Impact of initial-state parametrizations on isobar collisions

Andreas Kirchner

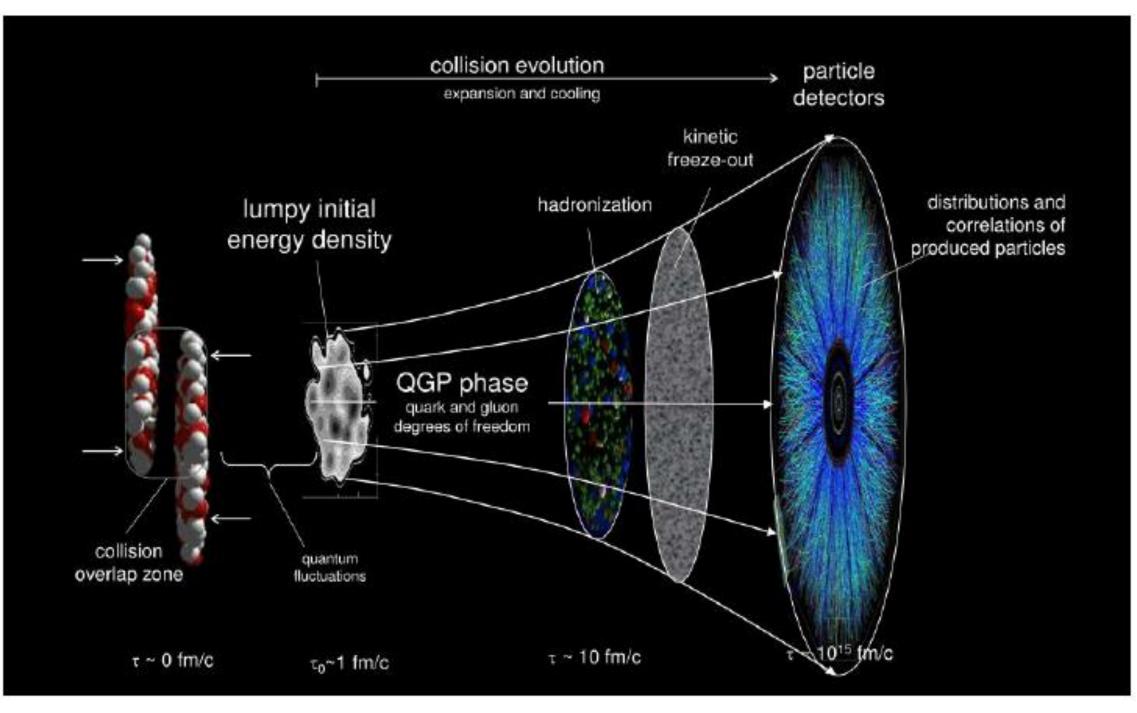
27.1.2023

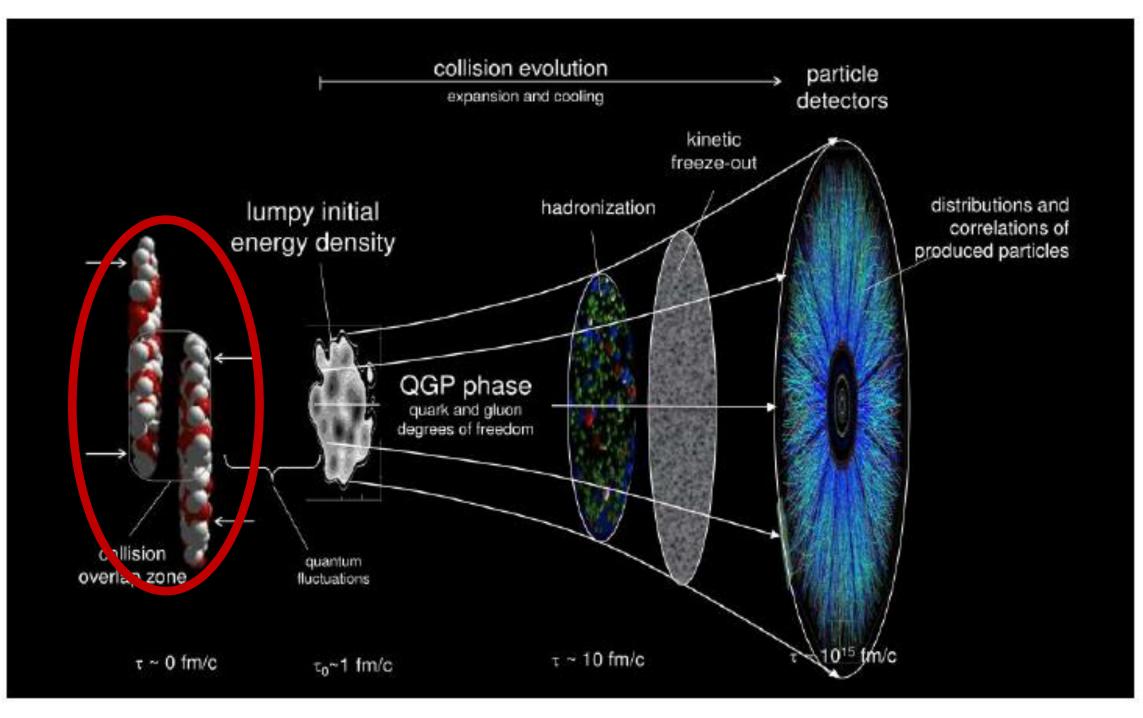
Intersection of nuclear structure and high-energy nuclear collisions

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Overview

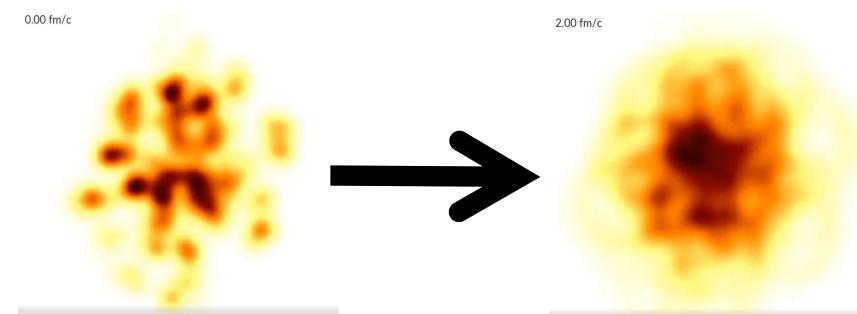
- Short introduction to heavy ion collisions
- Overview of observables & initial state predictors
- Initial state results
- Mode-by-mode hydrodynamics (FluiduM)
- Final state results





Initial state

- Collision modelled by different frameworks, e.g.:
 - Glauber
 - IP-GLASMA
 - TrenTo
 - CGC
- Pre-hydro modelling possible via free streaming



(1504.02160, 0812.3393)

How does TrenTo work?

- Sample nucleons according to Wood-Saxon
- Put gaussian on each x-y position with width w and norm k
- Check for collisions in each nucleus

