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Femtoscopy

heavy ion collisions produce hardons in the final state, including light nuclei
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Femtoscopy

heavy ion collisions produce hardons in the final state, including light nuclei

this can be used to study nuclear and hypernuclear interactions
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Correlation functions
Basic formalism

consider a two-hadron system with relative center-of-mass momentum 

let  be the the scattering wavefunction for the system

then the two-particle correlation function can be written as

where  is a normalized Gaussian source function

General idea

in the absence of interactions, 

 therefore encodes properties of the interaction between the particles

high-energy collisions can be analyzed to extract  experimentally

k

ψ(k, r)

C(k) = 4π ∫ dr S(r) ψ(k, r)r2 ∣∣ ∣∣
2

S(r)

C(k) → 1

C(k) ≠ 1

C(k)

Koonin, PLB 70 43 (1977); Pratt, PRL 53 1219 (1984); ...

Mihaylov et al., EPJC 78 394 (2018); Haidenbauer, NPA 981 1 (2019); ...

ratio of correlated vs. uncorrelated pairs► 
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Motivation
high-energy collisions can be used to study low-energy interactions

this provides an interesting source for otherwise difficult to measure observables,

such as scattering involving hyperons

for  systems one can investigate multi-hadron forces

For this program, one should make sure that the three-
nucleon system is properly understood!

A > 2
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Effective Field Theory
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Part I

Pionless Effective Field Theory
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QCD = underlying theory of strong interaction

EFT = effective description in terms of hadrons

degrees of freedom depend on resolution scale

Nuclear theory tower
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Hammer, SK, van Kolck, RMP 92 025004 (2020)

Papenbrock, NPA 852 36 (2011); ...

Nuclear e�ective �eld theories
choose degrees of freedom approriate to energy scale

only restricted by symmetry, ordered by power counting

 

 

 

 

 

 

 

 

 

 

 

degrees of freedom here: nucleons (and/or clusters thereof)

even more effective d.o.f.: rotations, vibrations

most effective theory depends on energy scale and nucleus of interest

Chiral EFT

Halo/Cluster EFT

Pionless 
EFT
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identify relevant symmetries (nonrel. boosts, chiral, gauge, ...)

identify low and high-energy scales ( , )

identify typical momentum scale for given process ( )

pick a convenient regulator (e.g. cutoff) ( )    

amplitude   

combination of low-energy constants: 

encoded low-energy dynamics: 

M
hi

M
lo

Q

E�ective Field Theory 101

 

power counting relates the  to terms in effective Lagrangian

RG invariance means 

Mlo Mhi

Q

Λ

T (Q) ∼ ∑
ν=0

∞

( )Q

Mhi

ν [⋯; ]F (ν) γ (ν)

( , )γ (ν)
Mlo

Mhi

Λ

Mhi

( , ; )F (ν) Q

Mhi

Q

Λ
γ (ν)

ν

T = const. +O (1/Λ)
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Nuclear scales

chiral EFT

Q/M
QCD
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Nuclear scales

chiral EFT

Q/M
QCD

Q/
pionless EFT
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Nuclear scales

chiral EFT

Q/M
QCD

Q/

unitarity limit:

pionless EFT
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SK et al. PRL 118 202501 (2017)

Nuclear scales

chiral EFT

Q/M
QCD

unitarity limit:

pionless EFT

Q/
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Pionless EFT
only contact (zero-range) forces (plus electromagnetism)

closely linked to universality for large scattering lengths

excels at low energies, exact range of validity still an open question

 

 

 

 

 

 

 

 

O(Q/M
hi
)

O(1)

O(Q2/M
hi
)2
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E�ective Lagrangian

