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Consider a quantum critical point in d space-time dimensions.
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A lot is known about the space of local operators. We will assume
the critical point is a CFTd , then the local operators come in
representations of the conformal group and there are many well
known constraints on correlation functions.
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Let us now consider a point-like impurity in space. In space-time,
this is a line operator.
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In the infrared, the impurity is either completely screened or
becomes a nontrivial conformal impurity. A line defect is said to be
screened if it is the unit line operator. In other words, it is
completely transparent to all bulk correlation functions.
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The subject of line defects has been historically extremely
productive. The Kondo line defect in 2d has led to the
renormalization group [Wilson...], to substantial progress on
integrability [Andrei, Tsvelick-Wiegmann...], and of course to the
development of conformal symmetry at the end points of the RG
flow. The topic of this talk is to explore line defects in higher
dimensions.
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H = Hbulk + Himp
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H = J0
~T · ~S + Hbulk
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We are already familiar with many constructions of line defects in
d > 2:

Wilson/’t Hooft loops.

Twist (symmetry) defects in 2+1 dimensions

SPT defects

Worldlines of anyons in 2+1 dimensions

Pinning Field Defects

· · ·
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We will touch briefly upon several subjects:

RG flows on line defects

Magnetic field defects

Spin impurities

Wilson lines
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Consider a straight line in a d-dimensional CFT. It can be
conformal or non-conformal. A conformal line preserves

SL(2,R)× SO(d − 1)

(we assume the line has no transverse spin). A non-conformal line
preserves

R× SO(d − 1) .

It describes a point-like impurity in space at zero temperature,
with a critical bulk. At long distances, the impurity becomes
critical (and may or may not be non-trivial).
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In this setup there are bulk operators, which are the usual ones,
and defect operators, which are local operators acting on the line
defect. At the defect fixed point (DCFT), operators are classified
by their SL(2,R)× SO(d − 1) quantum numbers. In general, the
space of defect operators has nothing to do with the bulk
operators.
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There is a bulk-defect OPE, where we expand bulk operators in
terms of defect operators

O(x⊥, t) ∼
∑

akx
∆Ôk
−∆O

⊥ Ôk(t) .

This expansion is useful at short distances from the defect.

A particularly important observable comes from the unit operator
on the r.h.s:

〈O(x⊥, t)〉 =
a

x∆O
⊥

.
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An interesting observable for such a line is its “defect entropy.” We
make the line into a Euclidean circle and compute the expectation
value of the circle.

s =

(
1− R

∂

∂R

)
log〈L〉 ≡ log g .

The differential operator
(
1− R ∂

∂R

)
cancels a scheme dependent

linear in R term in log〈L〉 (mass renormalization of the impurity).

Zohar Komargodski Defects, Renormalization Group Flows, Magnets, and Wilson Lines



Therefore s is a scheme-independent intrinsic observable. At the
fixed point of the line defect the value of s is also called log g .
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It is hard to directly measure log g .

For line defects in a 2+1 dimensional topological theory, g is called
the “quantum dimension.” Unlike line defects in topological
theories, it is not necessarily true that g ≥ 1 for general conformal
defects, as we will see.

Zohar Komargodski Defects, Renormalization Group Flows, Magnets, and Wilson Lines



In the event that relevant defect operators exist (∆Ô < 1), we can

deform by M
1−∆Ô
0

∫
dtÔ(t). M0 becomes the physical scale of the

flow.

The defect entropy s =
(
1− R ∂

∂R

)
log〈L〉 becomes a nontrivial

function
s = s(M0R)

We have

s(M0R)→
{

log gUV as R → 0
log gIR as R →∞

The renormalization group flow is implemented by changing the
radius of the circle of the defect worldline.
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One basic result is the following identity (with T̂D the energy
localized at the defect)

R
∂s

∂R
= −R2

∫
dφ1dφ2〈T̂D(φ1)T̂D(φ2)〉c (1− cos(φ1 − φ2)) .

Since 〈T̂D(φ1)T̂D(φ2)〉c ≥ 0 at separated points and since
(1− cos(φ1 − φ2)) ≥ 0 we have that

R
∂s

∂R
≤ 0 ,

and therefore also gUV ≥ gIR . This provides a general
non-perturbative constraint on RG flows on point impurities.
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This generalizes the familiar results of [Affleck-Ludwig,
Friedan-Konechny] to line defects/impurities in higher dimensions.

