploration of few 10's of MeV inelastic neutrino scattering: relevance for axial-current
- Absolute Neutrino Mass

After KATRIN completion (late 2020's), the next frontier is ~ 40 meV with Project-8 (mid-2030s) Complementary efforts (¹⁶³Ho, ultra-low-Q processes) for cross-checks and sterile neutrinos

Ongoing Program

Direct production: LHC

- Direct Detection: LZ, ADMX-G2, DarkSide-20k, XENONnT, SuperCDMS •
- Spin-dependent and Ultra-Heavy: IceCube

Next Phase

- Will require upgrade of SURF to site in the US
- - Part of the newly recommended ASTAE program by the P5 report •
 - Low mass dark matter searches

Support for one G3 experiment capable of completely reaching the "neutrino fog" New Initiative: A portfolio of Agile Projects for Dark Matter

Both hidden sector models and QCD axion models provide benchmarks for new ideas

Rare or Forbidden Processes Overview

Search for EDMs

• Neutrons: nEDM was been terminated but there are ongoing efforts with reduced sensitivity A variety of smaller efforts on atomic and nuclear EDMs will push beyond the Hg-199 limit Search for Neutrinoless Double-Beta Decay Focus over the next decade is on the 3 ton-scale efforts: CUPID, LEGEND and nEXO • R&D is already under way to set up go well beyond the ton-scale to the normal heirarchy • Search for Charge Lepton Flavor Violation One of the most promising avenues to reach 100's of TeV new physics sensitivity Important to explore all the possible flavor combinations for comprehensive search Tests of Flavor Universality Testing flavor universality at ~ 10⁻⁴ level is a complementary probe of BSM physics (PIONEER)

Neutron EDM Summary

Experiment:	Neutron	Measurement	Measurement	90% C.L. (10 ⁻²⁸ <i>e</i> -cm)	Year 90% C.L.
Facility	Source	Cell	Techniques	With 300 Live Days	Data Acquired
Crystal: JPARC	Cold Neutron Beam	Solid	Crystal Diffraction (High Internal \vec{E})	< 100	Development
Beam: ESS	Cold Neutron Beam	Vacuum	Pulsed Beam	< 50	~ 2030
PNPI: ILL	ILL Turbine (UCN)	Vacuum	Ramsey Technique,	Phase 1 < 100	Development
	PNPI/LHe (UCN)		$\vec{E} = 0$ Cell for Magnetometry	< 10	Development
n2EDM: PSI	Solid D ₂ (UCN)	Vacuum	Ramsey Technique, External Cs	< 15	~ 2026
			Magnetometers, Hg Co-Magnetometer		
PanEDM	Superfluid ⁴ He (UCN),	Vacuum	Ramsey Technique, Hg Co-	< 30	~ 2026
ILL/Munich	Solid D ₂ (UCN)		External ³ He and Cs Magnetometers		
TUCAN:	Superfluid ⁴ He (UCN)	Vacuum	Ramsey Technique, Hg Co-	< 20	~ 2027
TRIUMF			Magnetometer, External		
			Cs Magnetometers		
nEDM:	Solid D ₂ (UCN)	Vacuum	Ramsey Technique, Hg Co-	< 30	~ 2026
LANL			Magnetometer, Hg External		
			Magnetometer, OPM		
nEDM@SNS:	Superfluid ⁴ He (UCN)	⁴ He	Cryogenic High Voltage, ³ He	< 20	~ 2029
ORNL			Capture for ω , ³ He Co-Magnetometer	< 3	~ 2031
			with SQUIDs, Dressed Spins,		
			Superconducting Magnetic Shield		

TABLE II: Summary of neutron EDM experiments under development worldwide, with projected 90% C.L. sensitivity (in units of 10^{-28} *e*-cm, and the projected date by which data will be acquired to achieve the projected sensitivity.

To get to 10-28, will need new ideas and upgrades in the 2030s, building on ongoing initiatives

BSM Searches at the Intensity Frontier - Experiment

Town Hall report 2304.03451

EDMs: Future Prospects

The best limit on atomic EDM:

Stable Hg-199 in a vapor cell using laser probing

BSM Searches at the Intensity Frontier - Experiment

Slide courtesy: Jaideep Singh

EDM(¹⁹⁹Hg) < 0.74x10⁻²⁹ *e*-cm (95% C.L.) PRL 116:161601 (2016)

 Planned and ongoing CP-violation search experiments using ¹²⁹Xe atoms, ²²⁵Ra atoms, ¹⁷³YbOH molecules, and ²⁰⁵TlF molecules are poised to match or exceed the new physics sensitivity of the state-of-the-art ¹⁹⁹Hg **EDM experiment** by about an order of magnitude.

