Kinetic energy spectrum in compressible turbulence

Alexei Kritsuk

University of California, San Diego

- Reference Astrophysical motivation
- Basic questions:
 - Is there a Kolmogorov-like inertial range in compressible turbulence?
 - What is the right statistical proxy to describe energy transfer?
- Introduction:
 - Energy transfer proxy in K41
 - Equations and ideal invariants for isothermal fluids
- Two-point energy correlation/structure functions for homogeneous turbulence
- Illustrative examples from DNS of supersonic turbulence
- ISS Summary

(Loading movie...)

Compressible turbulence:
$$Re \sim 10^8$$
, $M_t \sim 4$, and $\frac{\langle \varepsilon_d \rangle}{\langle \varepsilon_s \rangle} < 1$

$$S_3^{\parallel}(r) \equiv \langle (\delta \boldsymbol{u}_{\parallel}(r))^3 \rangle = -\frac{4}{5} \varepsilon r \text{ for } \eta \ll r \ll L$$

- Normalized 3rd-order longitudinal velocity structure function [lyer et al. (2017)]
- 8192³ DNS of isotropic turbulence at $R_{\lambda} = 1300$
- A primitive version of the 4/5 law: $\langle \delta u_{\parallel} (\delta u)^2 \rangle = -\frac{4}{3} \varepsilon r$ [Antonia et al. (1997)]

Compressible Navier–Stokes system

$$\partial_t \rho + \nabla \cdot (\rho \, \boldsymbol{u}) = 0, \tag{1}$$

$$\partial_t(\rho \boldsymbol{u}) + \nabla \cdot (\rho \boldsymbol{u} \otimes \boldsymbol{u}) = -\nabla p + \boldsymbol{d} + \boldsymbol{f}, \qquad (2)$$

- Viscous terms based on Stokes formula $d \equiv \mu \nabla^2 u + (\mu/3) \nabla \theta$, where $\theta \equiv \nabla \cdot u$
- Random forcing $f(x, t) = \rho a(\lambda_f, \varepsilon)$
- Large-scale solenoidal or mixed external acceleration with finite correlation time
- Energy injection rate ε ; injection scale λ_f and wave number $k_f = 2\pi/\lambda_f$
- Isothermal equation of state: $p(\rho) = c_s^2 \rho$, sound speed $c_s = const$
- Total energy is an inviscid invariant of the isothermal system

$$E = \left\langle \rho \, \boldsymbol{u}^2 / 2 + \rho \, \boldsymbol{e} \right\rangle \tag{3}$$

- In the isothermal case, $e = c_s^2 \ln(\rho/\rho_0)$ is the Gibbs free energy per unit mass
- Energy equation: $\partial_t E = \langle \boldsymbol{u} \cdot \boldsymbol{f} \rangle + \langle \boldsymbol{u} \cdot \boldsymbol{d} \rangle$

Kinetic energy correlator: Available options

Incompressible fluids

Energy invariant is quadratic: $E = \langle u^2 \rangle / 2$

 \Rightarrow unique point-split version: $E(\mathbf{r}) = \langle \mathbf{u} \cdot \mathbf{u}' \rangle / 2$, where $\mathbf{u} \equiv \mathbf{u}(\mathbf{x}, t)$, $\mathbf{u}' \equiv \mathbf{u}(\mathbf{x} + \mathbf{r}, t)$, and homogeneity is assumed

Compressible fluids

Kinetic energy is not quadratic: $K = \langle \rho \boldsymbol{u} \cdot \boldsymbol{u} \rangle / 2$

 \Rightarrow no unique point-split version

Split options available in the literature:

1. $K_1(\mathbf{r}) = \langle \mathbf{w} \cdot \mathbf{w}' \rangle / 2$, where $\mathbf{w} \equiv \rho^{1/2} \mathbf{u}$ [Kida & Orszag (1990)]

- 2. $K_2(\mathbf{r}) = \langle \mathbf{j} \cdot \mathbf{u}' + \mathbf{j}' \cdot \mathbf{u} \rangle / 4$, where $\mathbf{j} \equiv \rho \mathbf{u}$ [Graham et al. (2010)]
- 3. $K_3(\mathbf{r}) = \langle \mathbf{j} \cdot \mathbf{u}' + \mathbf{j}' \cdot \mathbf{u} \rangle / 4 \langle \rho u'^2 + \rho' u^2 \rangle / 8$ [Ferrand et al. (2020)]