Ingredients

nucleon field , doublet in spin and isospin space

dibaryon fields  (spin triplet, isospin singlet) and  (spin singlet, isospin triplet)

coupling between nucleons and dibaryons parametrized by  and 

covariant derivative  includes coupling to photon field

ellipses include three-nucleon forces and further electromagnetism

L = (i + )NN † D0
D

2

2MN

− [ + (i + )] + [ + (i + )]di† σd D0
D

2

4MN

di tA† σt D0
D

2

4MN
tA

+ [ ( N)+ h.c.]+ [ ( N)+ h.c.]+⋯yd di† N TP i
d

yt tA† N TP A
t

N

d t

σd,t yd,t

at leading order, these combine to a single coupling  per spin-isospin channel► C0

dibaryon fields can be intergrated out!► 

( ,D)D0
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Parameter �xing
like any effective field theory, Pionless EFT involves a priori unknown parameters

these "low-energy constants" need to be fixed to input data

Effective range expansion

in contrast to theories like QED, nuclear EFTs are nonperturbative at low energy

this means a certain class of diagrams needs to be resummed to all orders

Pionless EFT in the two-nucleon sector is then constructed to reproduce the

effective range expansion (ERE)

this process is provided by regularization and renormalization► 

running coupling constants are fixed by renormalization conditions► 

input can be from experiment or lattice QCD► 

k cot (k) = − + +O( )δ0
1

a

r

2
k2 k4

 at leading order (LO)► ⇝ ,ad σ
(0)
d,t y

(0)
d,t

 at next-to-leading order (NLO)► ⇝ ,rd σ
(1)
d,t y

(1)
d,t
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Resummation = in�nite iteration

instead of adding a finite number of diagrams, we need to solve an equation

for bound states, this is the Schrödinger equation

for two-nucleon scattering, it is the Lippmann-Schwinger equation
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Christlmeier + Grießhammer, PRC 77 064001 (2008)

tension between measurements at TU Darmstadt

and potential-model calculations

pionless EFT confirmed calculations...

helped identify an issue in the experimental analysis

Two-nucleon applications
Low-energy capture reactions

 capture is very relevant for constraining big-bang nucleosynthesis

pionless calculations provide very precise predictions (< 1% uncertainty)
Chen + Savage, PRC 60 065205 (1999); Rupak, NPA 678 405 (2000)

similarly, proton-proton fusion is very relevant for solar fusion

again, pionless EFT can provide very precise predictions
Kong + Ravndal, PRC 64 044002 (2001); De-Leon + Gazit, 2207.10176 [nucl-th]

 

Deuteron electrodisintegration

np→ dγ

...with proper theory uncertainty estimate!► 
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Mihaylov et al., EPJC 78 394 (2018)

Proton-proton correlation function
in coordinate space, we can implement pionless EFT with a local Gaussian potential

with just this, we can calculate the proton-proton correlation function

excellent agreement with AV18 CATS calculation

range  provides the UV regulator, choose  arbitrarily► R R > 1/mπ

add a repulsive Coulomb potential (more details about this later!)► 

fit strength  to  scattering length  fm► (R)C0 pp = −7.806app
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Lednicky + Lyuboshitz, Sov. J. Nucl. Phys. 35 770 (1982)

Relation to Lednický model
a simple model by Lednický and Lyuboshitz assumes the wavefunction is given

everywhere by its asymptotic form

into this one can insert the Coulomb-modified effective range expansion:

(k, r) ∝ [ (η, kr) + ]ψℓ
1

kr
Cη,ℓ Fℓ

(η, kr) + i (η, kr)Gℓ Fℓ

cot (k) − iδℓ

 and  are the regular and irregular Coulomb wavefunctions► (η, kr)Fℓ (η, kr)Gℓ

the nuclear interaction is encoded in ► cot (k)δℓ

alternative (equivalent) formulations write this in term of the scattering amplitude► 

cot (k) = − + +⋯C 2
η,ℓk

2ℓ+1 δℓ
1

app

rpp

2
k2

truncating this after the first term, the model provides a description in terms of

the scattering length  alone

► 

app

pionless EFT for the -  system recovers this model in a systematic way► p p

for -  correlations, the simple two-body picture may not work!► p d

important to study full three-nucleon dynamics► 
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Lednický model for p-d correlation function
for the proton-deuteron system, the Lednický model does not describe data

this clearly indicates that a description as an effective two-body system is invalid
Singh, SK et al., in preparation
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Neutron-deuteron scattering
the dibaryon formalism is particularly convenient to discuss three-nucleon scattering

specifically, we consider first the scattering amplitude for elastic  scattering

diagrammatically, this is represented as a blob with incoming and outgoing legs:

this diagrammatic equation translates into an integral equation for :

 is the momentum associated with the loop diagram

the kernel function  is given by the one-nucleon exchange diagram

 describes the deuteron propagation (in terms of )