Note that it follows that g is independent of exactly marginal
defect couplings. We will soon see an example of that.
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This higher-dimensional g theorem should be connected somehow
to entanglement entropy. Our g function is not the same as the
additional entanglement entropy of the vacuum with the impurity.
See (16’) [Casini – Salazar-Landea – Torroba] for the d = 2 case,
where these two quantities coincide. For d > 2 see the recent (22’)
[Casini – Salazar-Landea – Torroba]
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Three ways to construct line defects:

Start from the trivial line defect (gUV = 1). If there is a bulk
operator with ∆ < 1 then we can integrate it on the line:

S = Sbulk + M1−∆O
0

∫
dtO(t)

This is called a “pinning field” defect or an external field
defect. Physically this is an impurity created by applying
external fields in a manner localized in space, independent of
time. Example: applying a magnetic field in a critical magnet,
but only at a few lattice sites.
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Start from a QM model on the line with d states. Couple
some operators acting on these states to the bulk operators:

S = Sbulk + M1−∆O−∆T
0

∫
dtTQM(t)O(t)

Example: a qubit coupled to some bulk CFT.
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Start from a QM model on the line with d states in a
representation of G and consider a bulk CFT with G gauge
symmetry. Couple the two systems by gauging the symmetry
G in QM.

Sbulk +

∫
dtJaQM(t)Aa(t)

In this case there is no free defect coupling constant since the
coefficient of JaQM(t)Aa(t) is fixed. Charged impurities
(Wilson lines) are constructed in this manner.
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A fourth construction: In any 2+1 dimensional quantum
system with a U(1) global symmetry we can construct a
monodromy (pseudo) point defect with flux h ∈ [0, 1). The
infrared limit of this point impurity is an interesting function
of h.
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Dualities may interchange the various descriptions above.
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For the remaining part of this talk we will discuss some examples
and quote results about their properties.
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The Pinning Field in O(N) Models

Consider the O(N) model in 2 ≤ d ≤ 4 with an external localized
magnetic field:

S = SO(N) + h

∫
dtφ1(t)

where SO(N) stands for the critical bulk O(N) model in d

space-time dimensions and φ1 is the first component of ~φ.

This is a relevant perturbation in 2 ≤ d ≤ 4. By the g theorem,
this must flow to a nontrivial (g < 1) infrared DCFT in any
2 ≤ d < 4. Hence, the external magnetic field cannot be
“screened” and cannot disappear.
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The Pinning Field in O(N) Models

This is physically realizable as a localized magnetic field at zero
temperature at a bulk quantum critical point and it can be tested
in quantum critical points and also in Monte Carlo [....Assaad,
Herbut; Parisen Toldin, Assaad, Wessel....]

This infrared DCFT will have no nontrivial relevant operators
whatsoever.
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The Pinning Field in O(N) Models

In principle, understanding the infrared is a strongly coupled
problem.
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The Pinning Field in O(N) Models

Many concrete predictions can be made in the epsilon expansion.
For instance,

log gIR = −N + 8

16
ε+ · · · .

∆(φ̂1) = 1 + ε− ε2 3N2 + 49N + 194

2(N + 8)2
+ · · · ,

Note: the infrared value of h is NOT small in the ε expansion.
However, the ε expansion makes sense since the bulk is weakly
coupled.
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The Pinning Field in O(N) Models

The line operator
e−h

∫
dtφ1(t)

has a smooth large N limit which is manifested if we define a
‘t Hooft coupling λ = h/

√
N. The claim is that in the large N

limit the coupling λ flows to some λ∗ ∼ O(1) in the infrared.

There is a saddle point that determines the DCFT observables, e.g.
the g function:

g = e−NSclassical

For more analytic work from recently see [Rodriguez Gomez,
Popov, Wang, Grau, Lauria, Liendo]
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The Pinning Field in O(N) Models

It should be in principle possible to solve for the whole RG flow of
the ’t Hooft coupling λ in the large N limit.
Here is a sample of results at large N and d = 3:

log g = −0.1536N +O(N0)

∆(φ̂1) = 1.542 +O(N−1)

Note: g is exponentially small at large N.
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The Pinning Field in O(N) Models

Combining all the data we amassed suggests that in d = 3 one
should expect ∆(φ̂1) ∼ 1.5 with rather weak N dependence. This
is the first nontrivial O(N − 1) singlet operator. It is roughly
consistent with Monte Carlo simulations and this along with
several other predictions should be testable.
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Spin Impurities

Another important line defect especially for the O(3) model comes
about as follows: We begin with QM with a spin s representation
of SO(3), so just a QM system with Hilbert space of dimension
2s + 1. We then couple the SO(3) generators Sa to the interacting
bulk:

S = SO(3) − γ
∫

dtSa(t)φa(t) .

