Large-scale dynamo and jet launching from compact binary mergers: current status and beyond

Kenta Kiuchi (CRA/YITP)

Introduction

There is no self-consistent model to explain it.

A "package" for EM counterpart modeling Sys. Err.

NR simulation (GR+EOS+ ν -Rad.+MHD)

R-process nucleosynthesis calculation

Kilonova/GRB light curve modeling

J

Observation

- ► Resolution
- ► Approx. GR
- ► Approx. *v* -Rad
- ► MHD approx.

• • •

- ▶ Reaction rate
- ► Mass model

• • •

►Photon rad. transfer

. . .

Neutron rich matter ejection mechanism

►One missing mass ejection channel = Lorentz force-driven ejecta Recent progress indicates its relevance. (Mösta et al. 20, Combi & Siegel 23, KK et al. 24, Most 23)

To B or not to B in binary neutron star merger (by Victoria M. Kaspi)

▶ Assumption : Rotational energy is dissipated by the magnetic dipole radiation $\Rightarrow B \propto (P\dot{P})^{1/2}$

To B or not to B in binary neutron star merger (by Victoria M. Kaspi)

 \blacktriangleright B-field in observed binary NSs : $10^{9.7} - 10^{12.2}$ G

Kinetic energy before the merger $\sim 10^{53}$ g cm² s⁻² (M/2.7M_{sun})(v/0.3c)²

B-field energy $\sim 10^{41}$ g cm² s⁻² (B/10¹²G)²(R/10⁶cm)³

B-field is irrelevant in BNS mergers?

No! ⇒ Several amplification mechanisms (Magneto Hydro Dynamical instabilities) could amplify the B-filed up to the dynamically important level

Lorentz force (MHD)-driven ejecta as a "new" channel Question: How can be a strong and large-scale field established?

Mean field dynamo theory

$$\partial_t \bar{\mathbf{B}} = \nabla \times (\bar{\mathbf{U}} \times \bar{\mathbf{B}} + \bar{\mathcal{E}}), \quad \mathbf{Q} = \bar{\mathbf{Q}} + \mathbf{q}, \ \bar{\mathbf{Q}} = \text{Axisym. Ave.}$$
 $\bar{\mathcal{E}} = \overline{\mathbf{u} \times \mathbf{b}} \quad \text{u & b : turbulence of the velocity and b-field.}$

$\alpha \Omega dynamo$

$$\frac{\partial \Omega G \Pi \Pi \Pi \Pi \Pi \Pi}{\overline{\mathcal{E}}_{i}} = \alpha_{ij} \bar{B}_{j} + \beta_{ij} (\overline{\nabla \times B})_{j} \approx \alpha_{ii} \bar{B}_{i}$$

$$\frac{\partial_{t} \bar{B}_{\varphi}}{\partial_{t} \bar{B}_{\varphi}} = R \bar{B}^{A} \nabla_{A} \Omega \quad (A = R, z, \Omega - \text{effect})$$

$$\frac{\partial_{t} \bar{B}_{R}}{\partial_{t} \bar{B}_{R}} = \partial_{z} \mathcal{E}_{\varphi} \approx \partial_{z} \left(\alpha_{\varphi\varphi} \bar{B}_{\varphi} \right) \quad (\alpha - \text{effect})$$

$$\frac{\partial_{t} \bar{B}_{z}}{\partial_{t} \bar{B}_{z}} = -\partial_{R} \mathcal{E}_{\varphi} \approx \partial_{R} \left(\alpha_{\varphi\varphi} \bar{B}_{\varphi} \right)$$

- 1. \bar{B}_{φ} should be anticorrelated with $\bar{B}_{R/z}$.
- 2. $ar{E}_{oldsymbol{arphi}}$ should be correlated or anti-correlated with $ar{B}_{oldsymbol{arphi}}$.
- 3. Dynamo cycle period $P_{theory} = 2\pi (\alpha_{\phi\phi} d\Omega/dlnR k_z/2)^{-1/2}$
- 4. Dynamo wave propagation direction according to the Yoshimura-Parker rule α_{ϕ} ∇ Ω x e $_{\phi}$

Question: What generate electromotive force (EMF), i.e., fluctuation component of velocity and magnetic field?

$$ar{\mathcal{E}} = \overline{\mathbf{u} imes \mathbf{b}}$$

Generation of a large-scale field via α Ω dynamo

Kelvin Helmholtz instability (Rasio and Shapiro 99, Price & Rosswog 05)

$$\begin{array}{ccc}
V_2 \\
& \longrightarrow \\
O_1 & \longleftarrow \\
V_1
\end{array}$$

 $\sigma \propto k$

High grid resolution is key.

