Proton-deuteron correlation functions in
pionless effective field theory

Sebastian Konig

INT 23-1a: Intersection of nuclear structure and high-energy nuclear collisions

NC STATE
UNIVERSITY

February 20, 2023

" Theory
"‘ Alllonce

FRIB




Thanks...

...to my collaborators...

B. Singh, L. Fabbietti (TU Munich)

e M. Viviani, A. Kievsky, L. Marcucci (Pisa)
O. Véazquez Doce (CERN)

J. Haidenbauer (FZ Jiilich)

...for support, funding, and computing time...

' Theory £ "m":'%% U.S. DEPARTMENT OF Office of @ |
%g Alliance * ENERGY science

® Jiilich Supercomputing Center
e NCSU High-Performance Computing Services



Femtoscopy



Femtoscopy



Femtoscopy

.



Femtoscopy

® heavy ion collisions produce hardons in the final state, including light nuclei
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Femtoscopy

<=

® heavy ion collisions produce hardons in the final state, including light nuclei
® this can be used to study nuclear and hypernuclear interactions

p.



Correlation functions

Basic formalism
® consider a two-hadron system with relative center-of-mass momentum k&
® let ¢(k,r) be the the scattering wavefunction for the system
® then the two-particle correlation function can be written as

l 2

C(k) = 4r / arr® S(r) [ (k, 7)

where S(r) is a normalized Gaussian source function

General idea

® in the absence of interactions, C(k) — 1
e ('(k) # 1 therefore encodes properties of the interaction between the particles
¢ high-energy collisions can be analyzed to extract C(k) experimentally

> ratio of correlated vs. uncorrelated pairs

Koonin, PLB 70 43 (1977); Pratt, PRL 53 1219 (1984); ...

Mihaylov et al., EPJC 78 394 (2018); Haidenbauer, NPA 981 1 (2019); ...



Motivation

® high-energy collisions can be used to study low-energy interactions

® this provides an interesting source for otherwise difficult to measure observables,
such as scattering involving hyperons

e for A > 2 systems one can investigate multi-hadron forces

For this program, one should make sure that the three-
nucleon system is properly understood!
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Nuclear theory tower

® (QQCD = underlying theory of strong interaction
e EFT = effective description in terms of hadrons
e degrees of freedom depend on resolution scale




Nuclear effective field theories

® choose degrees of freedom approriate to energy scale

® only restricted by symmetry, ordered by power counting
Hammer, SK, van Kolck, RMP 92 025004 (2020)
Q/MeV
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® degrees of freedom here: nucleons (and/or clusters thereof)
® even more effective d.o.f.: rotations, vibrations Papenbrock, NPA 852 36 (2011); ...

® most effective theory depends on energy scale and nucleus of interest



Effective Field Theory 101

e identify relevant symmetries (nonrel. boosts, chiral, gauge, ...)
5 Mhi e identify low and high-energy scales (M., M)
- e identify typical momentum scale for given process (Q)
® pick a convenient regulator (e.g. cutoff) (A)

@ amplitude T(Q) ~ i (Z\Z )V F(V)[' N ;7(V>}

v=0
B . . (l/) M]o A
® combination of low-energy constants: -y -, —
[ V My~ My
L lo e (V) Q Q (v)
® encoded low-energy dynamics: F — =
My A

® power counting relates the v to terms in effective Lagrangian
¢ RG invariance means T' = const. + O (1/A)
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Nuclear scales
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Pionless EFT

® only contact (zero-range) forces (plus electromagnetism)
® closely linked to universality for large scattering lengths

® excels at low energies, exact range of validity still an open question

2N 3N 4N

.12



Effective Lagrangian

D?
_ NT : N
£ (1D0 2 My )

. D? _— D? A
—dZJr [0d+ (iDO—I— 4MN)] dz—i—t f |:O't—|— (iDo + 4MN)] t

+yq [dT (NTPIN) +hc.| +y t" (N"PAN) + he.] + -

<<

e dibaryon fields d (spin triplet, isospin singlet) and ¢ (spin singlet, isospin triplet)

Ingredients

® nucleon field IV, doublet in spin and isospin space

® coupling between nucleons and dibaryons parametrized by o4 and yq
» at leading order, these combine to a single coupling Cy per spin-isospin channel
» dibaryon fields can be intergrated out!