This is the line operator

TrsPe
γ
∫
dtSaφa .

It is similar to Wilson lines but it is just a line defect in a magnet.
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Spin Impurities

Physically this is realizable by putting an external atom of spin s in
a quantum anti-ferromagnet at the critical point. While there is a
lot to say about this problem here I will mention one general result.
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Spin Impurities

At s →∞ the spin impurity breaks up into two almost-decoupled
DCFTs, one being the pinning field DCFT we studied above and
the other being just the theory of a free spin s. There is a
systematic 1/s expansion. This statement leads to many
predictions that can be checked in the future.
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Spin Impurities

For additional recent work on this subject see
[Beccaria-Giombi-Tseytlin, Rodriguez Gomez-Russo, Nahum,
Weber-Vojta, Grau]

Zohar Komargodski Defects, Renormalization Group Flows, Magnets, and Wilson Lines



Now we will consider gauge theories in 3 or 4 space-time
dimensions. An important line operator is the Wilson line:

WR = TrR

[
P exp

(
i

∫
γ
dxµAa

µT
a
R

)]
This describes the insertion of a probe particle moving on the
worldline γ.
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In confining theories Wilson lines serve as order parameters for
confinement. Wilson lines are order parameters only if there are no
dynamical fields with the same quantum numbers.

But today we are interested in de-confined theories where Wilson
lines in various representations may settle into conformal line
operators or be screened.
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Take massless scalar QED4

S =

∫
d4x

[
− 1

4e2
F 2 + |Dφ|2 − λ|φ|4

]
+ q

∫
dtAt .

Dφ = ∂φ− iAφ.
We have a classical saddle point

At =
e2q

4πr
, φ = 0 .
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An important computation to do is the measure the dimension of
the defect operator ∆(φ̂†φ̂) =? For small q it has to be close to
the bulk dimension so we expect

∆(φ̂†φ̂) = 2 + #e4q2 + #(e4q2)2 + · · ·

The answer can be found exactly by studying the Green’s function
around the saddle point. One finds:

∆(φ̂†φ̂) = 1 +

√
1− e4q2

4π2
.

Clearly for e2|q|
2π > 1 there is some sickness.
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Intuitively, for e2|q|
2π > 1 the electric field is so strong that it leads

to pair creation and the saddle point is destablized.
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As we approach e2|q|
2π = 1 from below, the defect operator φ̂†φ̂

becomes closer and closer to being marginal. So we must consider
the more general Wilson line

W g
q = P exp

(
i

∫
γ
dt (q

dxµ

dt
Aµ − g φ̂†φ̂)

)
.

q cannot be renormalized, being an integer. But g can be
renormalized.
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It is not too hard to guess what happens when g → −∞; this
drives the scalar field to condense on the defect which
subsequently triggers a condensate in the bulk.
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The annihilation of the two fixed points we have seen above is
reminiscent of how QCD exits the conformal phase and also of the
BKT transition. It leads to Miransky scaling
[Kaplan-Lee-Son-Stephanov].

It is then not surprising that the scalar cloud that forms around the
Wilson loop is actually exponentially large in units of the cutoff
(e.g. the impurity radius). There is therefore dimensional
transmutation!

Also we will see that the cloud completely screens the Wilson line
and the infrared DCFT is entirely trivial.
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The naive guess for the extent of the cloud should be

Λ = µ0e

−2π√
e4q2

4π2 −1

This is the spread of the wave functions of the bosons which are
tachyonic around the original saddle point.

In reality we find a larger extent due to the non-linearities of the
condensate.
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In essence, very similar physics happens also in QED3 with Nf

Dirac fermions (and many other deconfined 2+1 dimensional
critical points). We find that Wilson lines are conformally invariant
in the infrared for q / Nf /2 and screened otherwise. This might
be observable, too.
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Thank You!
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