Other split options:

- 4. $K_4(\mathbf{r}) = \langle \mathbf{j} \cdot \mathbf{j}' V' + \mathbf{j}' \cdot \mathbf{j} V \rangle / 4 \langle V \mathbf{j}'^2 + V' \mathbf{j}^2 \rangle / 8$, where $V \equiv 1/\rho$
- 5. $K_5(\mathbf{r}) = aK_2 + bK_3 + cK_4$, where a + b + c = 1

Gibbs free energy is not quadratic: $U = \langle \rho e \rangle$ where $e \equiv c_s^2 \ln(\rho / \rho_0)$,

but the point-split version is still unique (up to a const. factor): $U(\mathbf{r}) = \langle \rho e' + \rho' e \rangle / 2$

Take the product $\langle abc \rangle$

 $w_1 \langle a'bc \rangle + w_2 \langle ab'c \rangle + w_3 \langle abc' \rangle + \dots$, where w_i are weights and symmetric counterparts (e.g., $\langle ab'c' \rangle$, etc.) are dropped for brevity

To avoid discrimination, the weights, generally, should be equal (in absolute value), but perhaps can have different signs.

Example 1. For kinetic energy substitute $a = \rho$, b = c = uKinetic energy $4K_3(r) = w_1 \langle \rho' u \cdot u \rangle + w_2 \langle \rho u' \cdot u \rangle + w_3 \langle \rho u \cdot u' \rangle$ With $w_1 = -1$, $w_2 = w_3 = 1$ we get (experimentally $\langle \rho' u \cdot u \rangle < 0$): $4K_3(r) = -\langle \rho' u^2 \rangle + 2\langle \mathbf{j} \cdot \mathbf{u}' \rangle$, cf. [Ferrand et al. (2020)]

Example 2. For energy injection substitute $a = \rho$, b = u, c = a, where a is large-scale external acceleration

Kinetic energy injection $4F_3(r) = w_1 \langle \rho' \boldsymbol{u} \cdot \boldsymbol{a} \rangle + w_2 \langle \rho \boldsymbol{u}' \cdot \boldsymbol{a} \rangle + w_3 \langle \rho \boldsymbol{u} \cdot \boldsymbol{a}' \rangle$

With the same weights $w_1 = -1$, $w_2 = w_3 = 1$ we get:

 $4F_3(r) = -\langle \frac{\rho'}{\rho} \boldsymbol{u} \cdot \boldsymbol{f} \rangle + \langle \boldsymbol{f} \cdot \boldsymbol{u}' \rangle + \langle \frac{\rho}{\rho'} \boldsymbol{u} \cdot \boldsymbol{f}' \rangle, \text{ where } \boldsymbol{f} = \rho \boldsymbol{a}, \text{ cf. [Ferrand et al. (2020)]}$

- IF The first two terms cancel each other exactly at $r \ll r_f$
- In numerical experiments, $F_3 \propto r^3$ outside the forcing interval at $r \ll r_f$
- In contrast $F_2 \propto r$ because one of the canceling terms is missing

 $K_1(k)$

 $K_1(k)$ vs. $K_2(k)$

 $K_1(k)$ vs. $K_2(k)$ vs. $K_3(k)$

 $K_0(k)$ vs. $K_1(k)$ vs. $K_2(k)$ vs. $K_3(k)$

 $K_1(k)$ vs. $K_2(k)$ vs. $K_3(k)$

Compensated kinetic energy spectra, $M_{\rm s} = 6$.

 $K_1(k)$

 $K_1(k)$ vs. $K_2(k)$

$K_1(k)$ vs. $K_2(k)$ vs. $K_3(k)$

$K_0(k)$ vs. $K_1(k)$ vs. $K_2(k)$ vs. $K_3(k)$

Energy injection by stochastic forcing

The K_2 formulation yields linear contamination of the inertial range.

Energy injection by stochastic forcing

Contamination in the K_3 formulation is benign as it decays $\propto k^{-3}$ in the inertial range.

Energy injection by stochastic forcing

Clearly, the K_2 and K_4 formulations must be rejected due to contamination of the inertial range.

