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Large-scale dynamo and jet launching from compact binary 
mergers: current status and beyond



Introduction

There is no self-consistent model to explain it. 

Reality Imagination



A “package” for EM counterpart modeling

NR simulation 

(GR+EOS+ν-Rad.+MHD)

⇩

R-process nucleosynthesis calculation

⇩

Kilonova/GRB light curve modeling

⇩

Observation

Sys. Err.
 Resolution
 Approx. GR
 Approx. ν-Rad
 MHD approx.

…
Reaction rate
Mass model

…

Photon rad. 
transfer
…



Neutron rich matter ejection mechanism
S. Fujibayashi, KK, et al. 18

One missing mass ejection channel = Lorentz force-driven ejecta
Recent progress indicates its relevance. (Mösta et al. 20,  Combi & Siegel 23, 
KK et al. 24, Most 23)

Many Refs. 
Hotokezaka et al. 13, 
Fujibayshi et al. 18,20,21,22
Bauswein et al. 13, 17
Just et al. 14, 21
Siegel & Metzger, 18
Combi & Siegel, 23
Radice et al. 18
+ more



To B or not to B in binary neutron star merger (by Victoria M. Kaspi)

Image of the binary pulsar

NS spin period

 Assumption : Rotational energy is dissipated by the 
magnetic dipole radiation ⇒



 B-field in observed binary NSs : 109.7 – 10 12.2 G

Kinetic energy before the merger ～ 1053 g cm2 s-2 (M/2.7Msun)(v/0.3c)2

B-field energy ～1041 g cm2 s-2 (B/1012G)2(R/106cm)3

B-field is irrelevant in BNS mergers ? 

No ! ⇒ Several amplification mechanisms (Magneto Hydro Dynamical 
instabilities) could amplify the B-filed up to the dynamically important 
level

To B or not to B in binary neutron star merger (by Victoria M. Kaspi)



Lorentz force (MHD)-driven ejecta as a “new” channel
Question: How can be a strong and large-scale field established?

Mean field dynamo theory 

u & b : turbulence of the velocity and b-field.

αΩdynamo



Generation of a large-scale field viaαΩ dynamo

αΩdynamo theory prediction (Check list)

1. ത𝐵𝜑 should be anticorrelated with ത𝐵𝑅/𝑧 .

2. ത𝐸𝜑 should be correlated or anti-correlated with ത𝐵𝜑 .

3. Dynamo cycle period Ptheory = 2π(αφφdΩ/dlnR kz/2)-1/2

4. Dynamo wave propagation direction according to the Yoshimura-Parker 
rule αφφ∇Ωx eφ

Question: What generate electromotive force (EMF), i.e., fluctuation 
component of velocity and magnetic field?



Generation of a large-scale field viaαΩ dynamo

Kelvin Helmholtz instability (Rasio and Shapiro 99, Price & Rosswog 05)

High grid resolution is key.
(KK et al. 14,15,18,24, Palenzuela et al. 22, Aguilera-Miret et al. 20, 22, 23)
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Magneto Rotational Instability (MRI) (Balbus & Hawley 91) 

Magnetic field line

Center
×

deceleration

Center
×

Center
×

acceleration

Generation of a large-scale field viaαΩ dynamo

Differential rotation: ∇Ω < 0, 𝜆𝑀𝑅𝐼
RNS ≈ 80𝑚
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Again, high resolution is key. (Shibata et al. 05, Duez et al. 05, Siegel et al. 13, KK et al. 18,24)



Methodology 

 Einstein’s solver (Shibata & Nakamura 95, Baumgarte & Shapiro 98, Barker et al, 06, 
Campanelli et al. 06, Hilditch et al. 13)

 Nuclear theory-based equation of state for the NS matter (SFHo/BHBLp 
/DD2) (Steiner et al. 13, Banik et al. 14)

 Relativistic magnetohydrodynamics solver (KK et al. 22, Migone et al. 09, 
Gardiner & Stone 08)

 Neutrino-radiation transfer solver (Sekiguchi et al. 12)

+ for more technical issues (see KK et al. 22)

All the works, we quantify the ability of our simulation set up to resolve the 
KHI and MRI:

𝑄𝑀𝑅𝐼 ≡
𝜆𝑀𝑅𝐼

Δ𝑥
≥ 10



Computational facilities

Fugaku@Riken (Japan) Raven@MPCDF (Germany)

Supercomputer = Experimental labo.