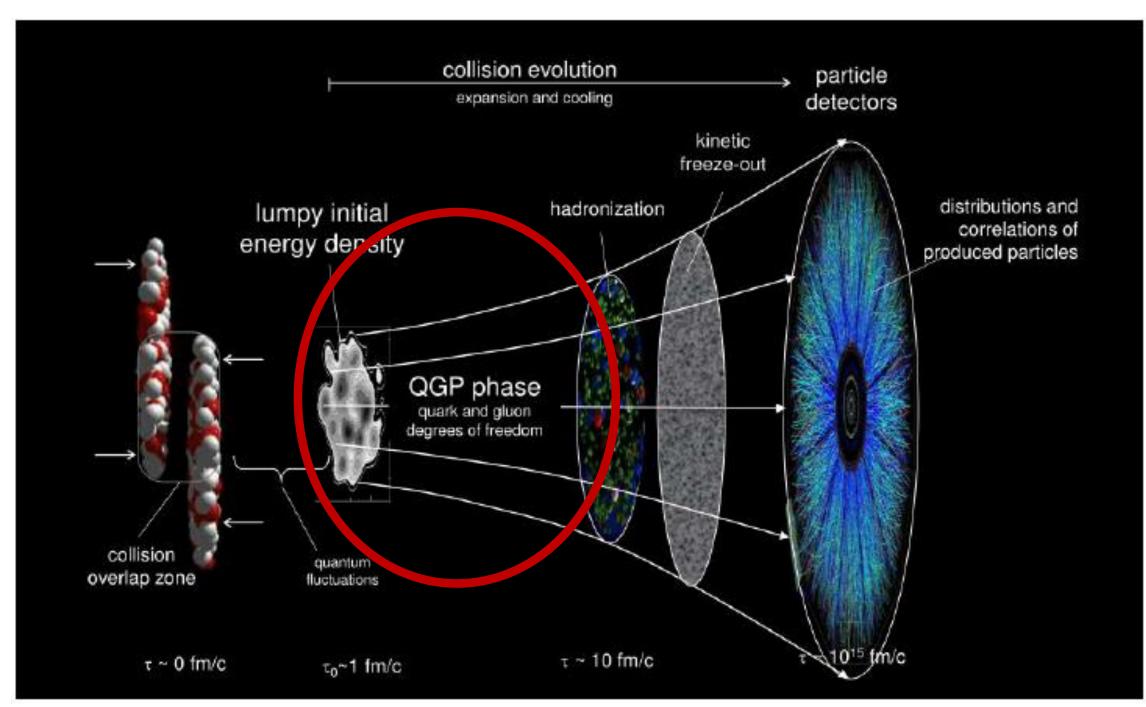
-> Get reduced thickness functions T_A and T_B

• Combine them according to

$$T_R(p;T_A,T_B) = \left(rac{T_A^p + T_B^p}{2}
ight)^{1/p}$$
(1412.4708)

- Trento parameters
- •reduced thickness: p
- •nuclear fluctuations: k
- •nucleon width: w
- minimum nucleon-nucleon distance: d
 number of nucleon constituents: m
 nucleon constituent width: v

$$T_R = \begin{cases} \max(T_A, T_B) & p \to +\infty, \\ (T_A + T_B)/2 & p = +1, \text{ (arithmetic)} \\ \sqrt{T_A T_B} & p = 0, \text{ (geometric)} \\ 2T_A T_B/(T_A + T_B) & p = -1, \text{ (harmonic)} \\ \min(T_A, T_B) & p \to -\infty. \end{cases}$$



Small primer in hydrodynamics

• Hydrodynamic equations derived from energy-momentum conservations (+other conservation laws, e.g. baryon number current) $\nabla_{\mu}T^{\mu\nu} = 0$

$$u^{\mu}\partial_{\mu}\epsilon + (\epsilon + p + \pi_{\text{Bulk}})\nabla_{\mu}u^{\mu} + \pi^{\mu\nu}\nabla_{\mu}u_{\nu} = 0$$

$$(\epsilon + p + \pi_{\text{Bulk}})u^{\mu}\nabla_{\mu}u^{\nu} + \Delta^{\mu\nu}\partial_{\mu}(p + \pi_{\text{Bulk}}) + \Delta^{\nu}_{\alpha}\nabla_{\mu}\pi^{\mu\alpha} = 0$$

Form of energy-momentum tensor based on general tensor decomposition

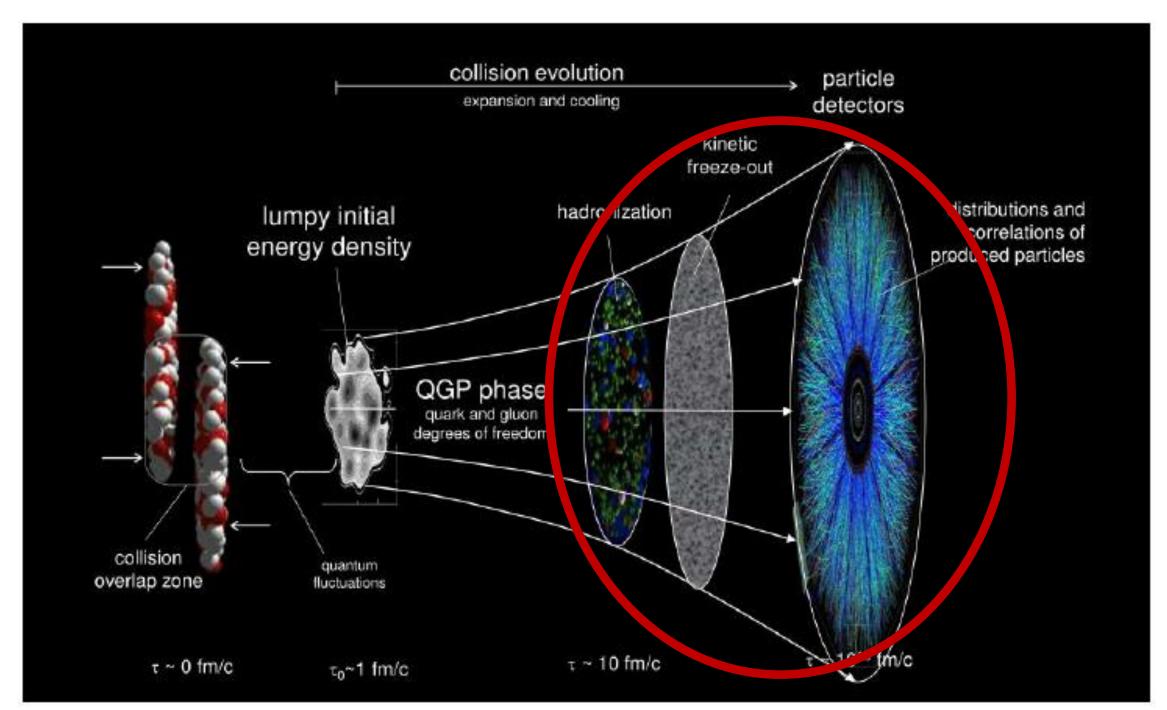
$$T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} + (p + \pi_{\text{Bulk}})\Delta^{\mu\nu} + \pi^{\mu\nu}$$

Viscous hydrodynamics

 Supplemental equations for viscous corrections: Second order Israel-Stewart equations

$$\begin{split} P^{\mu\nu\rho}_{\sigma} \left[\tau_{S} (u^{\lambda} \nabla_{\lambda} \pi^{\sigma}_{\rho} - 2\pi^{\sigma\lambda} \omega_{\rho\lambda}) + 2\eta \nabla_{\rho} u^{\sigma} \right] + \pi^{\mu\nu} &= 0 \\ \tau_{\text{Bulk}} u^{\mu} \partial_{\mu} \pi_{\text{Bulk}} + \pi_{\text{Bulk}} + \zeta \nabla_{\mu} u^{\mu} &= 0 \\ \text{Israel-Stewart} \qquad \qquad \text{Ideal} \qquad \text{Navier-Stokes} \end{split}$$

- Navier-Stokes: Introduce viscosity
 - -> Allows non-zero viscous corrections
- Israel-Stewart: Introduce relaxation time
 - -> Equations remain valid out of equilibrium



Particle Production

• Cooper-Frye freeze-out: $\frac{dN}{d^3pd^3x} = f(p^{\mu}, T(x), u^{\mu}(x), \pi^{\mu\nu}(x), \pi_{\text{bulk}})$

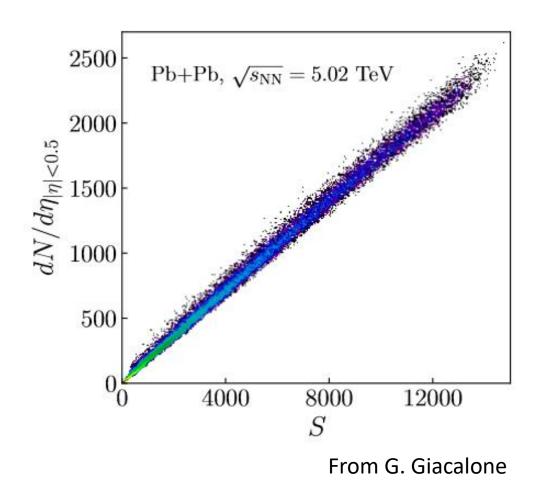
$$E\frac{dN}{d^{3}p} = -\frac{1}{(2\pi)^{3}}p_{\mu}\int_{\Sigma_{f}}d\sigma^{\mu}f(p^{\mu}, T(x), u^{\mu}(x), \pi^{\mu\nu}(x), \pi_{\text{bulk}})$$