(KK et al. 14,15,18,24, Palenzuela et al. 22, Aguilera-Miret et al. 20, 22, 23)

Generation of a large-scale field via α Ω dynamo

Magneto Rotational Instability (MRI) (Balbus & Hawley 91)

 $\text{Differential rotation: } \nabla\Omega < 0, \lambda_{MRI}^{\text{RNS}} \approx 80 m \left(\frac{B_P}{10^{15} G}\right) \left(\frac{\rho}{10^{15} g \ cm^{-3}}\right)^{-\frac{1}{2}} \left(\frac{\Omega}{8000 rad s^{-1}}\right)^{-1}$

$$\lambda_{MRI}^{BH-Disk} \approx 1,000 m \left(\frac{B_p}{10^{15}G}\right) \left(\frac{\rho}{10^{13} gcm^{-3}}\right)^{-\frac{1}{2}} \left(\frac{\Omega}{6000 rads^{-1}}\right)^{-1}$$

Again, high resolution is key. (Shibata et al. 05, Duez et al. 05, Siegel et al. 13, KK et al. 18,24)

Methodology

- ► Einstein's solver (Shibata & Nakamura 95, Baumgarte & Shapiro 98, Barker et al, 06, Campanelli et al. 06, Hilditch et al. 13)
- ► Nuclear theory-based equation of state for the NS matter (SFHo/BHBLp/DD2) (Steiner et al. 13, Banik et al. 14)
- ► Relativistic magnetohydrodynamics solver (KK et al. 22, Migone et al. 09, Gardiner & Stone 08)
- ► Neutrino-radiation transfer solver (Sekiguchi et al. 12)
- + for more technical issues (see KK et al. 22)

All the works, we quantify the ability of our simulation set up to resolve the KHI and MRI:

$$Q_{MRI} \equiv \frac{\lambda_{MRI}}{\Lambda x} \geq 10$$

Computational facilities

Fugaku@Riken (Japan)

Raven@MPCDF (Germany)

Supercomputer = Experimental labo.

Inferring the EOS from ab initio simulations

Lifetime of the remnant massive neutron star Short-lived Intermediate-lived Long-lived

 $\sim O(0.01) s$ $\sim O(0.1) s$

Prompt

 $\sim 0s$

 $L_{iso} \sim 10^{49} {\rm erg/s}$ No jet until 1s at least. Hayashi et al. PRL 25 KK PRL 23

 $L_{iso} \sim 10^{52} {\rm erg/s}$ KK 25 in prep.

 $L_{iso} \sim 10^{52}$ erg/s KK Nature Astro. 24

EOS stiffness: Soft (SFHo)

Binary mass: Large

Stiff (DD2)

2,000 km

Long-lived remnant formation

0.2s simulation, DD2-1.35-1.35 M_{\odot} , Δ x_{finiest} =12.5 m (KK et al. Nature Astron. 24)

$$Y_{
m e}$$
 $ho \left(g \ cm^{-3}
ight) + B - field \ line$ $B(G)$ ©K. Hayashi

Kelvin-Helmholtz dynamo at the merger

KH amplification at the merger

Growth rate vs initial B-field

▶ In reality, the KH dynamo would produce a strong, but small-scale magneto turbulence (see also Palenzuera et al. 22, Aguilera-Miret et al. 22, 23).

Neutrino viscosity/drag on MRI

Neutrino viscosity/drag could be irrelevant for MRI.

Dispersion relation for MRI with the neutrino viscosity:

$$\left[\left(\tilde{\sigma} + \tilde{k}^2 \tilde{\nu} \right) \tilde{\sigma} + \tilde{k}^2 \right]^2 + \tilde{\kappa}^2 \left[\tilde{\sigma}^2 + \tilde{k}^2 \right] - 4\tilde{k}^2 = 0,$$

$$\tilde{\sigma} \equiv \frac{\sigma}{\Omega}, \ \tilde{k} \equiv \frac{k v_A}{\Omega}, \tilde{\kappa}^2 \equiv \frac{\kappa^2}{\Omega^2}, \ \tilde{\nu} \equiv \frac{\nu \Omega}{v_A^2}$$