Nd

T (E; k, p)

T (E; k, p) = K(E; k, p) + ∫ dq T (E; k, q) (E; q)K(E; q, p)q2 Dd

q

K(E; k, p)

(E; q)Dd Δd
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More neutron-deuteron scattering
the equation we wrote down applies to the spin quartet channel

in general, the spins can also couple to an overall spin doublet

this leads to a coupled-channel equation structure:

in this case, all three nucleon spins can be aligned (maximum projection)► 

only the deuteron (with spin 1) can appear in the intermediate state► 

in this configuration it is possible to have an   intermediate state

 

► 1
S0 NN
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Note

In the doublet S-wave, there is also a three-nucleon force!
 

naively one would expect this to enter only at higher order

a phenomenon related to the Efimov effect implies a promotion to leading order
Bedaque, Hammer, van Kolck, NPA 676 357 (1999)

we have not shown this explicitly in the diagrammatic equation
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Kong + Ravndal, NPA 665 137 (2000)

Bethe, Phys. Rev. 76 38 (1949)

Inclusion of Coulomb e�ects
the effective Lagrangian includes the coupling of photons to baryons

the leading contribution comes from so-called Coulomb photons

a small photon mass is introduced here to regulate the singularity at 

coordinate-space two-body calculations can be performed with direct inclusion of

the Coulomb potential

this is based on analytically known expressions for Coulomb wavefunctions

pionless EFT recovers the Coulomb-modified effective range expansion

this is included in the covariant derivative not written out explicitly before► 

in addition there is of course a photon kinetic term► 

effectively one recovers a static potential between charged particles► 

transverse photons enter systematically as higher-order corrections► 

q = 0

p. 23



Proton-deuteron scattering
including Coulomb-exchange diagrams yields the equation for -  scattering

dominant contribution is given by the "bubble diagram"

Subtracted phase shifts

one solves the same equation with the pure strong-interaction diagrams omitted

the difference of scattering phase shifts is then well defined

this is closely related to the Coulomb-modified effective range expansion

p d

static Coulomb potential between deuteron and proton► 

with account for deuteron substructure (not just a point particle!)► 
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Full doublet-channel equation structure
in the spin-doublet channel, the possibilty of  intermediate states ( ) leads to a

three-channel equation structure:

this accounts for Coulomb photon exchange in all possible places

pp
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Vanasse, PRC 88 044001 (2014)

Overview of results (selection)
systematic inclusion of three-nucleon Coulomb contributions

isospin-breaking three-nucleon force at next-to-leading order

fully perturbative -  scattering up to N2LO and higher

perturbative expansion of light nuclei around unitarity limit
SK et al., PRL 118 202501 (2016)

electroweak properties: magnetic moments, beta decay
De-Leon et al., arXiv:1902.07677 [nucl-th]; De-Leon + Gazit, 2004.11670 [nucl-th]

...

predictions for proton-deuteron scattering and 3He binding energy
Rupak + Kong, NPA 717 73 (2003); Ando + Birse, JPG 37 105108 (2010)

SK + Hammer, PRC 83 064001 (2011); ...; SK et al. JPG 43 055106 (2016)

► 

lead to good understanding of perturbative vs. nonperturbative Coulomb effects► 

nonperturbative inclusion of Coulomb effects at LO promotes counterterm
Vanasse, SK, et al., PRC 89 064003 (2014)

► 

n d

introduced efficient technique for rigourous perturbation theory► 

found good convergence properties across various partial waves► 

Margaryan et al., PRC 93 054001 (2016)studied  puzzle with N3LO calculation► Ay

details of two-nucleon interaction not important for gross features► 

shown to work well for  binding energies and charge radii► A ≤ 4
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SK et al., JPG 43 055106 (2016)

 

    Coulomb strength 

Perturbative Coulomb e�ects
strength of Coulomb interaction depends on momentum scale

perturbative effect in bound states and scattering beyond very small energies

to leading order, -  and -  scattering for  MeV are degenerate!