- Distribution function f: Bose/Fermi + corrections, e.g. $f = f_{eq} + \delta f_{shear} + \delta f_{bulk}$
- Additional steps:
 - Chemical/kinetic F.O.
 - Hadronic afterburner/rescattering

$$\begin{split} f_{\text{eq}} & \text{Bose/Fermi distribution} \\ \delta f_{\text{shear}} &= f_{\text{eq}} (1 \pm f_{\text{eq}}) \frac{p_{\mu} p_{\nu} \pi^{\mu\nu}}{2(e+p)T^2} \\ \delta f_{\text{bulk}} &= f_{\text{eq}} (1 \pm f_{\text{eq}}) \left[\frac{E_p}{T} (\frac{1}{3} - c_s^2) - \frac{1}{3} \frac{m^2}{TE_p} \right] \frac{\tau_{\Pi} \pi_{\text{bulk}}}{\zeta} \end{split}$$

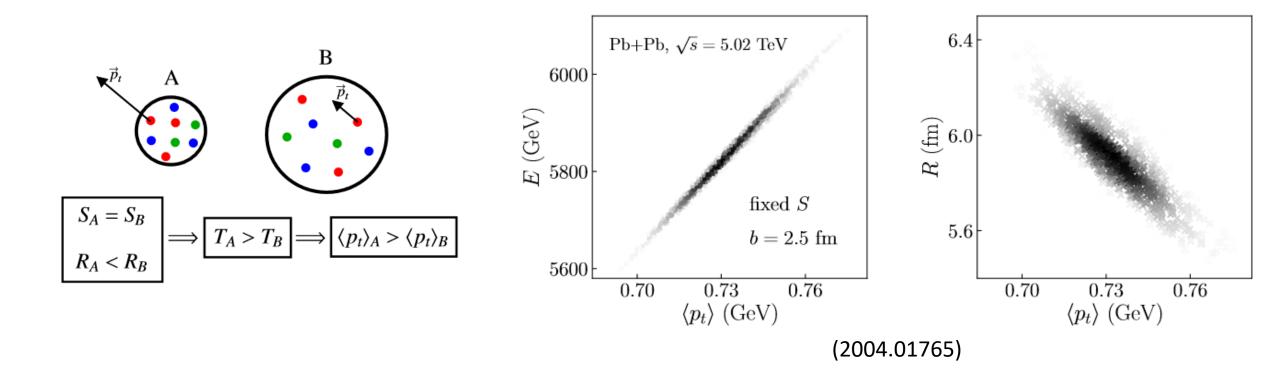
Observable overview – N_ch

- Measure/count number of produced particles
- Initial state predictor: entropy
- Ideal gas: entropy proportional to produced particles



Obeservable overview – mean pT

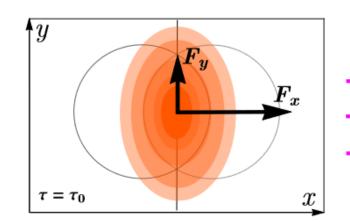
- Average momentum of measured particles -> $\langle p_t \rangle$
- Intial state predictor: energy/system size

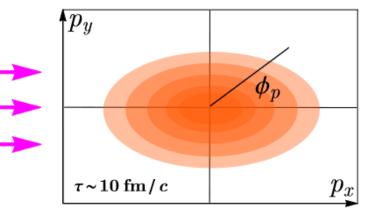


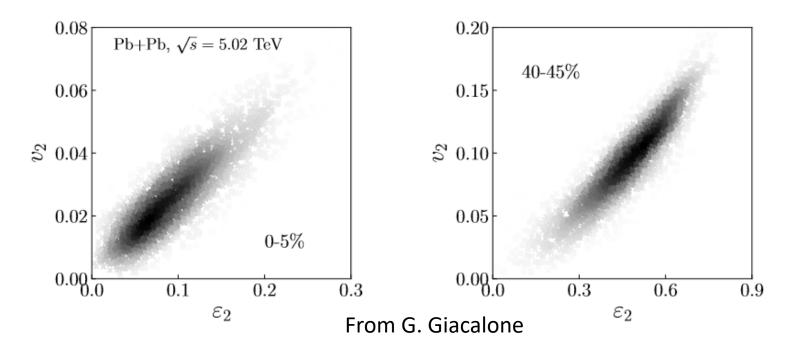
Observable overview - flow

- Fourier transformation of spectra -> flow harmonics
- Initial state predictor: eccentricities

$$\varepsilon_2 = \frac{\left|\int_{\mathbf{x}} \mathbf{x}^2 s(\mathbf{x}, \tau_0)\right|}{\int_{\mathbf{x}} |\mathbf{x}|^2 s(\mathbf{x}, \tau_0)},$$

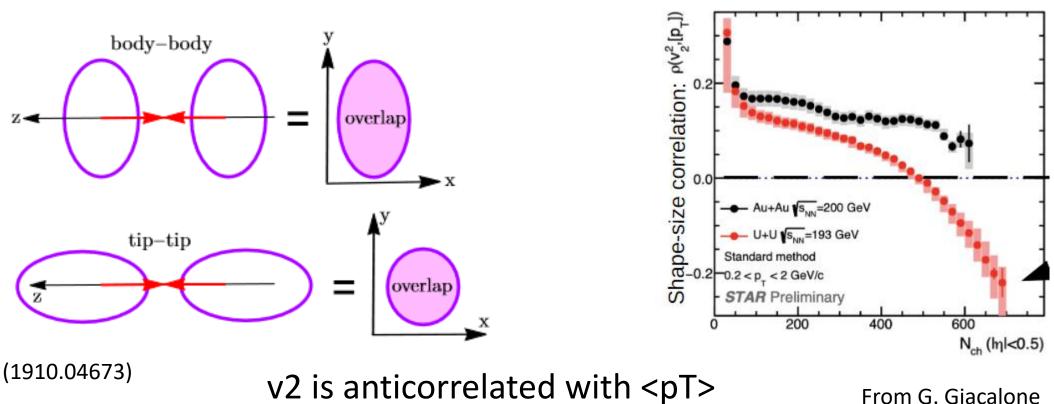






Observable overview – Pearson correlator

Correlation between flow and mean pT
 -> Measure of axial deformations



 $\rho(v_2^2, \langle p_t \rangle) = \frac{\left\langle \delta v_2^2 \delta \langle p_t \rangle \right\rangle}{\sqrt{\left\langle \left(\delta v_2^2 \right)^2 \right\rangle \left\langle \left(\delta \langle p_t \rangle \right)^2 \right\rangle}},$