• Several **next generation** CP-violation search schemes using pear-shaped nuclei inside of molecules are currently being developed and have new physics sensitivities that are **several orders of magnitude** beyond the state-of-the-art ¹⁹⁹Hg EDM experiment.

Experiments: Very Long Half-Lives!

Typical 2 $\nu\beta\beta$ half-life is very long: second-order weak process

Atomic mass affected by nuclear pairing term: even A nuclei occupy 2 parabolas, even-even below odd-odd

 $rac{1}{T_{1}^{0
u}} {=} G^{2
u}(Q,Z) {\left| M^{2
u}
ight|^2}$

Choose nuclei where single beta decay forbidden

Candidate	Q (MeV)	Abund. (%)	but double-beta decay is possible Candidate nuclei with Q>2 MeV
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187	Double-beta decay:
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8	a second-order process only
⁸² Se→ ⁸² Kr	2.995	9.2	detectable if first order beta decay
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8	$ \begin{bmatrix} 9 \\ 136 \\ -8 \\ 53 \end{bmatrix} I \qquad \beta^{-} \qquad \text{is energetically forbidden} \qquad 136 \\ A = 1.26 \qquad (59)$
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6	A=150
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8	
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802	7.5	
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64	$= 3 \qquad \begin{array}{c} 136 \\ 136 \\ 55 \\ 55 \\ 55 \\ 6 \\ 55 \\ 6 \\ 57 \\ 136 \\ 58 \\ 6 \\ 58 \\ 6 \\ 58 \\ 6 \\ 58 \\ 6 \\ 58 \\ 6 \\ 6 \\ 58 \\ 6 \\ 6 \\ 58 \\ 6 \\ 6 \\ 6 \\ 58 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ $
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5	ββ
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9	
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367	5.6	(MeV)

BSM Searches at the Intensity Frontier - Experiment

A potential $0\nu\beta\beta$ half-life will be even longer!

¹³⁶59Pr

Transition Probability $\Gamma^{0
u} = G(Q,Z) |M(A,Z)\eta|^2$ $lpha rac{m}{Q^2}$ $(Q{\sim}m_e)$ Phase Space $G{\sim}G_F^4 g_A^4 m_e^5$ Factor M(A,Z) Nuclear Matrix Element η Particle Physics of the Black Box **PMNS** Matrix For light neutrino exchange All 3 neutrinos will contribute: $\eta \sim m \rightarrow \langle m_{\beta\beta} \rangle = \sum U_{ie}^2 m_i$ $m_{\beta\beta} \sim 1 \text{ eV} \implies T_{1/2} \sim 10^{24} \text{ years}$ $m_{\beta\beta} \sim 0.1 \text{ eV} \implies T_{1/2} \sim 10^{26} \text{ years}$

- These three experim

nEXO: Liquid Xe Time Projection Chamber

LEGEND: High Purity Ge Crystals

BSM Searc'

ynormant

Slide courtesy: Vincenzo Cirigliano

• The emerging ton-scale program consists of three experiments using three different isotopes and fielding very different experimental technologies: CUPID (100Mo), LEGEND-1000 (76Ge), and nEXO (136Xe).

nts have undergone a US DOE portfolio review and are ready to start construction

Is lepton flavor conservation exact? No!

- v's have mass! individual lepton flavors are not conserved

Slepton mixing in SUSY

 $BR(\mu \to e\gamma) \sim 10^{-15}$

Major experimental searches are ongoing; mass reach depends on flux and sensitivity of technique

 $\mu \text{ or } \tau \rightarrow e\gamma, e^+e^-e, K_L \rightarrow \mu e, \dots$

Need very high fluxes for required statistical reach

New high intensity kaon & muon beams and high luminosity e+e- colliders all over the world

BSM Searches at the Intensity Frontier - Experiment

CLFV Initiatives

• $\mu^+ \rightarrow e^+ \gamma (PSI)$

- MEG II, finished first run

- BR $(\mu^+ \to e^+ \gamma) < 3.1 \times 10^{-13}$ @ 90% CL
- expect $\approx 4.2 \times 10^{-14}$ after a few years

• $\mu^+ \rightarrow 3e$ (PSI)