 

 

Coulomb-subtracted phase shifts calculated in perturbation theory

uncertainty bands estimated based on EFT expansion parameter

p d n d k ≳ 20

η ∼ 1/k

(with 30% leading-order band not shown explicitly)► 
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Re�ection

So we have a way to calculate proton-deuteron scattering...
 

theory is well understood and relatively simple

pionless EFT captures precisely what is relevant at low energies

to actually evaluate correlation functions we need to work a bit harder

p. 28



Part II

Faddeev formalism
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Two-body scattering setup
consider two particles with masses  and  at positions  and 

assume that the interaction does not depend on absolute particle positions

then we can neglect the overall center-of-mass motion and work only with the

relative coordinate  and reduced mass 

for the two particles scattering off one another, we physically expect that the

wavefunction describing their relative motion is given as a sum of an incoming plane

wave and an outgoing spherical scattered wave:

all physics information is contained in the scattering amplitude 

m1 m2 r1 r2

r = −r1 r2 μ = /( + )m1m2 m1 m2

(r) = + (θ)ψ
(+)
k

eik⋅r fk
eikr

r
(1)

(θ)fk

p. 30



The Lippmann-Schwinger equation
consider the stationary Schrödinger equation:  with 

this alone does not specify a boundary condtion for solutions 

both conditions can be enforced with the ansatz

this is the Lippmann-Schwinger equation for the scattering state 

Notes

the free Green's function  appears in Eq.  with 

 is implied in all equations

 is exactly what appears in the definition of the correlation function!

H|ψð = E|ψð H = + VH0

 here is the free Hamiltonian with ► H0 |kð = |kð = |kðH0 Ek
k
2

2μ

ψ(r) = ïr|ψð

a scattering state should be such that for , ► V → 0 |ψð → |kð

moreover, it should be one that evolved from a free state in the infinite past► 

| ð = |kð+ ( − + iε V | ðψ
(+)
k

Ek H0 )−1 ψ
(+)
k

(2)

| ðψ
(+)
k

(z) = (z−G0 H0)
−1 (2) z = + iεEk

ε→ 0

this implements the second boundary condition via adiabatic switching► 

(r)ψ
(+)
k

p. 31



The Lippmann-Schwinger equation
consider further Eq.  and apply  from the left:

define an operator  via  to write

this is the Lippmann-Schwinger equation for the operator 

Notes

since  is arbitrary in Eq. , we postulate at the operator level: 

 carries an implicit energy dependence via 

alternative form:  (seen to be equivalent by iteration)

we can also write this in a diagrammatic representation:

(2) V

V | ⟩ = V |k⟩ + V ( + iε)V | ⟩ψ
(+)
k

G0 Ek ψ
(+)
k

(3)

T V | ⟩ = T |k⟩ψ
(+)
k

T |k⟩ = V |k⟩ + V ( + iε)T |k⟩G0 Ek (4)

T

k (4) T = V + V TG0

T = T ( + iε)Ek G0

T = V + T VG0

p. 32



Scattering wavefunctions
from the T-matrix we can obtain scattering wavefunctions in momentum space

recall the initial form of the Lippmann-Schwinger equation, Eq. :

with , we obtain directly:

from the first term  it is clear that this is a distribution,

not an ordinary function

the second term, with  implied, contains a smooth part as well as a pole

contribution (from the on-shell point ):

note that  is the half off-shell T-matrix

(2)

| ð = |kð+ ( − + i¸ V | ðψ
(+)
k

Ek H0 )−1 ψ
(+)
k

V | ð = T |kðψ
(+)
k

ïq| ð = ïq|kð+ ïq|( − + i¸ T |kðψ
(+)
k Ek H0 )−1 (5)

ïq|kð = (2π (q− k))3·(3)

¸→ 0

q = k

ïq|( − + i¸ T |kð =Ek H0 )−1 2μT ( ;q,k)Ek

− + i¸k2 q2
(6)

T ( ;q,k)Ek

p. 33



Shortcut
in principle we could Fourier-transform  to evaluate

but we can also stay directly in momentum space

(q)ψ
(+)
k

C(k) = ∫ r S(r)d3 (r)∣
∣ψ

(+)
k

∣
∣
2
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Tabakin + Davies, Phys. Rev. 150 793 (1966)