Setup - TrenTo

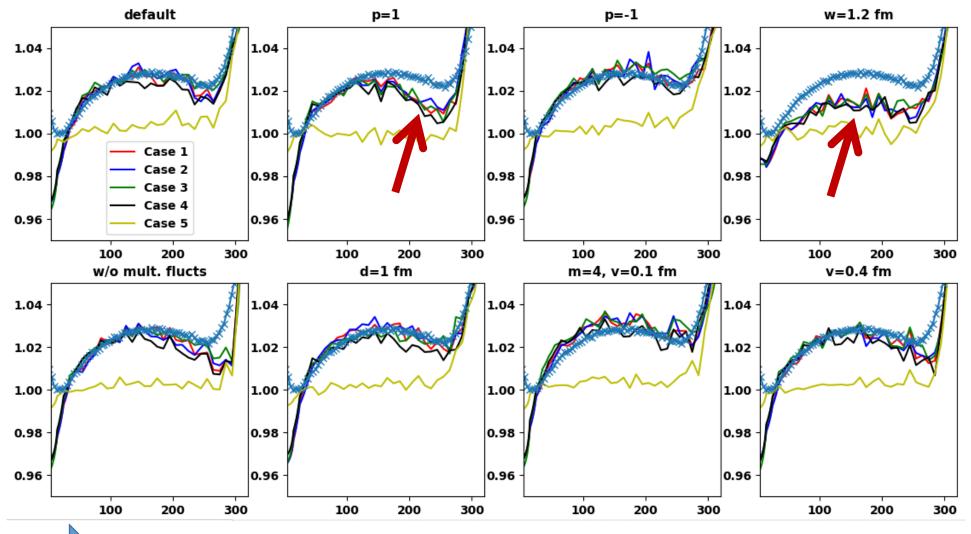
- Take every possible combination of TrenTo and nuclear parameters
- Use 20M minimum bias events per combination

batch number/val.	х	р	w	k	d	m	v
1	4.2	0.0	0.5	1			
2	4.2	1.0	0.5	1			
3	4.2	-1.0	0.5	1			
4	4.2	0.0	1.2	1			
5	4.2	0.0	0.5	16			
6	4.2	0.0	0.5	1	1.0		
7	4.2	0.0	0.5	1		4	0.1
8	4.2	0.0	0.5	1		4	0.4

system to run	$R_0 ~(\mathrm{fm})$	$a_0 ~(\mathrm{fm})$	β_2	β_3	γ (°)
Case1 (${}^{96}Ru + {}^{96}Ru$) [full ${}^{96}Ru$]	5.09	0.46	0.16	0	30
Case2 (96 Ru+ 96 Ru)	5.09	0.46	0.16	0	0
Case3 (96 Ru+ 96 Ru)	5.09	0.46	0.16	0.20	0
Case4 (96 Ru+ 96 Ru)	5.09	0.46	0.06	0.20	0
Case5 $(^{96}Ru + ^{96}Ru)$	5.09	0.52	0.06	0.20	0
Case6 (96 Zr+ 96 Zr) [full 96 Zr]	5.02	0.52	0.06	0.20	0

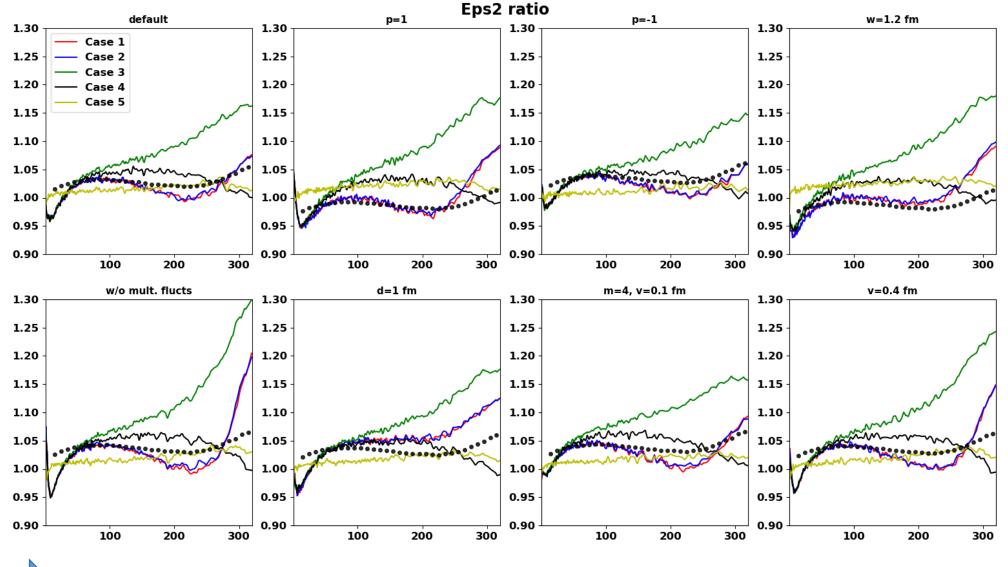
Case4 (⁹⁶ Ru+ ⁹⁶ Ru)	5.09	0.46	0.06 0.2	0 0
Case5 (⁹⁶ Ru+ ⁹⁶ Ru)	5.09	0.52	0.06 0.2	0 0
Case6 $({}^{96}Zr + {}^{96}Zr)$ [full ${}^{96}Zr$]	5.02	0.52	0.06 0.2	20 0

Histogram ratios



Nuclear skin thickness dominates histogram ratio

Case2 (${}^{96}Ru + {}^{96}Ru$)	5.09	0.46	0.16	0	0
Case3 (⁹⁶ Ru+ ⁹⁶ Ru)	5.09	0.46	0.16	0.20	0
Case4 (⁹⁶ Ru+ ⁹⁶ Ru)	5.09	0.46	0.06	0.20	0

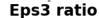


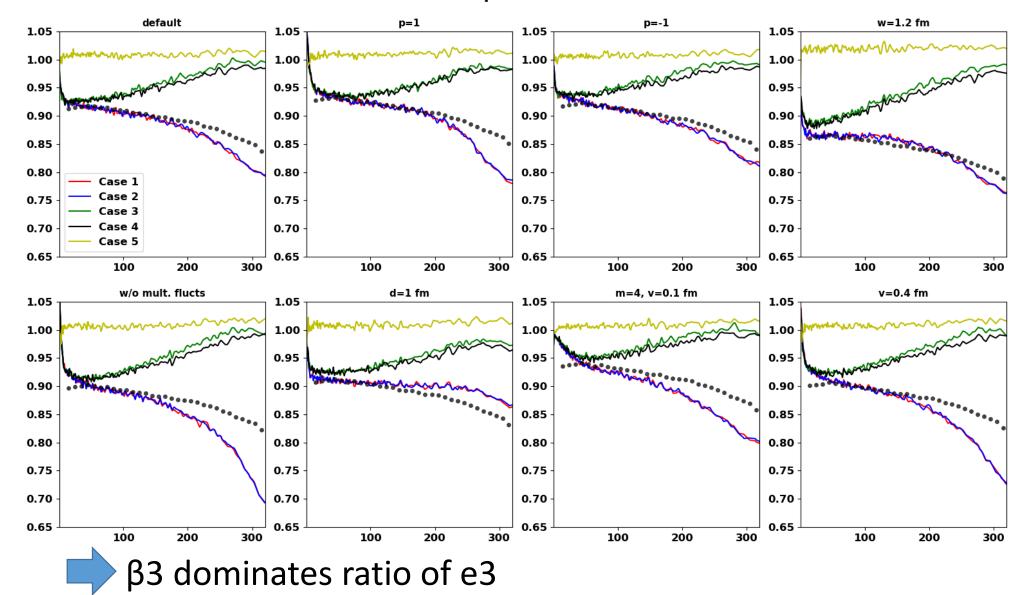
β dominates ratio of eccentricities

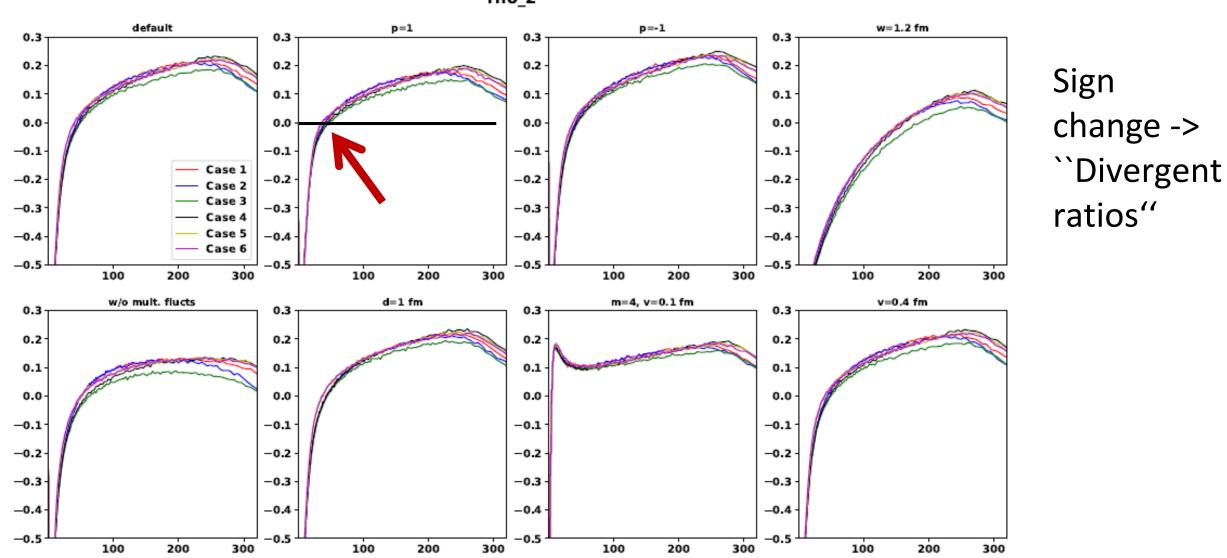
TrenTo - Results

Case2 (${}^{96}Ru + {}^{96}Ru$) Case3 (${}^{96}Ru + {}^{96}Ru$) Case4 (${}^{96}Ru + {}^{96}Ru$) Case4 (${}^{96}Ru + {}^{96}Ru$)