𝐿𝑖𝑠𝑜 ∼ 1052erg/s
KK Nature Astro. 24

No jet until 1s at least.
KK PRL 23

𝐿𝑖𝑠𝑜 ∼ 1049erg/s
Hayashi et al. PRL 25

𝐿𝑖𝑠𝑜 ∼ 1052erg/s
KK 25 in prep.

Lifetime of the remnant massive neutron star
Prompt              Short-lived             Intermediate-lived    Long-lived
～ 0s                 ～O(0.01) s             ～O(0.1)s               ～O(1) s

Inferring the EOS from ab initio simulations

EOS stiffness:  Soft (SFHo)                                                                    Stiff (DD2)
Binary mass:    Large                                                                             Small



Long-lived remnant formation 
0.2s simulation, DD2-1.35-1.35M⦿ ,Δxfiniest=12.5 m (KK et al. Nature Astron. 24)

                             Ye 𝜌 𝑔 𝑐𝑚−3 + 𝐵 − 𝑓𝑖𝑒𝑙𝑑 𝑙𝑖𝑛𝑒 𝐵(𝐺)     ©K. Hayashi
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Kelvin-Helmholtz dynamo at the merger

KH amplification at the merger Growth rate vs initial B-field

 In reality, the KH dynamo would produce a strong, but small-scale 
magneto turbulence (see also Palenzuera et al. 22, Aguilera-Miret et al. 22, 23).



Neutrino viscosity/drag on MRI

Dispersion relation for MRI with the 
neutrino viscosity:

Dispersion relation for the neutrino 
drag:

Guilet et al.  16

Neutrino viscosity/drag could be 
irrelevant for MRI. 



Check list to pin down anαΩ dynamo

Prerequisite MRI quality factor: 
𝜆𝑀𝑅𝐼

Δ𝑥
> 10 

MRI is well resolved in Δx=12.5m run⇒Turbulence is developed
MRI is not resolved in Δx=200m run⇒ No turbulence 



Ω effect α effect

Check list to pin down anαΩ dynamo



Pearson correlation between ത𝐸φ and ത𝐵𝜑

Check list to pin down anαΩ dynamo



Dynamo wave propagates to the z direction according to the Yoshimura-
Parker rule αφφ∇Ωx eφ

Check list to pin down anαΩ dynamo



Jet from long-lived remnant formation 

 

 Poynting flux dominated luminosity outflow is 𝐿𝑗𝑒𝑡
𝑖𝑠𝑜 ≈ 1052𝑒𝑟𝑔/𝑠

 Relativistic outflow is confined in a region with 𝜃 ∼ 12∘.
 Terminal Lorentz factor ≈10-20. 
 The standard resolution (200m) underestimates the luminosity by a factor 

of 10-100.



Mass ejection from long-lived remnant formation 

      Ejecta mass evolution      Mass histogram vs Ye   Mass histogram vs v∞

 Meje, peak,dyn ≈10-3 M⦿, Meje, peak,post (Lorentz force-driven)≈0.1 M⦿, 
 Ye,peak,dyn≈0.24, Ye,peak,post≈0.22,
 v∞,peak,dyn ≈0.1-0.3 c, v∞,peak,post ≈ 0.1c
The standard resolution (200m) underestimates the ejecta mass by a 

factor of 10 (see also Mösta et al. 20).



Intermediate lived remnant formation case
Mchirp=1.186M⦿, BHBΛφ, Δxfinest=12.5m, 0.3 second simulation (KK in prep.)

                𝜌 (𝑔 𝑐𝑚−3)           𝐵(𝐺)                 𝑌𝑒       ©K. Hayashi
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“Jet” from the intermediate-lived remnant formation 
            
                 Poynting flux                  Required jet kinetic energy (GW170817)

 𝐿𝑗𝑒𝑡
𝑖𝑠𝑜 ∼ 1052𝑒𝑟𝑔/𝑠⇒ If 1 second duration and 10% convergence efficiency 

are assumed, it is consistent with the required jet kinetic energy in 
GW170817. 



Intermediate lived remnant formation case

   Ejecta mass evolution                           Mass histogram vs Ye 

 Meje, dyn ≈2x10-3 M⦿, Meje, post(Lorentz-force-driven)≈ 7x10-2M⦿.

 Ye, peak,dyn ≈ 0.03, Ye, peak, post ≈ 0.2



Short-lived remnant formation 
1.2s simulation, SFHo-1.2-1.5M⦿ ,Δxfiniest=150m&200m (KK et al. PRL 23)

                       𝜌 (𝑔 𝑐𝑚−3)                 𝑌𝑒                                    𝐵(𝐺)         ©K. Hayashi

 (see also, Just et al. 14, 21)
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No “jet” from the short-lived remnant formation 

 BF diagram indicates the αΩ dynamo generates the large-scale B-field.  
 Resultant large-scale is not strong enough to overcome the ram-pressure. 