Source function in momentum space
we can express the correlation function in terms of a source operator:

in configuration space,  is local:

this translates into a non-local representation in momentum space:

C(k) = ï | | ðψ
(+)
k

Ŝ ψ
(+)
k

Ŝ

ïr| | ð = (r− )Ŝ r
′

exp(− / )r2 R2

(4πR)3/2
δ(3) r

′

ïq, ℓ| | , ð = exp(− ( + )) (2Rq )Ŝ q ′ ℓ′ R2 q2 q ′2 iℓ q ′ δℓℓ′

we have written this directly in partial waves► 

this matches how the Lippmann-Schwinger equation is commonly solved► 

 denotes the angular momentum► ℓ

 is a modified spherical Bessel function► (z)iℓ

 is obtained by summing over  (and other discrete quantum numbers)► C(k) ℓ

p. 35



We now want to follow this path

for three particles!

T-matrix  scattering wavefunction  correlation function→ →

p. 36



Faddeev equation for bound states
consider first the Schrödinger equation for a three-nucleon bound state:

we neglect the three-nucleon force and consider only pairwise interactions

at leading order, Pionless EFT in this formulation features S-wave potentials of the

form , with  related to the  discussed earlier

Faddeev decomposition

the full wavefunction can be decomposed into Faddeev components:

antisymmetry reduces the problem to a single component and permutations

Eq.  can then be rewritten as  with a two-body T-matrix 

( + )|Ψ⟩ = E|Ψ⟩H0 ∑
j=1,2,3
i<j

Vij (7)

V (p, ) = (Λ)g(p)g( )p′ C
(0)
0 p′ (0)C0 σ

(0)
d,t

|Ψ⟩ = | ⟩ ≡ (1 + P)|ψ⟩   ,     P = +∑
k=1,2,3

ψk P12P23 P13P23

(7) |ψ⟩ = tP |ψ⟩G0 t
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see for example Hüber et al., PRC 51 1100 (1995)

Faddeev scattering
for nucleon-deuteron scattering, we need to include an inhomogeneous term

this is given as a product of a deuteron wave function  and a third nulceon with

relative momentum : 

a single Faddeev component of the scattering wavefunction is given by

 with  satisfying

the full scattering wavefunction is ultimately obtained via antisymmetrization

Notes

 is kept in Eq.  to indicate the boundary condition

in the literature, one typically sees 

φd

k |ϕ⟩ = | k; s⟩φd

for neutrons, the relative motion is a plane wave (Bessel function)► 

for protons, this involves the regular pure Coulomb wave function► 

 collects all relevant quantum numbers (angular momentum, spin, isospin)► s

|ψ⟩ = |ϕ⟩+ |ϕ⟩T
~

T
~

|ϕ⟩ = tP |ϕ⟩+ tP |ϕ⟩T
~

G0 G0 T
~

(8)

|Ψ⟩ = (1 + P)|ψ⟩ (9)

|ϕ⟩ 8

T = G−1
0 T

~
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Why all this?
 can be directly related to the  from the diagrammatic approach

construction of the full wave function is easier to discuss in the Faddeev formalism

T
~

T
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Why all this?
 can be directly related to the  from the diagrammatic approach

construction of the full wave function is easier to discuss in the Faddeev formalism

T
~

T
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Strategy

1. Solve integral equation to obtain 

this is where the bulk of the dynamics in the -  system is accounted for

uses well established and tested code for elastic scattering

2. Convert  for further processing

this step is straightforward because it just multiplies known functions

the equation for  follows from the generic one for separable interactions

3. Calculate wavefunction  from 

this includes the required antisymmetrization

ensure proper normalization with a factor 1/3

everything is done in momentum space, treating the plane-wave part analytically

T (E(k); q, k)

N d

T → T
~

T

|Ψ⟩ T
~

p. 40



Strategy

1. Solve integral equation to obtain 

this is where the bulk of the dynamics in the -  system is accounted for

uses well established and tested code for elastic scattering

2. Convert  for further processing

this step is straightforward because it just multiplies known functions

the equation for  follows from the generic one for separable interactions

3. Calculate wavefunction  from 

this includes the required antisymmetrization

ensure proper normalization with a factor 1/3

everything is done in momentum space, treating the plane-wave part analytically

4. Evaluate  to calculate correlation functinon

T (E(k); q, k)