5.09	0.46	0.16	0	0
5.09	0.46	0.16	0.20	0
5.09	0.46	0.06	0.20	0

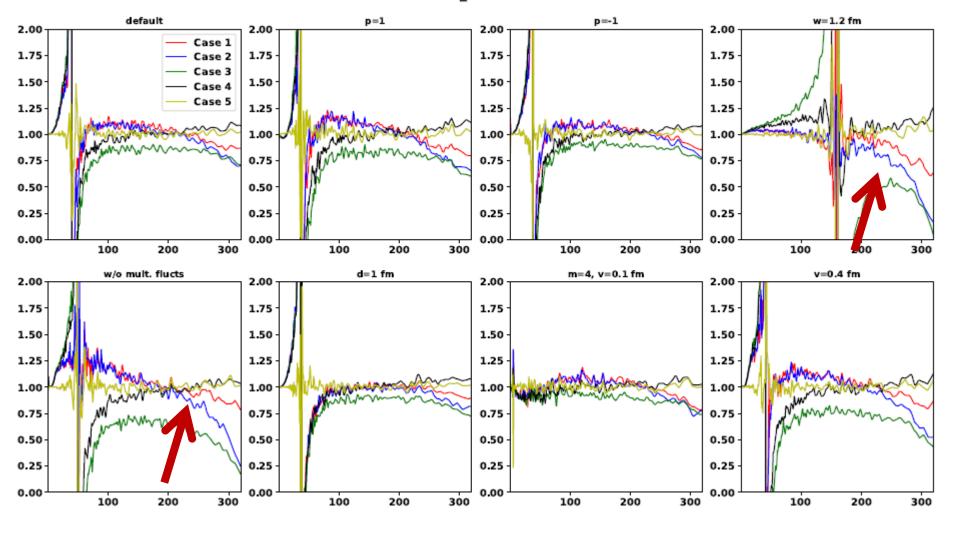






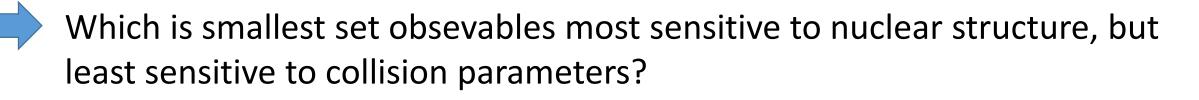
rho_2

Case1 (⁹⁶ Ru+ ⁹⁶ Ru) [full ⁹⁶ Ru]	5.09	0.46	0.16	0	30
Case2 (96 Ru+ 96 Ru)	5.09	0.46	0.16	0	0



Pearson correlator sensitive to triaxiality

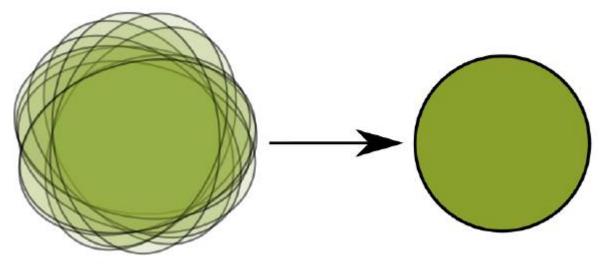
- There are certain observables more sensitive to one nuclear structure parameter than others:
 - Histogramm ratio -> a0
 - V2,v3 ratio-> betas
 - Rho-> gamma
- Ratios only affected by "degree of sharpness of QGP" when considering TrenTo parameters
 - Nucleon width w
 - Thickness p
 - Constituent size v



Mode-by-mode hydrodynamics

- Idea: Describe event ensemble instead of single event
 - -> Statistical symmetry
 - -> BG-fluctuation splitting

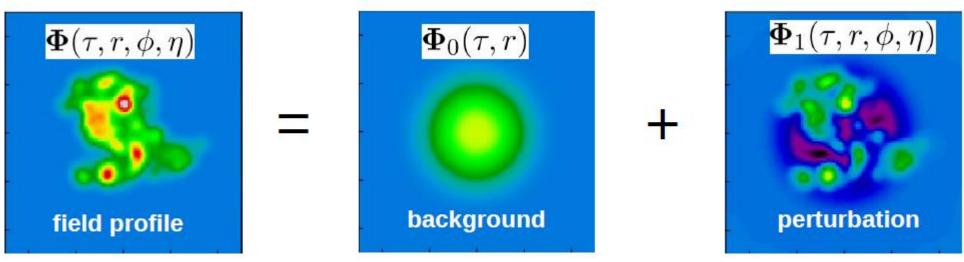
 $\Phi(\tau, r, \varphi, \eta) = \Phi_0(\tau, r) + \epsilon \Phi_1(\tau, r, \varphi, \eta)$



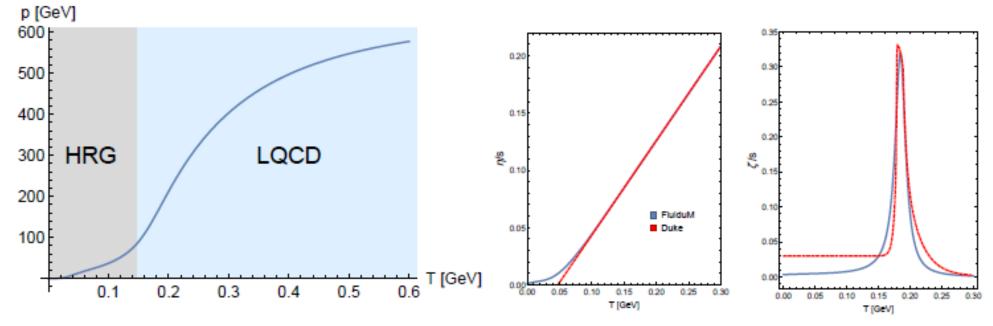
- BG has Bjorken boost invariance + statistical symmetry -> 1+1D EoM
- 1+1D linearised EoM for perturbations coupled with BG
- BG gives averaged quantities (yields, <pT>), while fluctuations encoded in perturbations

Implementation: FLuiduM

- FluiduM is Mathematica/julia code package to solve 1+1D hydro equations
- EoM: Energy-momentum conservation + 2nd order Israel-Stewart
- Evolution does not violate causality
- Validated against Gubser-Flow
- Particlization+Resonance decays: Cooper-Frye+FastReso