- Mu3e experiment (*Hesketh et al., 2204.00001*) - SES of 2×10^{-15}

• $\mu^- N \rightarrow e^- N$ (FNAL, J-PARC)

- Mu2e, COMET (both $\approx (6-8) \times 10^{-17}$ @ 90% CL around end of decade

Slide courtesy: Bob Bernstein

<u></u>

τ processes also suppressed in Standard Model but less:

²ham, hep-ph/9810484

<u>Good News:</u> Beyond SM rates can be orders of magnitude larger than in associated muon decays

Bad News: τ's hard to produce: ~10¹⁰ τ/yr vs >10¹¹ μ/sec in upcoming muon experiments

• Rough analogy to neutrinos: muon CLFV is " θ_{12} "; anything involving the τ is in the θ_{13} or θ_{23} sector

Colliders can also probe CLFV-violating Higgs decays

Mu2e at FNAL Overview

25m of solenoids designed to maximize captured muons and remove backgrounds (10¹⁰ stopped μ /sec)

Protons enter here, hit target, make pions

Curved transport solenoid provides sign and momentum selection and avoids line of sight from production target to detector

High momentum Backgrounds exit out the front Graded solenoid directs low momentum particles into transport solenoid

"Hollow" tracker has low acceptance for SM decays and high acceptance for signal

BSM Searches at the Intensity Frontier - Experiment

Slide courtesy: Brendan Casey

Graded solenoid directs electrons to the detector

Slide courtesy: Brendan Casey

Data on tape

NA62

Data on tape

COMET Phase-1 Solenoid in place. **Engineering run complete**

Protons NUMBER Target

PIONS

Pion Capture Section

A section to capture pions with a large solid angle under a high solenoidal magnetic field by superconducting maget

COMET Phase-I

The race is on!

$$\begin{array}{c} \textbf{CLEFV accross Energy Sca} \\ \textbf{o} \ \textbf{o} \$$

les

Krishna Kumar, February 12, 2024

$$\begin{array}{c} \textbf{CLEFV accross Energy Sca} \\ \textbf{o} \quad \textbf{Decays of } \mu, \textbf{T} (and mesons) & \textbf{Ec} \\ \textbf{w} \\ \mu \rightarrow e\gamma, \ \mu \rightarrow e\overline{c}e, \ \mu(A,Z) \rightarrow e(A,Z) \quad M_{\mu} - \overline{M}_{\mu} \quad \mu \rightarrow ea \\ \tau \rightarrow \ell\gamma, \ \tau \rightarrow \ell_{\alpha}\overline{\ell}_{\beta}\ell_{\beta}, \ \tau \rightarrow \ell Y \quad Y = P, S, V, P\overline{P}, \ldots \end{array}$$

ales

can compete for tau appearance not muon appearance

Even a decade from now, the EIC can compete in the first-to-third generation searches EIC e-t Conversion Search $e^- + p \to \tau^- + X$

nucl. frag. jet(s)

Topology: neutral current DIS event; except that the electron is replaced by tau lepton

• If mixed in with hadron remnants, tau is boosted If forward along incident electron, the tau is isolated Potential for clean identification with high efficiency: - Topology: triggering and background rejection - Displaced vertex: can we aim for ZERO background?

Is it possible to have greater than 10% efficiency with negligible background in a 100 fb⁻¹ data sample?

HERA searches had ~ 2.5% efficiency but EIC detector capabilities and improved understanding of jet shapes should allow for significant improvement

Once the work is done, likely trivial to also do $e^- \rightarrow \tau^+$: **Complementary Lepton Number Violation Search?**

Tau Decay Modes and Branching Ratios

85.24 (0.06)%

17.39 (0.04)%

10.82 (0.05)%

25.49 (0.09)%

1.04 (0.07)%

9.31 (0.05)%

4.62 (0.05)%

3.24%

1.28%

- 1-prong $- \mu^- \bar{\nu}_{\mu} \nu_{\tau}$ $- e^- \bar{\nu}_{\rho} \nu_{\tau}$ 17.82 (0.04)% $-\pi^{-}\nu_{\tau}$ $- \pi^{-}\pi^{0}\nu_{\tau}$ - $\pi^{-}2\pi^{0}\nu_{\tau}$ 9.26 (0.10)% - $\pi^{-3}\pi^{0}\nu_{\tau}$ - others (kaon, etc) 14.55 (0.06)% - 3-prong - $\pi^-\pi^+\pi^-\nu_{\tau}$ $- \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau}$ - others (kaon, etc)
- others