N d

T → T
~

T

|Ψð T
~

ïΨ| |ΨðŜ

p. 40



Three-body correlation function
we follow a microscopic formalism starting from individual nucleon source functions

Mrówczyński, EPJST 229 3559 (2020), Viviani, SK et al., work in progress

the dependence on the overall center of mass  can be removed

this happens also in the calculation of the deuteron formation rate

we evaluate all these expression in momentum-space partial waves

C(k) = ∫ ( ) ( ) ( ) Ψ( , , )
1

Ad

d3r1d
3r2d

3r3S1 r1 S1 r2 S1 r2 ∣∣ r1 r2 r3 ∣∣
2

(10)

(r) =S1

exp(− /(2 ))r2 R2
M

(2πRM )3/2
(11)

note the different source radius prefactor compared to the previous definition► 

r = ( + + )1
3
r1 r2 r2

doing the same for two particles yields exactly the previous definition of ► C(k)

the source is then a function of  with same radius factor as before► x = −r2 r1

= ∫ ( ) ( ) ( , )Ad d3r1d
3r2S1 r1 S1 r2 ∣∣φd r1 r2 ∣∣

2
(12)

p. 41



Momentum-space evaluation
given the full wave function , we evaluate

 here is a product of sources in two Jacobi coordinates

to evaluate the matrix element above insert complete sets of three-body states:

the normalization factors is calculated analogously:

|Ψð

ïΨ| (R)|Ψð = × C(k)Ŝ Ad

(R)Ŝ

the center-of-mass motion is factorized out from the beginning► 

the two source radii enter with different prefactors► 

this follows naturally by starting from single-particle coordinates► 

1 = |pq; sðïpq; s| , s = { , ,⋯}∑
s

ℓ1 ℓ2

ïpq; s| | ; sð = ïp; | ( R)| ; ð× ïq; | (R)| ; ð×Ŝ p′q ′ ℓ1 Ŝ
4
3

−−√ p′ ℓ1 ℓ2 Ŝ q ′ ℓ2 δss′

= ï | ( R)| ðAd φd Ŝ
4
3

−−√ φd

=

p. 42



Higher-order corrections
consider now the perturbative EFT expansion 

from this we obtain 

likewise, we have the deuteron expansion 

the leading-order correlation function is given by

Next-to-leading order correlation function

at next-to-leading order, we have two contributions:

we can extract the genuine NLO correlation function :

T = + +⋯T
(0)

T
(1)

| ð = | ð+ | ð+⋯Ψk Ψ
(0)
k

Ψ
(1)
k

| ð = | ð+ | ð+⋯φd φ
(0)
d

φ
(1)
d

× (k) = ï | | ð with = ï | | ðA
(0)
d

C (0) Ψ
(0)
k Ŝ Ψ

(0)
k A

(0)
d φ

(0)
d

Ŝ φ
(0)
d

2Re(ï | | ð) = × (k) + × (k)Ψ
(0)
k

Ŝ Ψ
(1)
k

A
(0)
d

C (1) A
(1)
d

C (0)

(k)C (1)

(1) from the LO calculation we already know  and ► (k)C (0) A
(0)
d

(2) we can compute ► = 2Re(ï | | ð)A
(1)
d φ

(0)
d

Ŝ φ
(1)
d

(3) therefore we can just subtract the second term and divide by !► A
(0)
d
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Part III

Results and discussion
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Leading-order correlation function
for the overall correlation function, we explicitly include S- and P-wave  channels

beyond  waves, we sum the "free" correlation function up to   

 

 

 

 

 

 

 

 

 

 

 

source radius is varied here between 1.10 fm and 1.38 fm

pd

in pionless EFT through NLO, there is no splitting with total spin ► J

therfore, the spin quartet and doublet channels are calculated independently► 

they are summed with weight factors  and , respectively► 2/3 1/3

P ℓ = 15
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Next-to-leading order correction
NLO corrections are included in strict perturbation theory, as discussed

the magnitude of the NLO shift is natural w.r.t. expectations from power counting  