Dispersion relation for the neutrino drag:

$$\left[\left(\tilde{\sigma} + \tilde{\Gamma} \right) \tilde{\sigma} + \tilde{k}^2 \right]^2 + \tilde{\kappa}^2 \left[\tilde{\sigma}^2 + \tilde{k}^2 \right] - 4\tilde{k}^2 = 0,$$

$$\tilde{\Gamma} \equiv \frac{\Gamma}{\Omega}$$

$$\nu = 1.2 \times 10^{10} \left(\rho / 10^{13} \text{gcm}^{-3} \right)^{-2} \left(T / 10 \text{MeV} \right)^2 \text{cm}^2 \text{s}^{-1}$$

$$\Gamma = 6 \times 10^3 \left(T / 10 \text{MeV} \right)^6 \text{s}^{-1} \quad \text{Guilet et al. 16}$$

Prerequisite

MRI is well resolved in $\Delta x=12.5m \text{ run} \Rightarrow \text{Turbulence}$ is developed MRI is not resolved in $\Delta x=200m \text{ run} \Rightarrow \text{No turbulence}$

Pearson correlation between $ar{E}_{oldsymbol{\phi}}$ and $ar{B}_{oldsymbol{\phi}}$

Table 1 The $\alpha\Omega$ dynamo period prediction and simulation data at several radii

R (km)	$\alpha_{\phi\phi}$ (cm/s)	Ω (rad/s)	Shear rate	k_z (/cm)	P_{theory} (s)	P_{sim} (s)
20 30 40 50	-1.0×10^{7} -1.0×10^{7}	4025 2515 1688 1200	q = -1.34 q = -1.44	6.3×10^{-6} 4.2×10^{-6} 3.3×10^{-6} 2.6×10^{-6}	0.037	0.018 0.018-0.024 0.018-0.030 0.030-0.040

Dynamo wave propagates to the z direction according to the Yoshimura-Parker rule $\alpha_{\phi\phi} \nabla \Omega x e_{\phi}$

Jet from long-lived remnant formation

- ▶ Poynting flux dominated luminosity outflow is $L_{jet}^{iso} \approx 10^{52} erg/s$
- ▶ Relativistic outflow is confined in a region with $\theta \sim 12^\circ$.
- ► Terminal Lorentz factor \approx 10-20.
- ► The standard resolution (200m) underestimates the luminosity by a factor of 10-100.

Mass ejection from long-lived remnant formation

Ejecta mass evolution

Mass histogram vs Y Mass histogram vs v V

- ► $M_{eje, peak, dyn} \approx 10^{-3} M_{\odot}$, $M_{eje, peak, post}$ (Lorentz force-driven) $\approx 0.1 M_{\odot}$,
- ► Y_{e,peak,dyn}≈0.24, Y_{e,peak,post}≈0.22,
- $ightharpoonup v_{\infty,peak,dyn} \approx 0.1-0.3 \text{ c, } v_{\infty,peak,post} \approx 0.1 \text{ c}$
- The standard resolution (200m) underestimates the ejecta mass by a factor of 10 (see also Mösta et al. 20).

Intermediate lived remnant formation case

 $M_{\text{chirp}} = 1.18\overline{6}M_{\odot}$, BHB Λ_{ϕ} , $\Delta_{\text{X}_{\text{finest}}} = 12.5$ m, 0.3 second simulation (KK in prep.) $\rho (g \ cm^{-3})$ B(G) Y_{e} ©K. Hayashi

2,000 km

100 km

"Jet" from the intermediate-lived remnant formation

Poynting flux

Required jet kinetic energy (GW170817)

► $L_{jet}^{iso} \sim 10^{52} erg/s$ → If 1 second duration and 10% convergence efficiency are assumed, it is consistent with the required jet kinetic energy in GW170817.

Intermediate lived remnant formation case

Ejecta mass evolution

Mass histogram vs Y_e

- ► $M_{eje, dyn} \approx 2x10^{-3} M_{\odot}$, $M_{eje, post}$ (Lorentz-force-driven) $\approx 7x10^{-2} M_{\odot}$.
- $ightharpoonup Y_{e, peak, dyn} \approx 0.03, Y_{e, peak, post} \approx 0.2$

Short-lived remnant formation

1.2s simulation, SFHo-1.2-1.5 M_{\odot} , $\Delta x_{\text{finiest}}$ =150m&200m (KK et al. PRL 23)

(see also, Just et al. 14, 21)

No "jet" from the short-lived remnant formation

No jet until 1s at least.

Butter-fly diagram

Ram-pressure/Magpressure

- \blacktriangleright BF diagram indicates the α Ω dynamo generates the large-scale B-field.
- ▶ Resultant large-scale is not strong enough to overcome the ram-pressure. Why? Disk rotational energy is $\approx 10^{51}$ erg, c.f. Remnant NS rotational energy is $\approx 10^{53}$ erg.