0.21%

Precision Electroweak Physics

For electroweak interactions, 3 input parameters needed:

- 1. electron g-2 anomaly 2. The muon lifetime
- 3. The Z line shape

$$\alpha_{QED} \ G_F \ M_Z$$

 $\sin^2 \theta_W \equiv 1 - m_W^2 / m_Z^2$

 $\sin^2 \theta_W^{eff} \equiv (1 - g_{\mu\mu Z})/4$

 $\sin^2 \theta_W(M_Z)_{\overline{MS}} = \sin^2 \theta_W^{eff} - 0.00028$

 $\sin^2 \theta_W(\mu)_{\overline{MS}} \equiv e^2(\mu)_{\overline{MS}}/g^2(\mu)_{\overline{MS}}$ theoretically motivated; but not physical

Important note for experimentalists: do not worry too much about the exact definition of $\sin^2 \theta_W$. When designing experiments, all that matters is the projected uncertainty; the actual value does not matter. When the experiment is fully designed, then work with theorists to extract $\sin^2 \theta_W(\mu)_{\overline{MS}}$ and properly account for radiative corrections.

BSM Searches at the Intensity Frontier - Experiment

4th and 5th best measured parameters: M_W and $sin^2\theta_W$

Muon decay Z production

simple definition; disfavored due to heavy mt

good at Z-pole; nasty counterterms at other scales

) Precision Relations The Electroweak Theory and Measurements at 1-Loop

 $(\Delta r)^{\text{expt}} = 1 - \left| \frac{\pi \alpha}{\sqrt{2}G_F m_W^2 (1 - m_W^2 / m_Z^2)} \right| = 0.0355(7)$ $(\Delta r)^{\text{SM}} = 0.0366(3) + 3.4 \times 10^{-3} \ln \left[\frac{m_H}{126} \text{ GeV} \right]$ mt, as uncertainty **PDG 2022**

 $(\Delta \hat{r})^{\exp t} = 1 - \left| 2\sqrt{2\pi\alpha} / \{G_F m_Z^2 \sin^2 2\theta_W(m_Z)_{\overline{\text{MS}}}\} \right| = 0.0595(4)$ $(\Delta \hat{r})^{\text{SM}} = 0.0597(1) + 1.4 \times 10^{-3} \ln \left[\frac{m_H}{126} \text{ GeV} \right]$

$$(\Delta r_{\overline{\text{MS}}})^{\text{expt}} = 1 - \left[\frac{\pi \alpha}{\sqrt{2}G_F m_W^2 \sin^2 \theta_W (m_Z)_{\overline{\text{MS}}}} \right] = (\Delta r_{\overline{\text{MS}}})^{\text{SM}} = 0.0692(1) + 6.5 \times 10^{-4} \ln \left[\frac{m_H}{126} \right] \text{G}$$

BSM Searches at the Intensity Frontier - Experiment

Heroic efforts of phenomenologists and experimentalists!

 $\frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_W^2} \qquad e^2 = 4\pi\alpha \qquad \sin^2\theta_W \approx \left(\frac{e}{a}\right)^2 \approx 1 - \left(\frac{M_W}{M_Z}\right)^2$

theory $m_W = 80.360(6) \text{ GeV}$ expt. $m_W = 80.377(12)$ GeV

theory $\sin^2 \theta_W(m_Z)_{\overline{MS}} = 0.23122(4)$ expt. $\sin^2 \theta_W(m_Z)_{\overline{MS}} = 0.23116(13)$

0.0694(3)(5)

leV

 $m_H = 91^{+18}_{-16}$ GeV

Ultra-Precise Weak Mixing Angle

Make a "cut" on measurements with uncertainty ~ 0.0003X or better

CMS is getting ready to release their 13 TeV data

Expected uncertainty: 0.00024

This would be an extraordinary achievement!

Special thanks to Arie Bodek

Ultimate sensitivity at LHC

There are plans to improve on the above by a factor of 2, but only after the HL-LHC upgrade

• Window for MOLLER and P2 to contribute!

Combined would be 0.00020, but must achieve the final result by 2030...

Must try to get to design goals!