Validation: Setup

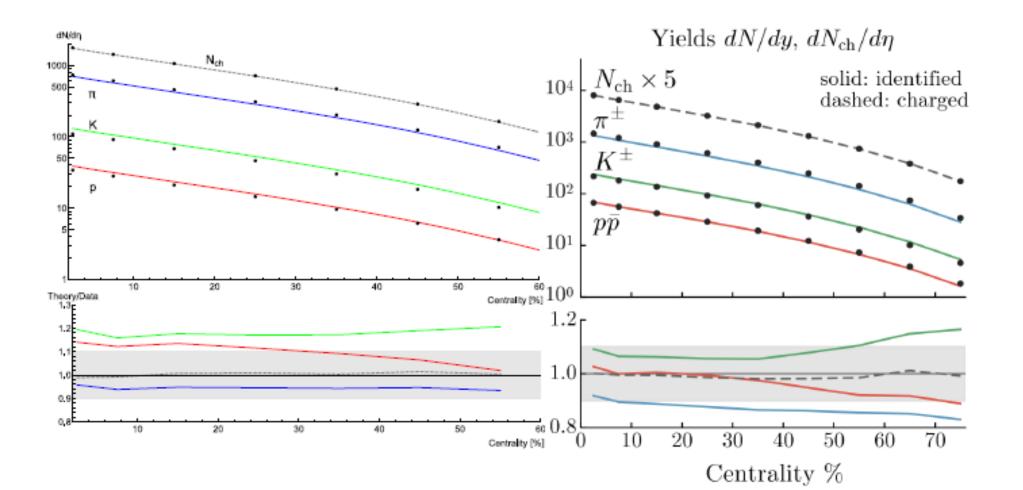


- EoS: HRG ($T < T_c = 154$ MeV) and LQCD ($T > T_c$)
- Viscosities $\frac{\eta}{s}(T)$ and $\frac{\zeta}{s}(T)$
- $T_{fo} = 148 \text{ MeV}$

- δf_{shear} , but no δf_{bulk}
- Setup nearly identical to model of first bayesian analysis of Duke group (arxiv:1605.03954)

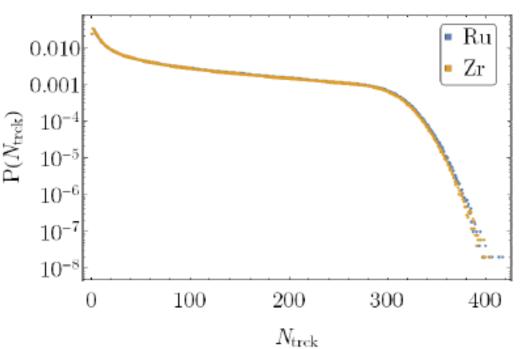
Validation: Results

FluiduM



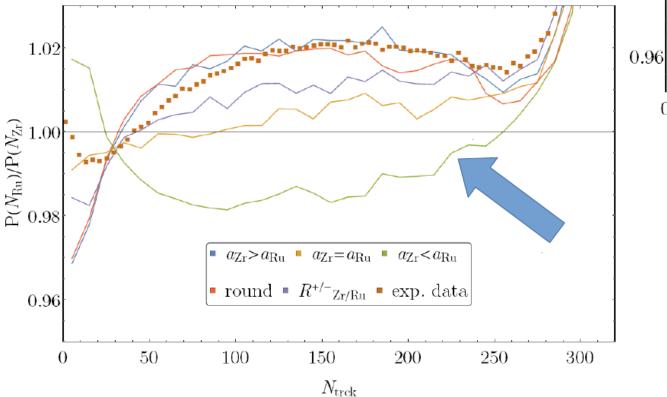
Setup – full hydro

- Run TrenTo for initial state
- Define 0.5% centrality bins using 50M minimum bias events
- Run 400k events in select bins (→ effectively 80M events)
- Scan large range of nuclear (R, a, β_2, β_3), collision (k \rightarrow multiplicity fluctuation, p \rightarrow energy deposition, w \rightarrow nucleon size, d \rightarrow nucleon repulsive core, m \rightarrow number of partons, v \rightarrow parton size) and QGP (n/s, ζ /s, T_{fo}, τ_0) parameters



Histogram multiplicity through linear rescaling of TrenTo entropy

Initial state results 1.04P(N_{Ru})/P(N_{Zr}) Histogram multiplicity ratio dominated by diffusivity • default • p=1 • p=-1 • w=1.2 fm0.98• w/o mult. flucts • $d=1 \text{ fm} \cdot m=4$, v=0.1 fm