Mass ejection from the short-lived remnant formation

Ejecta mass evolution

Mass histogram vs Y_e Mass histogram vs v_∞

- ► $M_{\text{eje, peak,dyn}} \approx 6 \times 10^{-3} \, \text{M}_{\odot}$, $M_{\text{eje, peak,post}} (\text{MRI-driven turbulent viscosity}) \approx 8 \times 10^{-3} \, \text{M}_{\odot}$.
- ► $Y_{e, peak, dyn} \approx 0.03$, $Y_{e, peak, post} \approx 0.26$ -0.27. ► $v_{\infty, peak, dyn} \approx 0.2$ -0.3c, $v_{\infty, peak, post} \approx 0.08$ -0.10c.

R-process nucleosynthesis calculation will be shown later on.

Prompt BH formation motivated by GW190425

1.5s simulation, SFHo-1.25-1.65 M_{\odot} , Δ x_{finiest}=150m (Hayashi, KK et al. 24)

$$\rho (g cm^{-3}) + B - field line B(G)$$

2,000 km

100 km

©K. Hayashi

Prompt BH formation

- ▶ Generation of large-scale B-field ⇒ Blandford-Znajek mechanism.
- $L_{jet} \sim 10^{49} erg/s$ > Butterfly diagram suggests MRI-driven α Ω dynamo.

Mass ejection from prompt BH formation

Ejecta mass evolution Mass histogram vs Y_{e} Mass histogram vs v_{∞}

- ▶ Dynamical ejecta $\approx 1.6 \times 10^{-3} M_{\odot}$, Post-merger ejecta (MRI-driven turbulent viscosity & Lorentz force) $\approx 4.7 \text{x} 10^{-3} \text{M}_{\odot}$
- ► $Y_{e, peak, dyn} \approx 0.08$, $Y_{e, peak, post} \approx 0.28$ ► $v_{\infty, peak, dyn} \approx 0.2c$, $v_{\infty, peak, post} \approx 0.08c$

Nucleosynthesis calculation is on going.

Inferring the EOS from "jet" launching

Lifetime of the remnant massive neutron star Short-lived Intermediate-lived Long-lived $\sim O(0.01) s$ $\sim O(0.1) s$

 $\sim 0s$

Prompt

$$L_{iso} \sim 10^{49} {\rm erg/s}$$

 $L_{iso} \sim 10^{49} {\rm erg/s}$ No jet until 1s at least. $L_{iso} \sim 10^{52} {\rm erg/s}$

$$L_{iso} \sim 10^{52} \mathrm{erg/s}$$

$$L_{iso} \sim 10^{52} {
m erg/s}$$

SFHo

BHB
$$\Lambda_{\phi}$$

Inferring the EOS from R-process nucleosynthesis

Short-lived Prompt \sim 0(0.01) s $\sim 0s$

Lifetime of the remnant massive neutron star Intermediate-lived Long-lived $\sim 0(0.1)s$

 $M_{eie} \simeq 0.006 \, M_{\odot}$

 $M_{eie} \simeq 0.014 \, M_{\odot}$

 $M_{eje} \simeq 0.07 \, M_{\odot}$

 $M_{eie} \simeq 0.1 M_{\odot}$

 $M_{eie}^{GW170817}$ $\simeq 0.05 M_{\odot}$

R-process universality:

Kilonova in GW170817:

SFHo SFHo BHB $\Lambda \phi$

BHB \wedge ϕ

Another potential large-scale dynamo

- ▶ Deep inside (Outside) core is MRI-inactive (active) region
- ▶ Bulk EM energy is contained in the MRI-inactive region.

Tayler-Spruit dynamo could be the case in the core.

Tayler-Spruit dynamo in BNS (Reboul-Salze et al. 25)

- ► Solving the linear perturbation equation on top of the simulation data. (gray: stable, white unstable)
- ► Numerical viscosity alters the critical strength of the instability Tayler-Spruit dynamo is the next challenge.