e covariant derivative (Dy, D) includes coupling to photon field

e ellipses include three-nucleon forces and further electromagnetism



Parameter fixing

® like any effective field theory, Pionless EFT involves a priori unknown parameters
® these "low-energy constants" need to be fixed to input data

» this process is provided by regularization and renormalization

» running coupling constants are fixed by renormalization conditions

» input can be from experiment or lattice QCD

Effective range expansion

® in contrast to theories like QED, nuclear EFTs are nonperturbative at low energy
® this means a certain class of diagrams needs to be resummed to all orders
® Pionless EFT in the two-nucleon sector is then constructed to reproduce the

effective range expansion (ERE)

k cot &y (k) = —% — gk2 + O(k*)

> ag ~ affﬁ,yg’t) at leading order (LO)

> rg o ac(llt),ylglt) at next-to-leading order (NLO)

p. 14



Resummation = infinite iteration

® instead of adding a finite number of diagrams, we need to solve an equation
e for bound states, this is the Schrodinger equation

e for two-nucleon scattering, it is the Lippmann-Schwinger equation

.15



Two-nucleon applications

Low-energy capture reactions GV - vu

® np — dry capture is very relevant for constraining big-bang nucleosynthesis

® pionless calculations provide very precise predictions (< 1% uncertainty)
Chen + Savage, PRC 60 065205 (1999); Rupak, NPA 678 405 (2000)

® similarly, proton-proton fusion is very relevant for solar fusion

® again, pionless EFT can provide very precise predictions
Kong + Ravndal, PRC 64 044002 (2001); De-Leon + Gazit, 2207.10176 [nucl-th]

Deuteron electrodisintegration : ;
Sl 1y L
® tension between measurements at TU Darmstadt i‘“ of 4 t f
and potential-model calculations 5:4105_- . .
® pionless EFT confirmed calculations... %3 oy 1 i%&%‘&iﬁ“ )
» ...with proper theory uncertainty estimate! o T [ ] — a0 i
® helped identify an issue in the experimental analysis ’ ' | 5

Christimeier + GrieBhammer, PRC 77 064001 (2008)



Proton-proton correlation function

® in coordinate space, we can implement pionless EFT with a local Gaussian potential
» range R provides the UV regulator, choose R > 1/m, arbitrarily
» add a repulsive Coulomb potential (more details about this later!)
> fit strength Cy(R) to pp scattering length a,, = —7.806 fm

e with just this, we can calculate the proton-proton correlation function

6 L
5; | ) OF Rsource = 1.26 fm |
4, —
Py I — LO, S-wave, R = 1.0 fm™
% 3 e AVI18 (S-wave) .
» v AV18 (S+P+D-wave)
2, -
Phefeerarmnneninen i3 n s eeeaaaneceasceis
0 | | | | | | | | | | | | | | | | | | |
0 50 100 150 200

k (MeV)

® excellent agreement with AV18 CATS calculation Mihaylov et al., EPJC 78 394 (2018)

p. 17



Relation to Lednicky model

® a simple model by Lednicky and Lyuboshitz assumes the wavefunction is given

everywhere by Its asymptOtIC form Lednicky + Lyuboshitz, Sov. J. Nucl. Phys. 35 770 (1982)

Gy(n, kr) + iFy(n, kr) }
cot 9y (k) — i

Yullr) ox —Coe [l k) +

> Fy(n, kr) and Gy(n, kr) are the regular and irregular Coulomb wavefunctions
> the nuclear interaction is encoded in cot §;(k)
» alternative (equivalent) formulations write this in term of the scattering amplitude

® into this one can insert the Coulomb-modified effective range expansion:

1 r
Cgek%ﬂ cot dy(k) = —— + ﬁkzz

Qpp
» truncating this after the first term, the model provides a description in terms of
the scattering length a,, alone
» pionless EFT for the p-p system recovers this model in a systematic way
» for p-d correlations, the simple two-body picture may not work!