Default: p=0, w=0.5 fm, k=1

150

 $N_{
m trck}$

• $v=0.4 \text{ fm} = \exp. \text{ data}$

100

50

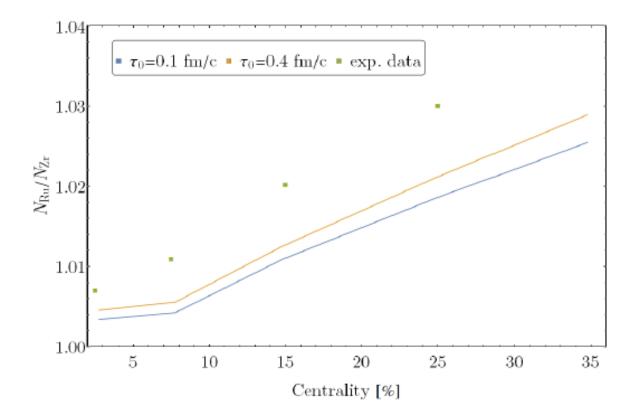
0

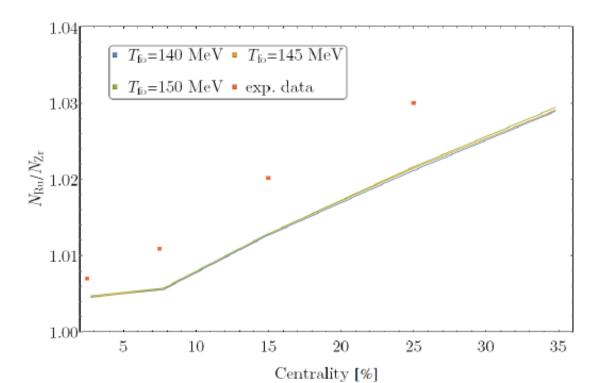
The set of set

250

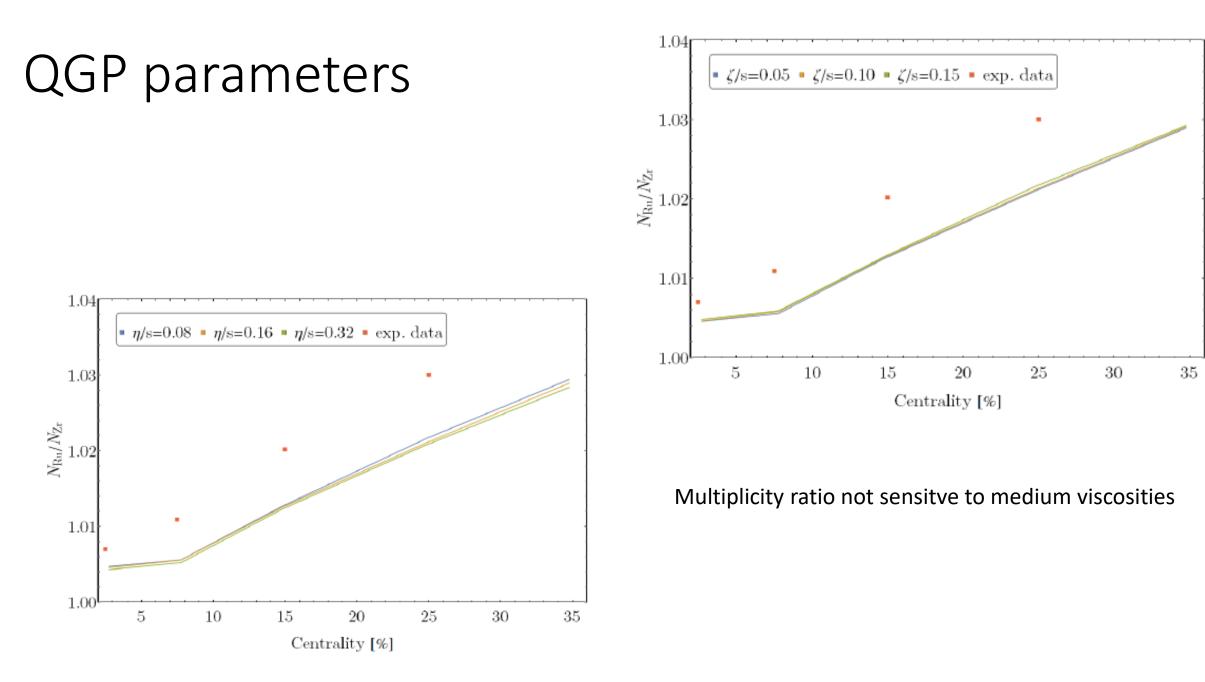
300

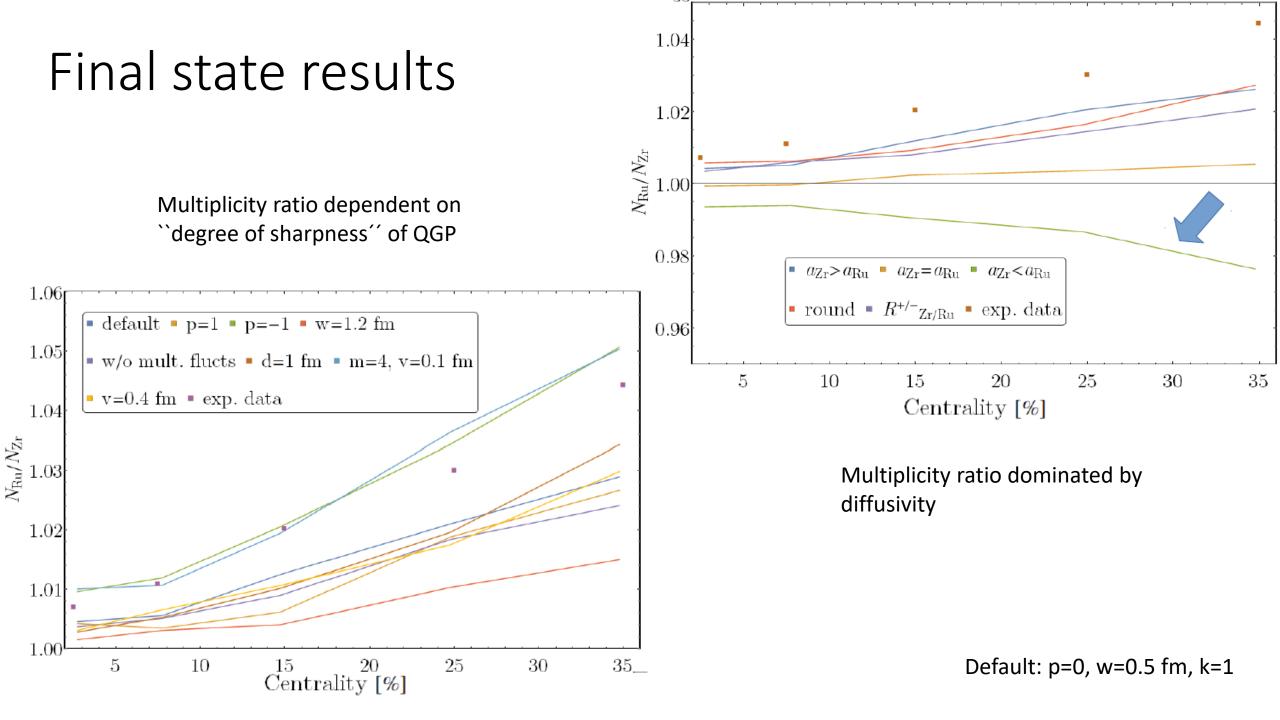
200





Multiplicity ratio not dependent on initialization time and freeze-out temperature



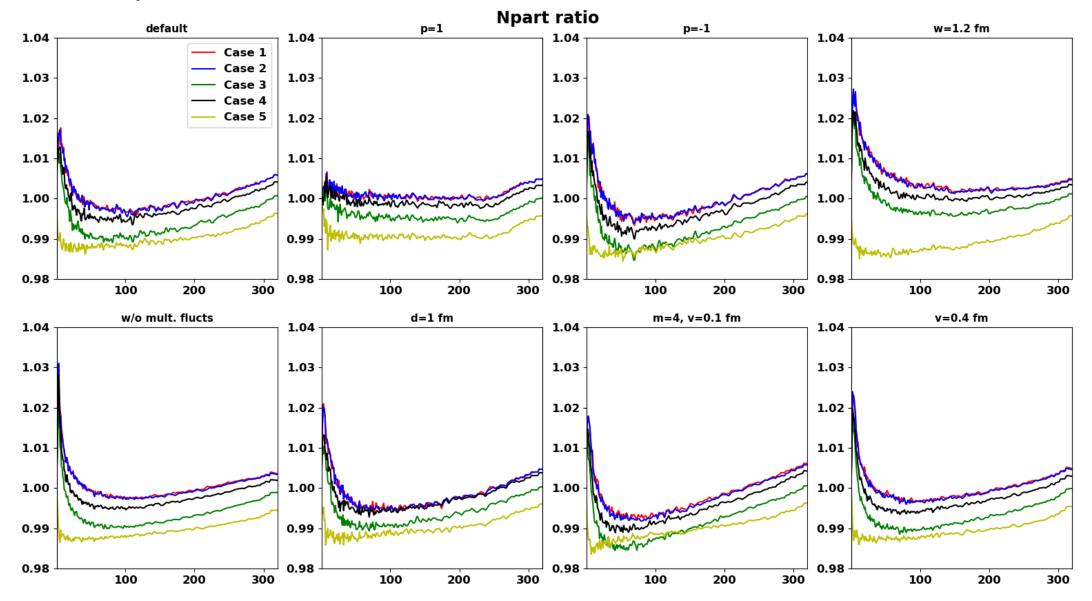


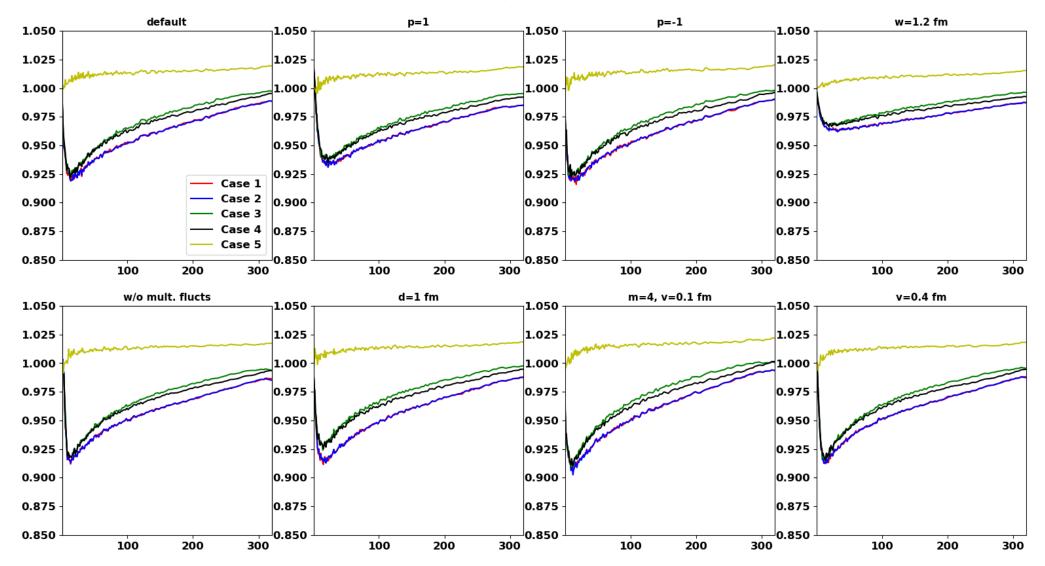
Conclusion

- Different intitial state predictors have varying dendence on nuclear structure parameters (histograms-> a0, ...)
- TrenTo parameters have limited influence (``sharpness of QGP'')
- Dependence on TrenTo and nuclear structure parameters carry over to final state multipliciy ratios
- -> Which is best set of observables?