🖙 Galtier & Banerjee (2011)

$$E_{\text{GB11}}(\boldsymbol{r},t) = \frac{1}{4} \langle \boldsymbol{j} \cdot \boldsymbol{u}' + \boldsymbol{j}' \cdot \boldsymbol{u} \rangle + \frac{1}{2} \langle \rho e' + \rho' e \rangle, \qquad (4)$$

Banerjee & Kritsuk (2017)

$$E_{\rm BK17}(\boldsymbol{r},t) = \frac{1}{4} \langle \boldsymbol{j} \cdot \boldsymbol{u}' + \boldsymbol{j}' \cdot \boldsymbol{u} \rangle + \frac{1}{4} \langle \rho e' + \rho' e \rangle + \frac{1}{2} \langle \rho e \rangle, \qquad (5)$$

🖙 Ferrand et al. (2020)

$$E_{\text{F20}}(\boldsymbol{r},t) = \frac{1}{4} \langle \boldsymbol{j} \cdot \boldsymbol{u}' + \boldsymbol{j}' \cdot \boldsymbol{u} \rangle - \frac{1}{8} \langle \rho \, \boldsymbol{u}'^2 + \rho' \, \boldsymbol{u}^2 \rangle + \frac{1}{4} \langle \boldsymbol{j} \cdot \boldsymbol{u} \rangle + \frac{1}{4} \langle \rho \, \boldsymbol{e}' + \rho' \, \boldsymbol{e} \rangle + \frac{1}{2} \langle \rho \, \boldsymbol{e} \rangle.$$
(6)

Scale-by-scale balance equations for the Ferrand et al. (2020) formulation

$$\partial_t E(\boldsymbol{r}, t) = T_K(\boldsymbol{r}, t) + F(\boldsymbol{r}, t) + D(\boldsymbol{r}, t), \qquad (7)$$

$$\partial_t K(\boldsymbol{r},t) = T_K(\boldsymbol{r},t) - X_{K \to U}(\boldsymbol{r},t) + F(\boldsymbol{r},t) + D(\boldsymbol{r},t), \qquad (8)$$

$$\partial_t U(\mathbf{r}, t) = X_{K \to U}(\mathbf{r}, t).$$
 (9)

21

Scale-by-scale balance in Fourier space

Compressibility correction in K_3 significantly affects kinetic energy transfer across scales.

Incompressible fluids

Energy invariant is quadratic: $E = \langle u^2 \rangle / 2$

 \Rightarrow unique 2nd-order structure function: $S_E(\mathbf{r}) = \langle (\delta \mathbf{u})^2 \rangle / 2$

Compressible fluids

Kinetic energy is not quadratic: $K = \langle \rho \boldsymbol{u} \cdot \boldsymbol{u} \rangle / 2$

 \Rightarrow no unique structure function version

Available options for fluctuations:

1. $S_{K,1}(\mathbf{r}) = \langle (\delta \mathbf{w}^2) \rangle / 2$, where $\mathbf{w} \equiv \rho^{1/2} \mathbf{u}$ [Kida & Orszag (1990)]

2. $S_{K,2}(\mathbf{r}) = \langle \delta \mathbf{j} \cdot \delta \mathbf{u} \rangle / 2$, where $\mathbf{j} \equiv \rho \mathbf{u}$ cf. [Graham et al. (2010)]

- 3. $S_{K,3}(\mathbf{r}) = \langle \overline{\delta} \rho (\delta \mathbf{u})^2 \rangle / 2$, where $\overline{\delta} \rho \equiv \frac{1}{2} (\rho' + \rho)$ [Ferrand et al. (2020)]
- 4. $S_{K,4}(\mathbf{r}) = \langle \delta \rho (\delta \mathbf{u})^2 \rangle / 2 \Leftarrow$ does not comply with incompressible limit

R Avon Kármán-Howarth-Monin equation [Ferrand et al. (2020)]

$$\nabla_{\boldsymbol{r}} \cdot \left\langle \bar{\delta} \rho (\delta \boldsymbol{u})^2 \delta \boldsymbol{u} \right\rangle - \frac{1}{2} \left\langle (\rho \theta' + \rho' \theta) (\delta \boldsymbol{u})^2 \right\rangle = -4\varepsilon$$

23

Solve E_{F20} definition of the energy correlation function meets the following criteria:

- ✔ Incompressible limit
- ✔ Acoustic limit
- **×** Forcing contamination in the inertial range
- **X** Viscous dissipation in the inertial range at $Re \gg 1$
- ✗ Gibbs free energy cascade
- Problem solved?

This research was supported, in part, by the NASA ATP Grant No. 80NSSC22K0724, LRAC *Frontera* allocation AST21004, and ACCESS allocations MCA07S014.