» important to study full three-nucleon dynamics



Lednicky model for p-d correlation function

e for the proton-deuteron system, the Lednicky model does not describe data

?1OIII\IIII\IlIIIlIII\III\I
=
O 9 ALICE Preliminary
pp Vs =13 TeV
8 High-mult. (0— 0.17% INEL > 0)
7 61 p-d @ p-d

[ Norm. uncertainty(1.3%)
Models with e, reso. = 1.059 + 0.04 fm
—— Van Oers et al (1967) —— Arvieux (1973)
——— Huttel et al. (1983) —— Kievsky et al. (1997)
—— Black et al. (1999)

Black(1999): 72/ndf = 734/3 = 244.7 (0-120 MeV/c)

I\JIIIII|IIII|\\II‘IIII|IIII‘\III

1 """""""" } "" s Sl S S e © e e © e s R S

°

O_III|\Illl\lllll[llll\llll\l

0 40 80 120 160 200 240 280
k*(MeV/c)

® this clearly indicates that a description as an effective two-body system is invalid

Singh, SK et al., in preparation



Neutron-deuteron scattering

® the dibaryon formalism is particularly convenient to discuss three-nucleon scattering
® specifically, we consider first the scattering amplitude for elastic Nd scattering

® diagrammatically, this is represented as a blob with incoming and outgoing legs:

(- N\ D\

® this diagrammatic equation translates into an integral equation for 7 (E; k, p):

T (E;k,p) = K(E;k,p) +/dqq2 T(E;k,q)Dy(E;q)K(E; q,p)

® g is the momentum associated with the loop diagram
® the kernel function K(E;k,p) is given by the one-nucleon exchange diagram
e D;(FE;q) describes the deuteron propagation (in terms of Ay)



More neutron-deuteron scattering

® the equation we wrote down applies to the spin quartet channel
> in this case, all three nucleon spins can be aligned (maximum projection)
» only the deuteron (with spin 1) can appear in the intermediate state

® in general, the spins can also couple to an overall spin doublet

> in this configuration it is possible to have an 1Sy NN intermediate state

00 900

® this leads to a coupled-channel equation structure:

.21



Note

In the doublet S-wave, there is also a three-nucleon force!

® naively one would expect this to enter only at higher order

® a phenomenon related to the Efimov effect implies a promotion to leading order
Bedaque, Hammer, van Kolck, NPA 676 357 (1999)

® we have not shown this explicitly in the diagrammatic equation

.22



Inclusion of Coulomb effects

® the effective Lagrangian includes the coupling of photons to baryons
» this is included in the covariant derivative not written out explicitly before
» in addition there is of course a photon kinetic term

¢ the leading contribution comes from so-called Coulomb photons
» effectively one recovers a static potential between charged particles

» transverse photons enter systematically as higher-order corrections

S ~ (ie) v (ie) — (ie) Iz (ie)

® a small photon mass is introduced here to regulate the singularity at q = 0

® coordinate-space two-body calculations can be performed with direct inclusion of
the Coulomb potential Kong + Ravndal, NPA 665 137 (2000)

® this is based on analytically known expressions for Coulomb wavefunctions

® pionless EFT recovers the Coulomb-modified effective range expansion
Bethe, Phys. Rev. 76 38 (1949)



Proton-deuteron scattering

® including Coulomb-exchange diagrams vyields the equation for p-d scattering
N\
-\ - 7+ X
N\
(N3 %)

® dominant contribution is given by the "bubble diagram"

» static Coulomb potential between deuteron and proton

» with account for deuteron substructure (not just a point particle!)

Subtracted phase shifts

® one solves the same equation with the pure strong-interaction diagrams omitted
® the difference of scattering phase shifts is then well defined

® this is closely related to the Coulomb-modified effective range expansion

.24



Full doublet-channel equation structure

® in the spin-doublet channel, the possibilty of pp intermediate states (=e=) leads to a
three-channel equation structure:

O T T (O T )
(O T (0

® this accounts for Coulomb photon exchange in all possible places



Overview of results (selection)

e systematic inclusion of three-nucleon Coulomb contributions

» predictions for proton-deuteron scattering and 3He binding energy

Rupak + Kong, NPA 717 73 (2003); Ando + Birse, JPG 37 105108 (2010)
SK + Hammer, PRC 83 064001 (2011); ...; SK et al. JPG 43 055106 (2016)