BSM Searches at the Intensity Frontier - Experiment

Exp.	$\sin^2 \theta_{eff}^{lept}$	Ref.	
$^{\rm P+SLD:}A^B_{FB}$	0.23221 ± 0.00029		b-quarks
$SLD:A_i$	$0.23098 {\pm} 0.00026$		light-quar
Tevatron	$0.23148 {\pm} 0.00033$	PRD 2016	light-quar
LAS 8 TeV	$0.23140{\pm}0.00036$	unpublished	light-quar
20.2 fb^{-1}	ATL-CONF-2018-037		$\ell^+\ell^-$

theory $\sin^2 \theta_W(m_Z)_{\overline{\text{MS}}} = 0.23122(4)$

expt. $\sin^2 \theta_W(m_Z)_{\overline{MS}} = 0.23116(13)$

Thumb Rule: Weak mixing angle must be measured to sub-0.5% precision Overview of Past/Ongoing WNC Measurements

Atomic Parity Violation: Cs-133 future measurements and theory challenging Neutrino Deep Inelastic Scattering: NuTeV future measurements and theory challenging PV Møller Scattering: E158 at SLAC statistics limited, theory robust next generation: MOLLER (factor of 5 better) **PV elastic e-p scattering: Qweak** theory robust at low beam energy next generation: P2 (factor of 3 better) **PV Deep Inelastic Scattering: PVDIS** theory robust for ²H in valence quark region factor of 5 improvement: **SOLID**

BSM Searches at the Intensity Frontier - Experiment

Electroweak Radiative Corrections causes weak mixing angle to "run"

Krishna Kumar, February 12, 2024

MOLLER and P2 relevant for global EW fits, others are mainly BSM probes Other WNC Measurements

Physics sensitivity from contact interaction (LEP2 convention, g²= 4pi)

	precision	$\Delta \sin^2 \overline{\theta}_{W}(0)$	Λ_{new}
SoLID	0.6 %	0.00057	
PVES ¹² C	0.3 %	0.0007	4

Where does the EIC fit in?

An entirely unexplored Q2 regime, close to the Z pole i.e it is not just weak-electromagnetic interference

It is best to just fold it into a SMEFT analysis and explore where the EIC helps with "flat" directions in coupling space

T	he W M	lass	PDG
Specia	al thanks: Ashutosh	Kotwal	Then the
	CDF II (2022)		80,4
	ATLAS (2018)		80,3
	LHCb (2022)	80,3	
	Tev. avg. (2022)		
	Tev. + LEP avg. (2		
),(600	79,800	ا 80,0
			W boson mass

Comments

- CDF ATLAS: 63 +/- 21 MeV
- CDF has done more work since release; stick by their number
- Pdf issues much more challenging for LHC: low x pdfs vs high x at CDF

BSM Searches at the Intensity Frontier - Experiment

• My take

- No point worrying about this until CDF and LHC resolve their differences
- If CDF result holds, EVERYTHING in the EW sector becomes even more important!
- If things resolve to SM, semi-leptonic WNC measurements can still look for BSM physics

 $\frac{1}{2m_N} W^i_{\mu\nu} = -\frac{g_{\mu\nu}}{m_N} F^i_1 + \frac{p_\mu p_\nu}{m_N (p \cdot q)} F^i_2$ $+ i rac{\epsilon_{\mu
ulphaeta}}{2(p\cdot q)} \left[rac{p^{lpha}q^{eta}}{m_{\scriptscriptstyle N}} F_3^i + 2q^{lpha}S^{eta} g_1^i -
ight.$ $-\frac{p_{\mu}S_{\nu}+S_{\mu}p_{\nu}}{2(n\cdot q)}g_{3}^{i}+\frac{S\cdot q}{(n\cdot q)^{2}}p_{\mu}p_{\nu}$

> similar expressions for the proton $u \leftrightarrow d$ neutron: $g_1^{W^-} = (\Delta u + \Delta \bar{d} + \Delta \bar{s} + \Delta c)$ $g_1^{W^+} = (\Delta \bar{u} + \Delta d + \Delta s + \Delta \bar{c})$ $g_5^{W^+} = (\Delta \bar{u} - \Delta d - \Delta s + \Delta \bar{c})$ $q_5^{W^-} = (-\Delta u + \Delta \bar{d} + \Delta \bar{s} - \Delta c)$ Could begin to access this after 1 full year of running