Why? Disk rotational energy is ≈ 1051erg, c.f. Remnant NS rotational energy 
is ≈ 1053erg.

No jet until 1s at least.

Butter-fly diagram
Ram-pressure/Mag-
pressure



Mass ejection from the short-lived remnant formation 

   Ejecta mass evolution         Mass histogram vs Ye   Mass histogram vs v∞

 Meje, peak,dyn ≈6x10-3 M⦿, Meje, peak,post(MRI-driven turbulent viscosity)≈ 
8x10-3M⦿.

 Ye, peak,dyn ≈ 0.03, Ye, peak, post ≈ 0.26-0.27.
 v∞, peak,dyn ≈ 0.2-0.3c, v∞, peak, post ≈ 0.08-0.10c.

R-process nucleosynthesis calculation will be shown later on.



Prompt BH formation motivated by GW190425
1.5s simulation, SFHo-1.25-1.65M⦿ ,Δxfiniest=150m (Hayashi, KK et al. 24)
        𝜌 𝑔 𝑐𝑚−3 + 𝐵 − 𝑓𝑖𝑒𝑙𝑑 𝑙𝑖𝑛𝑒       𝐵 (𝐺)                       𝑌𝑒                           

                                                                                                                ©K. Hayashi
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Prompt BH formation

 Generation of large-scale B-field⇒Blandford-Znajek mechanism. 
𝐿𝑗𝑒𝑡 ∼ 1049𝑒𝑟𝑔/𝑠

 Butterfly diagram suggests MRI-driven αΩ dynamo.        



Mass ejection from prompt BH formation

      Ejecta mass evolution      Mass histogram vs Ye   Mass histogram vs v∞

 Dynamical ejecta ≈1.6x10-3 M⦿, Post-merger ejecta (MRI-driven 
turbulent viscosity & Lorentz force) ≈ 4.7x10-3M⦿

 Ye, peak,dyn ≈ 0.08, Ye, peak, post ≈ 0.28 
 v∞, peak,dyn ≈ 0.2c, v∞, peak, post ≈ 0.08c 

Nucleosynthesis calculation is on going.



𝐿𝑖𝑠𝑜 ∼ 1052erg/sNo jet until 1s at least.𝐿𝑖𝑠𝑜 ∼ 1049erg/s 𝐿𝑖𝑠𝑜 ∼ 1052erg/s

Lifetime of the remnant massive neutron star
Prompt              Short-lived             Intermediate-lived    Long-lived
～ 0s                 ～O(0.01) s             ～O(0.1)s               ～O(1) s

Inferring the EOS from “jet” launching

SFHo BHBΛφ DD2



Inferring the EOS from R-process nucleosynthesis

On-going On-going

R-process universality:     SFHo BHBΛφ DD2
Kilonova in GW170817:    SFHo BHBΛφ DD2

𝑀𝑒𝑗𝑒 ≃ 0.014 𝑀⊙
𝑀𝑒𝑗𝑒 ≃ 0.1 𝑀⊙𝑀𝑒𝑗𝑒 ≃ 0.07 𝑀⊙𝑀𝑒𝑗𝑒 ≃ 0.006 𝑀⊙

𝑀𝑒𝑗𝑒
𝐺𝑊170817 ≃ 0.05 𝑀⊙

Lifetime of the remnant massive neutron star
Prompt              Short-lived             Intermediate-lived    Long-lived
～ 0s                 ～O(0.01) s             ～O(0.1)s               ～O(1) s



Another potential large-scale dynamo

 Deep inside (Outside) core is MRI-inactive (active) region
 Bulk EM energy is contained in the MRI-inactive region.

Tayler-Spruit dynamo could be the case in the core.

MRI-inactive MRI-active

Barrère et al. 25
Spruit 98



Tayler-Spruit dynamo in BNS (Reboul-Salze et al. 25)

 Solving the linear perturbation equation on top of the simulation data. 
(gray: stable, white unstable)

 Numerical viscosity alters the critical strength of the instability
Tayler-Spruit dynamo is the next challenge.