> lead to good understanding of perturbative vs. nonperturbative Coulomb effects
® isospin-breaking three-nucleon force at next-to-leading order

» nonperturbative inclusion of Coulomb effects at LO promotes counterterm
Vanasse, SK, et al., PRC 89 064003 (2014)

¢ fully perturbative n-d scattering up to N2LO and higher . .... prc 88 044001 (2012)
> introduced efficient technique for rigourous perturbation theory
» found good convergence properties across various partial waves
> studied A, puzzle with N3LO calculation Margaryan et al., PRC 93 054001 (2016)

e perturbative expansion of light nuclei around unitarity limit
SK et al., PRL 118 202501 (2016)

» details of two-nucleon interaction not important for gross features
» shown to work well for A < 4 binding energies and charge radii

¢ electroweak properties: magnetic moments, beta decay
De-Leon et al., arXiv:1902.07677 [nucl-th]; De-Leon + Gazit, 2004.11670 [nucl-th]



Perturbative Coulomb effects

e strength of Coulomb interaction depends on momentum scale
® perturbative effect in bound states and scattering beyond very small energies

¢ to leading order, p-d and n-d scattering for k 2> 20 MeV are degenerate!
SK et al., JPG 43 055106 (2016)

Coulomb strength n ~ 1/k T T
r ° Kievsky et al. |
r Arvieux
1,
LD *
0.81 R ]
<5}
[ E -
0.6 ﬂ —~ -15
i =
0.4r ©w 7
[ —20
0.2F JJ - Lo
O:w T T [ T S [ S S A T S SO W N W 725
0 25 50 75 100 125 i
k (MeV) —30——

k (MeV)

® Coulomb-subtracted phase shifts calculated in perturbation theory
® uncertainty bands estimated based on EFT expansion parameter
» (with 30% leading-order band not shown explicitly)

p. 27



Reflection

So we have a way to calculate proton-deuteron scattering...

® theory is well understood and relatively simple
® pionless EFT captures precisely what is relevant at low energies
® to actually evaluate correlation functions we need to work a bit harder
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Two-body scattering setup

® consider two particles with masses m; and my at positions r1 and rs

® assume that the interaction does not depend on absolute particle positions

® then we can neglect the overall center-of-mass motion and work only with the
relative coordinate r = r; — ry and reduced mass p = mims/(m; + ms)

e for the two particles scattering off one another, we physically expect that the
wavefunction describing their relative motion is given as a sum of an incoming plane
wave and an outgoing spherical scattered wave:

eikr

v (@) = T 4 f(0)— (1)

3

k —
e all physics information is contained in the scattering amplitude fi(6)

p- 30



The Lippmann-Schwinger equation

e consider the stationary Schrodinger equation: H|¢) = El) with H = Hy+V
» Hy here is the free Hamiltonian with Hy|k) = Ex|k) = %|k>

e this alone does not specify a boundary condtion for solutions ¥(r) = (r|¢)
> a scattering state should be such that for V-— 0, |¢) — |k)

» moreover, it should be one that evolved from a free state in the infinite past
® both conditions can be enforced with the ansatz

9L7) = k) + (Bi — Ho +ie) ' VIg)) (2)
e this is the Lippmann-Schwinger equation for the scattering state |¢1({+)>

Notes

® the free Green's function Go(z) = (z — Hy) ! appears in Eq. (2) with z = F) + ic
® ¢ — 0 is implied in all equations
» this implements the second boundary condition via adiabatic switching

o @/)fj) (r) is exactly what appears in the definition of the correlation function!

p. 31



The Lippmann-Schwinger equation

e consider further Eq. (2) and apply V' from the left:
VIgr) = VIk) + VGo (B + ie)VIyy") (3)
® define an operator T via V|7,b1({+)> = T'k) to write
T|k) = V|k) + VGy(Ex + ie)T k) (4)

® this is the Lippmann-Schwinger equation for the operator T'

Notes

® since k is arbitrary in Eq. (4), we postulate at the operator level: T =V + VGT
o T =T(Ex + ie) carries an implicit energy dependence via G
® alternative form: T'=V + TG,V (seen to be equivalent by iteration)

® we can also write this in a diagrammatic representation:

R XX

p. 32



Scattering wavefunctions

e from the T-matrix we can obtain scattering wavefunctions in momentum space

e recall the initial form of the Lippmann-Schwinger equation, Eq. (2):
97 = [k) + (Bi — Hy +ie) ' V[g))

® with V|¢§{+)> = T'|k), we obtain directly:

(alvy”) = (alk) + (al(Bx — Ho + ie) ' Tk) (5)

e from the first term (q|k) = (27)35®)(q — k) it is clear that this is a distribution,
not an ordinary function
® the second term, with € — 0 implied, contains a smooth part as well as a pole

contribution (from the on-shell point q = k):

(al(Bx — Ho +ie) ' Tk) = — :
k® —q? +ie

e note that T'(FEx;q, k) is the half off-shell T-matrix

p- 33



Shortcut

® in principle we could Fourier-transform zpl(j) (q) to evaluate
Ck) = [ &8 )|
(k) = [ &@r S|y (x)

® but we can also stay directly in momentum space

p. 34



Source function in momentum space

® we can express the correlation function in terms of a source operator:
ERACOIRIACY
C(k) = (4 '[S¥ )
® in configuration space, S is local:

. exp(—7?/R?)

r|S|r') = G (p — ¢
(r|S|r") R (r—1')

® this translates into a non-local representation in momentum space:

(9,£S|q', ") = exp(—R%(q* + ¢"*)) ir (2Raq’) 8y

. . . . . Tabakin 4+ Davies, Phys. Rev. 150 793 (1966)
» we have written this directly in partial waves

» this matches how the Lippmann-Schwinger equation is commonly solved
» { denotes the angular momentum
» 44(2) is a modified spherical Bessel function

» C(k) is obtained by summing over £ (and other discrete quantum numbers)

p. 35



We now want to follow this path
for three particles!

T-matrix — scattering wavefunction — correlation function

p. 36



Faddeev equation for bound states

consider first the Schrédinger equation for a three-nucleon bound state:

(Ho+ Y- vi)w) = Ew) (7)
§=1,2,3
i<j
we neglect the three-nucleon force and consider only pairwise interactions
at leading order, Pionless EFT in this formulation features S-wave potentials of the

form V(p,p') = C’éo) (A)g(p)g(p'), with Cy(0) related to the O'((iot) discussed earlier

Faddeev decomposition

the full wavefunction can be decomposed into Faddeev components:

) = Z k) =1+ P)lY) , P = PiaP3+ P3P
k=1,2,3

antisymmetry reduces the problem to a single component and permutations
Eq. (7) can then be rewritten as |¢)) = GotP|¢) with a two-body T-matrix ¢

p. 37



Faddeev scattering

® for nucleon-deuteron scattering, we need to include an inhomogeneous term
® this is given as a product of a deuteron wave function ¢4 and a third nulceon with
relative momentum k: |¢) = |@qk; s)
» for neutrons, the relative motion is a plane wave (Bessel function)
» for protons, this involves the regular pure Coulomb wave function
» s collects all relevant quantum numbers (angular momentum, spin, isospin)
® a single Faddeev component of the scattering wavefunction is given by
1) = |¢) + T'|¢) with T satisfying

T|p) = GotP|¢) + GotPT|¢) (8)

® the full scattering wavefunction is ultimately obtained via antisymmetrization

Notes @) = (1 + P)[y) (9)

® |¢p) is kept in Eq. 8 to indicate the boundary condition
® in the literature, one typically sees T' = Galf

see for example Hiiber et al., PRC 51 1100 (1995)

p. 38
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Why all this?

e T can be directly related to the 7 from the diagrammatic approach

® construction of the full wave function is easier to discuss in the Faddeev formalism

p- 39



Strategy

1. Solve integral equation to obtain 7 (E(k);q, k)

® this is where the bulk of the dynamics in the N-d system is accounted for

® uses well established and tested code for elastic scattering

2. Convert T — T for further processing

® this step is straightforward because it just multiplies known functions

® the equation for T follows from the generic one for separable interactions

3. Calculate wavefunction |¥) from T

® this includes the required antisymmetrization
® ensure proper normalization with a factor 1/3