BSM Searches at the Intensity Frontier - Experiment

High Energy e-p scattering

 $e \rightarrow p, D, ^{3}He$

Ji, Vogelsang, Blümlein, ... Anselmino, Efremov & Leader, Phys. Rep. 261 (1995)

$$-4xp^{\alpha}S^{\beta}g_2^i$$

$$g_4^i + rac{S\cdot q}{p\cdot q} g_{\mu
u} g_8^i$$

 $\int_{0}^{1} dx [g_{5}^{W^{-},n} - g_{5}^{W^{-},p}] = g_{A} \left(1 - \frac{2\alpha_{s}}{3\pi}\right)$

new sum rules

Similar expressions for neutral current structure functions

proton

 $F_1^{\gamma Z} \propto u + d + s$ $F_3^{\gamma Z} \propto 2u_v + d_v$ $g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$ $g_5^{\gamma Z} \propto 2\Delta u_v + \Delta d_v$

deuteron $F_1^{\gamma Z} \propto u + d + 2s$ $F_3^{\gamma Z} \propto u_v + d_v$ $g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$ $g_5^{\gamma Z} \propto \Delta u_v + \Delta d_v$

High luminosity: precision measurements of PV observables

PV Asymmetries at the EIC

EIC neutral current event kinematics very clean: can very cleanly separate y-independent and y-dependent pieces and study Q² evolution

unpolarized electron, polarized hadron

Electron Asymmetries are sensitive to the weak mixing angle

- Deuteron is very clean but is a large data set going to be even part of the program
- careful look at both weak-electromagnetic interference and pure Z exchange)
- **Over the next few years, QED and QCD radiative corrections require a careful look**
- **Hadron Asymmetries**
- Access to entirely new set of structure functions
- Can contribute to flavor separation of polarized pdfs

BSM Searches at the Intensity Frontier - Experiment

•

 $e^{-1H,^{2}H,^{3}He}$

polarized electron, unpolarized hadron

proton

 $F_3^{\gamma Z} \propto 2u_v + d_v$

deuteron

 $F_1^{\gamma Z} \propto u + d + 2s$ $F_3^{\gamma Z} \propto u_v + d_v$ $g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$ $g_5^{\gamma Z} \propto \Delta u_v + \Delta d_v$

Must control pdf uncertainties well enough to use proton events (the main data sample at EIC)

Studies are required to use both low Q² (well-understood) and high Q² (super-clean, but requires a

SMEFT Perspective Symmetry Violation with Leptons

Violation of Lepton Number ★ Neutrinoless Double-Beta Decay Violation of Time Reversal Symmetry 100s of TeV * Non-zero Electric Dipole Moment of the Electron Violation of Charged Lepton Flavor 100s of TeV * muon-to-electron conversion, tau appearance at the EIC... Flavor changing neutral currents 100s of TeV * Rare pion and kaon decays Flavor conserving neutral currents (PVES) **10s of TeV** * muon-to-electron conversion, tau appearance at the EIC...

$$\frac{1}{\Lambda} \frac{\mathcal{L}_5}{\mathbf{10^{15} GeV}}$$

 $\frac{1}{\Lambda^5}\mathcal{L}_9$ multi-TeV

Neutral and Charged Current Structure Functions

- **Unpolarized and Polarized pdfs**
- Weak Mixing Angle: both proton and deuteron •
 - **Charged current measurements complementary to precision weak decays**

Charged Lepton Flavor Violation

- Tau appearance: strive for zero background
- **Complementary lepton number search**

Complementary Topics

- Inclusive and semi-inclusive single spin asymmetries •
- **Axion-like particle searches** 0
- **Global fitting** 0

0

0

•

New Topics...

BSM Searches at the Intensity Frontier - Experiment

EIC Topics

Complementary probe of BSM 6-D operators: address flat directions in global SMEFT analysis

Exciting to learn about recent progress, new ideas and the full capabilities of the ePIC detector Summary

Intensity Frontier 0

- **Electron Ion Collider**
 - space must be thoroughly explored for potential new BSM sensitivity
- Ideas have percolated for more than a decade
- **Sharpen the Science Case**
- It is now time to push the ideas that have survived "on mass-shell"
- Workshop Outcome? (Perspective from me and Vincenzo)
 - theory and for the detector? Perhaps at a followup workshop in N years....
 - A white paper? Now? Later?

BSM Searches at the Intensity Frontier - Experiment

Absent direct particle discovery at the LHC, indirect BSM searches become central. In fact one could argue that certainly LHCb and even ATLAS and CMS are now Intensity Frontier experiments!

Any new machine accessing new territory in intensity, luminosity, spin and center of mass energy

Continue to explore new ideas while keeping a close eye on the rest of the BSM landscape

What steps do we need in order to work towards prioritized list of topics to be pursued both for