Super long-term BNS inspiral simulation (KK 25)

 Fourth-order accurate finite volume Riemann solver (KK 25)

 𝛿𝜙𝑒𝑟𝑟𝑜𝑟 = 0.27 ± 0.07 𝑟𝑎𝑑 𝑛𝑒𝑤 𝑠𝑜𝑙𝑣𝑒𝑟  𝑣𝑠 𝛿𝜙𝑒𝑟𝑟𝑜𝑟 = 0.58 ±
0.22 𝑟𝑎𝑑 (𝑜𝑙𝑑 𝑠𝑜𝑙𝑣𝑒𝑟)

 ≈100 GW cycles

Residual phase error



BH (MBH)

NS (MNS)

r

RNS risco 

(a=0)
risco 

(a=M)

Stiff EOS= small 
Compactness

r

ρ
RNS

Black Hole - Neutron Star mergers
Key ingredients for tidal disruption in BH-NS

Tidal force > NS self gravity ⇒ r ≾ (MBH/MNS)
-2/3 (MNS/RNS)

-1 MBH ≡ rtidal
If rtidal > risco ⇒ Tidal disruption
   rtidal < risco ⇒ No tidal disruption  
 *ISCO  = Inner Stable Circular Orbit

Key ingredients of the mass ejection in BH-NS are
 Spin of BH
 Mass ratio (MBH/MNS)
 Compactness of NS (MNS/RNS)

Soft EOS= large 
Compactness



Ab initio simulation of BH-NS (K. Hayashi, KK et al. 22,23) 



Numerical modeling of BH-NS merger
Magnetically tower “jet” 

Isotropic Poynting Luminosity

 Magnetically tower “jet” builds up magnetosphere
⇒Liso and θjet are roughly consistent with the observed values. 



Conclusion

 A self-consistent direct modelling of BNS merger is feasible. 

 For the long-lived case, 𝐿𝑗𝑒𝑡
𝑖𝑠𝑜 ∼ 1052𝑒𝑟𝑔/𝑠, 𝑀𝑒𝑗𝑒 ≈ 0.1 𝑀⊙ ≫ 𝑀𝑒𝑗𝑒

𝐺𝑊170817, 
and the solar R-process can not be reproduced. 

 The intermediate case, 𝐿𝑗𝑒𝑡
𝑖𝑠𝑜 ∼ 1052𝑒𝑟𝑔/𝑠, 𝑀𝑒𝑗𝑒 ≈ 0.07 𝑀⊙ ∼ 𝑀𝑒𝑗𝑒

𝐺𝑊170817.
 

 For the short-lived case, no strong jet, 𝑀𝑒𝑗𝑒 ≈ 0.014𝑀⊙ ≪ 𝑀𝑒𝑗𝑒
𝐺𝑊170817, and 

the solar R-process is reproduced. 

 For the prompt collapse case, 𝐿𝑒𝑗𝑒
𝑖𝑠𝑜 ∼ 1049𝑒𝑟𝑔/𝑠, 𝑀𝑒𝑗𝑒 ≈ 0.006𝑀⊙.

Caveat: A large systematics in hydro. simulation, in particular, MHD-turbulent 
case. 



Generation of a large-scale field viaαΩ dynamo

 Waves generated in the MRI-active region propagates towards the polar
The B-field deep inside the core in the polar region stays buried throughout 

the simulation



Mean B-field in MRI-active region

 Deep inside (Outside) core is MRI-inactive (active) region
 Bulk EM energy is contained in the MRI-inactive region.

MRI-inactive MRI-active



Prompt BH formation

   Rest-mass density         MRI-quality factor             Mean poloidal B-field

Once the MRI starts to be resolved, the mean poloidal B-field is generated.
Ptheory = 0.03 s vs PBF = 0.03-0.04s 



Electromagnetic emission in compact binary mergers

R(paid)-process nucleosynthesis and EM
(Lattimer & Schramm 74, Metzger et al. 10, Li & Paczynski 98)

Role of the r-process elements
Heating source via radio-active decay (Kasen et al. 17)

Opacity source (Lanthanide elements) 
(Barnes & Kasen 13, Tanaka & Hotokezaka 13)

                                                             
Properties of electromagnetic emission (Optical-IR)

Peak time (diffusion time = dynamical time)

Peak Luminosity

Slide courtesy of M. Tanaka



Tanaka et al. 17

Electron fraction Ye (# of electron/# of baryon) is a key quantity
Ye ≳ 0.25 produces negligible / small amount of lanthanide ⇒ low 

opacity in optical
Ye ≾ 0.25 produces lanthanide ⇒ high opacity in IR
Neutrino reaction determines Ye of the ejecta

Lanthanide Optical IR

R-process nucleosynthesis and its opacity
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