® everything is done in momentum space, treating the plane-wave part analytically

p. 40



Strategy

1. Solve integral equation to obtain 7 (E(k);q, k)

® this is where the bulk of the dynamics in the N-d system is accounted for

® uses well established and tested code for elastic scattering

2. Convert T — T for further processing

® this step is straightforward because it just multiplies known functions

® the equation for T follows from the generic one for separable interactions

3. Calculate wavefunction |¥) from T

® this includes the required antisymmetrization
® ensure proper normalization with a factor 1/3

® everything is done in momentum space, treating the plane-wave part analytically

4. Evaluate (¥|S|V) to calculate correlation functinon

p. 40



Three-body correlation function

® we follow a microscopic formalism starting from individual nucleon source functions
Mréwczynski, EPJST 229 3559 (2020), Viviani, SK et al., work in progress

C(k) = Aid /d3r1d3r2d3r351(r1)51 (rg)Sl(rg)'\I/(rl,rz,rg)|2 (10)
exp(—r2/(2R2
i) = p((szL()?’/zM)) (1)

» note the different source radius prefactor compared to the previous definition

® the dependence on the overall center of mass r = é(rl + ry +rs) can be removed

» doing the same for two particles yields exactly the previous definition of C(k)
» the source is then a function of x = ry — r; with same radius factor as before
® this happens also in the calculation of the deuteron formation rate
‘2

Ad = /d3r1d3r251(rl)Sl(rz)‘god(rl,rz) (12)

¢ we evaluate all these expression in momentum-space partial waves

.41



Momentum-space evaluation

® given the full wave function |¥), we evaluate () p b
(@ISR ) = Ay x C(H) ®
o SA'(R) here is a product of sources in two Jacobi coordinates Y, 4, &

» the center-of-mass motion is factorized out from the beginning

» the two source radii enter with different prefactors «

» this follows naturally by starting from single-particle coordinates

® to evaluate the matrix element above insert complete sets of three-body states:

1= |pg;s)pgisl , s={b,b, -}

(g sIS16'; 5) = (B 0118 (/4 B) D5 1) x (05 1S (R) |5 62) x dug

® the normalization factors is calculated analogously:

Ag = <90d\§<\/gR>190d>

p. 42



Higher-order corrections

consider now the perturbative EFT expansion T' = 7'(0) + 7 + .-
from this we obtain |¥) = |‘I/,(€O)> + |‘I’,(cl)> + -
likewise, we have the deuteron expansion |@g) = \(,020)> + ]90((11)> + .-

the leading-order correlation function is given by

A7 < CO) = (w1819") with 47 = (015];")

Next-to-leading order correlation function

* at next-to-leading order, we have two contributions:
2Re(<\111(60)|5““1,]<€1>>) = A9 % cO (k) + 4D x CO (k)

e we can extract the genuine NLO correlation function C'") (k):
> (1) from the LO calculation we already know C'(¥) (k) and Ag))

> (2) we can compute Agll) = 2Re(<<,0((10)\‘§\90£ll)>)
(0)

> (3) therefore we can just subtract the second term and divide by A,

p. 43
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Results and discussion

p. 44



Leading-order correlation function

® for the overall correlation function, we explicitly include S- and P-wave pd channels
» in pionless EFT through NLO, there is no splitting with total spin J
» therfore, the spin quartet and doublet channels are calculated independently
» they are summed with weight factors 2/3 and 1/3, respectively

® beyond P waves, we sum the "free" correlation function up to £ =15

T T T T T T T T T T T T T T T
1+ _
p-d, A = 800 MeV
reliminary
0.8f P : -
— 0.6
é L
®) I
0.4+
0.2+
07 ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
0 20 40 60 80 100

k (MeV)

® source radius is varied here between 1.10 fm and 1.38 fm
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Next-to-leading order correction

® NLO corrections are included in strict perturbation theory, as discussed
» this still performs the full calculation in S- and P-wave channels only
» D and higher partial waves become gradually relevant at larger momenta
» however, pionless EFT is not designed to describe that regime

® the magnitude of the NLO shift is natural w.r.t. expectations from power counting

T T T T " T T
1 - -
p-d, A = 800 MeV
reliminary
0.8k prelimipary
—~ 0.6_ -
é -
O [
04r -
0.2F . .
LO, R — 1.24 R-138 —
0- L L L | L L L | L L L | L L L | L L L
0 20 40 60 80 100
k (MeV)