 

 

 

 

 

 

 

 

 

 

 

source radius is varied here between 1.10 fm and 1.38 fm

this still performs the full calculation in S- and P-wave channels only► 

D and higher partial waves become gradually relevant at larger momenta► 

however, pionless EFT is not designed to describe that regime► 
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Note

this prediction of the correlation function is based on very few input parameters

at LO, only S-wave 2N scattering lengths and a single 3N datum

at NLO, 2N effective ranges and a  or 3He datumpd
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Source radius
the source radius  is a free parameter in the theory calculation

it needs to be determined from experimental data

theory results can also be used to fit  constrained by the experimental data

Gaussian shape is an assumption

Observability

it is an important question what extent the correlation function should be

interpreted as a model-dependent quantity

nuclear potentials are not observable!

note: integration measure suppresses short-distance contributions

R

ALICE Collab., PLB 811 135849 (2020)extraction based on transverse-mass distributions► 

R

potentials that differ at short distance can describe the same low-energy physics► 

given one potential one can obtain equivalent ones by unitary transfomations► 

varying the EFT cutoff changes unconstrained short-distance features► 

C(k) = 4π ∫ dr S(r) ψ(k, r)r2 ∣∣ ∣∣
2
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Cuto� dependence
varying the EFT cutoff changes the wavefunctions

short-distance physics is not constrained by the low-energy effective theory

we need to check carefully for sensitivity in the correlation function!  

 

 

 

 

 

 

 

 

 

 

 

reduced cutoff dependence for large source radii

the long-range part should converge for ► Λ → ∞

that is because the asymptotic behavior is governed by the scattering phase shifts► 
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Pionless EFT vs. AV18
with a generic Faddeev code (not limited to separable interactions), we can

calculate the correlation function also with the AV18 interaction

this code currently has two significant limitations

nevertheless we can compare the -  correlation function in this regime

   / MeV    Pionless LO   Pionless NLO    AV18  

30 0.524 0.710 0.655

40 0.545 0.719 0.725

50 0.579 0.742 0.785

pionless NLO results within 10% of AV18 numbers ✓

a full AV18 (plus UIX 3N force)  calculation is being worked on by the Pisa group
Viviani, Kievsky, Marcucci, SK et al., work in progress

that approach uses the Hyperspherical Harmonics (HH) formalism
Kievsky et al., JPG 35 063101 (2008)

no inclusion of Coulomb effects► 

support only for energies below the deuteron breakup threshold (  MeV)► k ≤ 50

n d

EFT values are for cutoff  MeV, all calculations used  fm► Λ = 800 R = 1.24

k

pd

p. 50



Proton-deuteron vs. neutron-deuteron
Coulomb effects should be relevant primarily at very low energies

as discussed previously, the effective Coulomb strength is 

in addition, there is some strong isospin breaking (  vs   scattering length)

 

 

 

 

 

 

 

 

 

 

 

η = αμ/k

pp np 1S0
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Proton-deuteron vs. neutron-deuteron
Coulomb effects should be relevant primarily at very low energies

as discussed previously, the effective Coulomb strength is 

in addition, there is some strong isospin breaking (  vs   scattering length)

 

 

 

 

 

 

 

 

 

 

 

note: 3He binding energy fixed at NLO for -  calculation
Vanasse, SK, et al., PRC 89 064003 (2014)

η = αμ/k

pp np 1S0

p d
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The end
Summary

high-energy collisions provide information about few-body systems at low energy

for identical particles (like nucleons), a full treatment of the few-body dynamics is

important to describe the correlation function

pionless EFT can be used to make predictions based on very few input parameters
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for identical particles (like nucleons), a full treatment of the few-body dynamics is

important to describe the correlation function

pionless EFT can be used to make predictions based on very few input parameters

Outlook

comparison to experiment

more detailed comparison to AV18 calculation (performed by Pisa group)

analysis of further systems

ALICE has taken and analyzed data, paper submitted for internal review► 

work on joint theory paper is in progress► 

study in particular  and  correlation functions► ppp dd

although neutrons are not measured by the relevant experiments, theory can

compare and benchmark , , ...

► 

nnn nd
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