Super long-term BNS inspiral simulation (KK 25)

Residual phase error

- ► Fourth-order accurate finite volume Riemann solver (KK 25)
- $\delta \phi_{error} = 0.27 \pm 0.07 \ rad \ (new \ solver) \ vs \ \delta \phi_{error} = 0.58 \pm 0.22 \ rad \ (old \ solver)$
- ► ≈100 GW cycles

Black Hole - Neutron Star mergers Key ingredients for tidal disruption in BH-NS

```
Tidal force > NS self gravity \Rightarrow r \leq (M<sub>BH</sub>/M<sub>NS</sub>)-2/3 (M<sub>NS</sub>/R<sub>NS</sub>)-1 M<sub>BH</sub> \equiv r<sub>tidal</sub> If r<sub>tidal</sub> > r<sub>isco</sub> \Rightarrow Tidal disruption r<sub>tidal</sub> < r<sub>isco</sub> \Rightarrow No tidal disruption *ISCO = Inner Stable Circular Orbit
```

Key ingredients of the mass ejection in BH-NS are

► Spin of BH ightharpoonup Mass ratio (M_{BH}/M_{NS}) $NS(M_{NS})$ \triangleright Compactness of NS (M_{NS}/R_{NS}) Stiff EOS-Isrgal Compadtness R_{NS}

Ab initio simulation of BH-NS (K. Hayashi, KK et al. 22,23)

Numerical modeling of BH-NS merger

Magnetically tower "jet"

Isotropic Poynting Luminosity

- ► Magnetically tower "jet" builds up magnetosphere
- \Rightarrow L_{iso} and θ _{iet} are roughly consistent with the observed values.

Conclusion

- ► A self-consistent direct modelling of BNS merger is feasible.
- ▶ For the long-lived case, $L_{jet}^{iso} \sim 10^{52} erg/s$, $M_{eje} \approx 0.1 \, M_{\odot} \gg M_{eje}^{GW170817}$, and the solar R-process can not be reproduced.
- ▶ The intermediate case, $L_{jet}^{iso} \sim 10^{52} erg/s$, $M_{eje} \approx 0.07~M_{\odot} \sim M_{eje}^{GW170817}$.
- ▶ For the short-lived case, no strong jet, $M_{eje}\approx 0.014 M_{\odot} \ll M_{eje}^{GW170817}$, and the solar R-process is reproduced.
- ▶ For the prompt collapse case, $L_{eje}^{iso} \sim 10^{49} erg/s$, $M_{eje} \approx 0.006 M_{\odot}$.
- Caveat: A large systematics in hydro. simulation, in particular, MHD-turbulent case.

Generation of a large-scale field via α Ω dynamo

- ► Waves generated in the MRI-active region propagates towards the polar
- ►The B-field deep inside the core in the polar region stays buried throughout the simulation

Mean B-field in MRI-active region

- ► Deep inside (Outside) core is MRI-inactive (active) region
- ▶ Bulk EM energy is contained in the MRI-inactive region.

Prompt BH formation

Rest-mass density

MRI-quality factor

Mean poloidal B-field

Once the MRI starts to be resolved, the mean poloidal B-field is generated. $P_{theory} = 0.03$ s vs $P_{BF} = 0.03$ -0.04s

Electromagnetic emission in compact binary mergers

R(paid)-process nucleosynthesis and EM (Lattimer & Schramm 74, Metzger et al. 10, Li & Paczynski 98)

Role of the r-process elements

► Heating source via radio-active decay (Kasen et al. 17)

$$\dot{\epsilon} \approx 10^{10} \text{ erg s}^{-1} \text{ g}^{-1} \left(\frac{t}{\text{day}}\right)^{-1.3}$$

► Opacity source (Lanthanide elements) (Barnes & Kasen 13, Tanaka & Hotokezaka 13)

$$\kappa \approx 10 \text{ cm}^2 \text{ g}^{-1}$$

Properties of electromagnetic emission (Optical-IR)

▶ Peak time (diffusion time = dynamical time)

$$t_{\rm peak} \approx 5.7 \, {\rm day} \left(\frac{\kappa}{10 \, {\rm cm}^{-2} \, {\rm g}^{-1}} \right)^{1/2} \left(\frac{M_{\rm eje}}{0.03 M_{\odot}} \right)^{1/2} \left(\frac{v_{\rm ej}}{0.2c} \right)^{-1/2}$$

▶ Peak Luminosity

Slide courtesy of M. Tanaka

$$L \approx \dot{\epsilon} M_{\rm ej} \approx 6 \times 10^{41} \, {\rm erg \ s^{-1}} \left(\frac{M_{\rm eje}}{0.03 M_{\odot}} \right) \left(\frac{t}{\rm day} \right)^{-1.3}$$

R-process nucleosynthesis and its opacity

- ► Electron fraction Y_e (# of electron/# of baryon) is a key quantity
- $ightharpoonup Y_e \gtrsim 0.25$ produces negligible / small amount of lanthanide \Rightarrow low

opacity in optical

- ► $Y_e \lesssim 0.25$ produces lanthanide \Rightarrow high opacity in IR
- ► Neutrino reaction determines Y_e of the ejecta