® source radius is varied here between 1.10 fm and 1.38 fm



Note

® this prediction of the correlation function is based on very few input parameters

e at LO, only S-wave 2N scattering lengths and a single 3N datum
e at NLO, 2N effective ranges and a pd or 3He datum

p. 47



Source radius

® the source radius R is a free parameter in the theory calculation
® it needs to be determined from experimental data
» extraction based on transverse-mass distributions ALICE Collab., PLB 811 135849 (2020)
® theory results can also be used to fit R constrained by the experimental data
® Gaussian shape is an assumption
Observability

® it is an important question what extent the correlation function should be
interpreted as a model-dependent quantity

¢ nuclear potentials are not observable!
» potentials that differ at short distance can describe the same low-energy physics
» given one potential one can obtain equivalent ones by unitary transfomations
» varying the EFT cutoff changes unconstrained short-distance features

® note: integration measure suppresses short-distance contributions

C(k) = 4n / drr® S(r) [y (k, r)|2
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Cutoff dependence

® varying the EFT cutoff changes the wavefunctions

» the long-range part should converge for A — oo

» that is because the asymptotic behavior is governed by the scattering phase shifts
® short-distance physics is not constrained by the low-energy effective theory
e we need to check carefully for sensitivity in the correlation function!

- r - - - T . T 1 T T T T T T
0.8 p-d, LO ]
preliminary 7
o6~ .
S
O 0.4f
800 MeV, R = 1.10 -~
R=117 -
02 R=124 —— ]
L R=131 -——-
#7400 MeV, R = 1.38 R=138 —
0- .[ L L | L L L | L L L | L L L | L L L
0 20 40 60 80 100

k (MeV)

® reduced cutoff dependence for large source radii



Pionless EFT vs. AV18

e with a generic Faddeev code (not limited to separable interactions), we can
calculate the correlation function also with the AV18 interaction
® this code currently has two significant limitations
» no inclusion of Coulomb effects
» support only for energies below the deuteron breakup threshold (k < 50 MeV)
® nevertheless we can compare the n-d correlation function in this regime
» EFT values are for cutoff A = 800 MeV, all calculations used R = 1.24 fm

k / MeV  Pionless LO Pionless NLO AV18

30 0.524 0.710 0.655
40 0.545 0.719 0.725
50 0.579 0.742 0.785

e pionless NLO results within 10% of AV18 numbers v
e a full AV18 (plus UIX 3N force) pd calculation is being worked on by the Pisa group

Viviani, Kievsky, Marcucci, SK et al., work in progress

® that approach uses the Hyperspherical Harmonics (HH) formalism
Kievsky et al., JPG 35 063101 (2008)
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Proton-deuteron vs. neutron-deuteron

® Coulomb effects should be relevant primarily at very low energies
® as discussed previously, the effective Coulomb strength is n = au/k

® in addition, there is some strong isospin breaking (pp vs np 1Sy scattering length)
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Proton-deuteron vs. neutron-deuteron

® Coulomb effects should be relevant primarily at very low energies

® as discussed previously, the effective Coulomb strength is n = au/k

® in addition, there is some strong isospin breaking (pp vs np 1Sy scattering length)
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e note: 3He binding energy fixed at NLO for -

d calculation
Vanasse, SK, et al., PRC 89 064003 (2014)
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The end

Summary

® high-energy collisions provide information about few-body systems at low energy
e for identical particles (like nucleons), a full treatment of the few-body dynamics is
important to describe the correlation function

® pionless EFT can be used to make predictions based on very few input parameters
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The end

Summary

® high-energy collisions provide information about few-body systems at low energy
e for identical particles (like nucleons), a full treatment of the few-body dynamics is
important to describe the correlation function

® pionless EFT can be used to make predictions based on very few input parameters

Outlook

® comparison to experiment
» ALICE has taken and analyzed data, paper submitted for internal review

® more detailed comparison to AV18 calculation (performed by Pisa group)
» work on joint theory paper is in progress

e analysis of further systems
» study in particular ppp and dd correlation functions
» although neutrons are not measured by the relevant experiments, theory can
compare and benchmark nnn, nd, ...
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