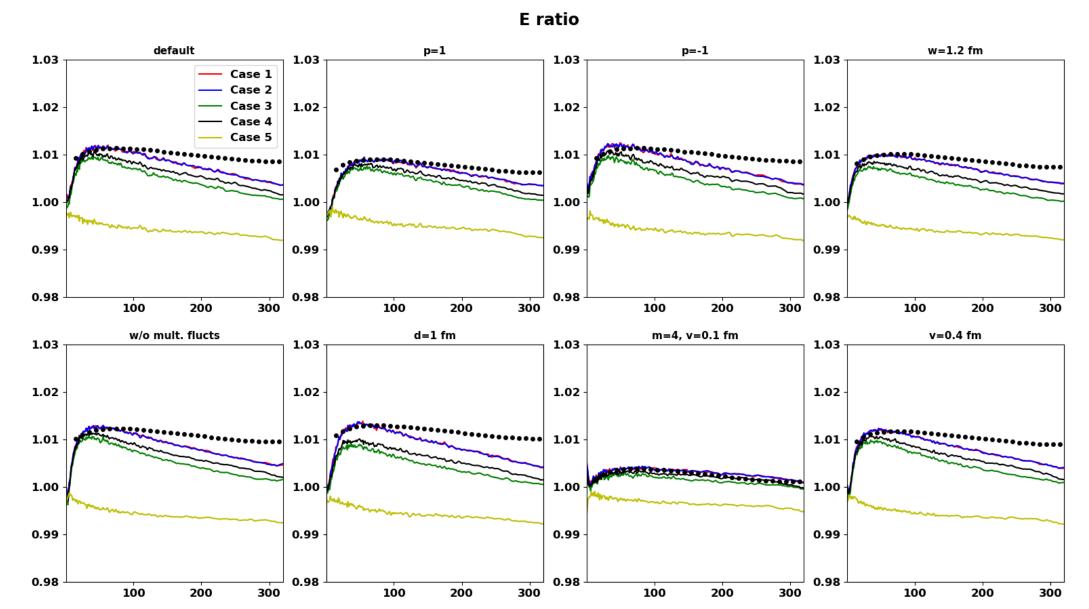
Outlook

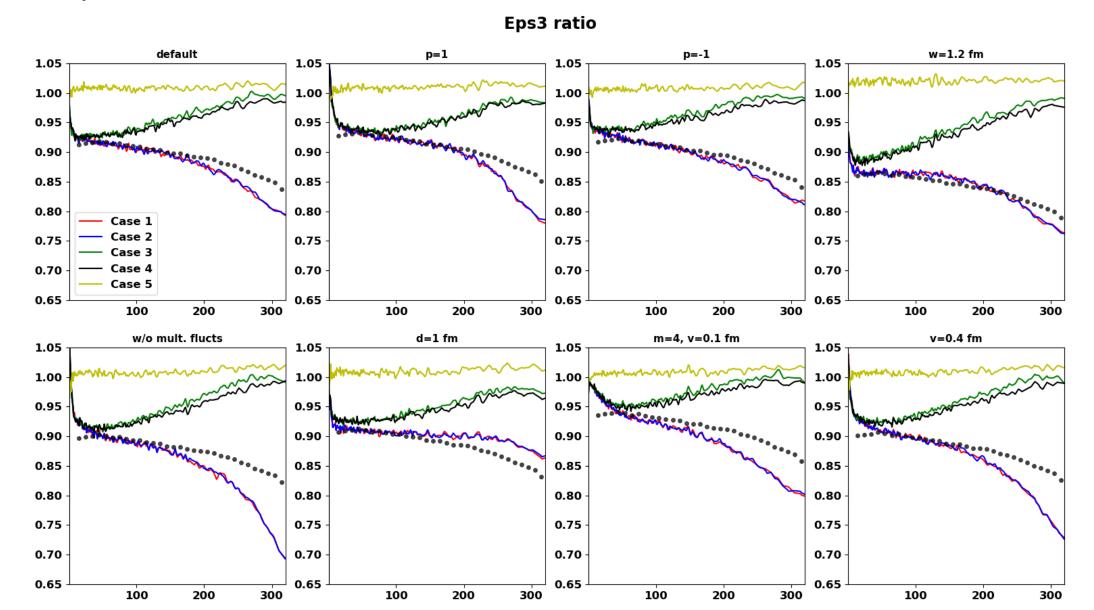
- Extend parameter scan to more observables/initial state predictors
- Confirm parameter (in)dependence of initial state predictors with hydro simulations for corresponding final state observables

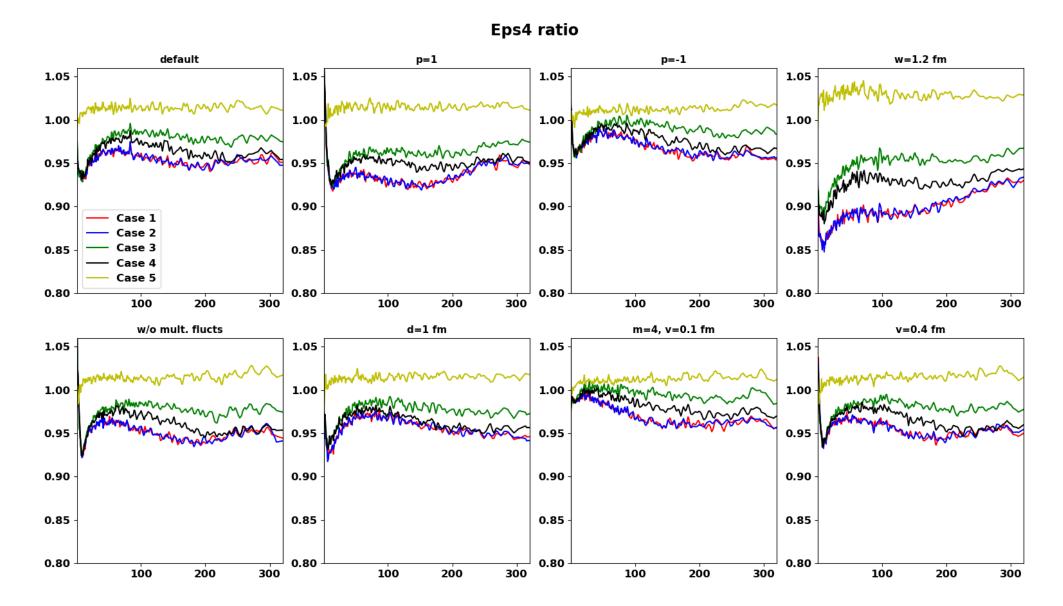


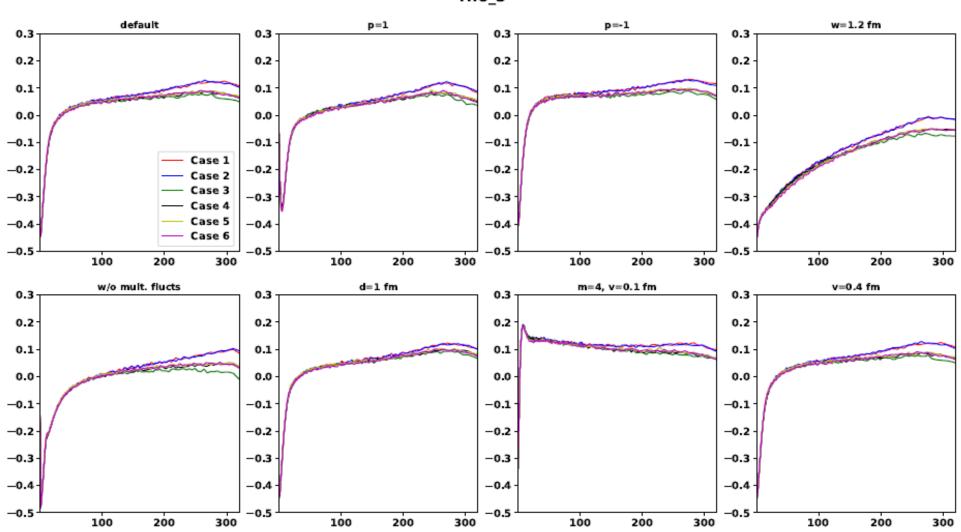


1/r ratio

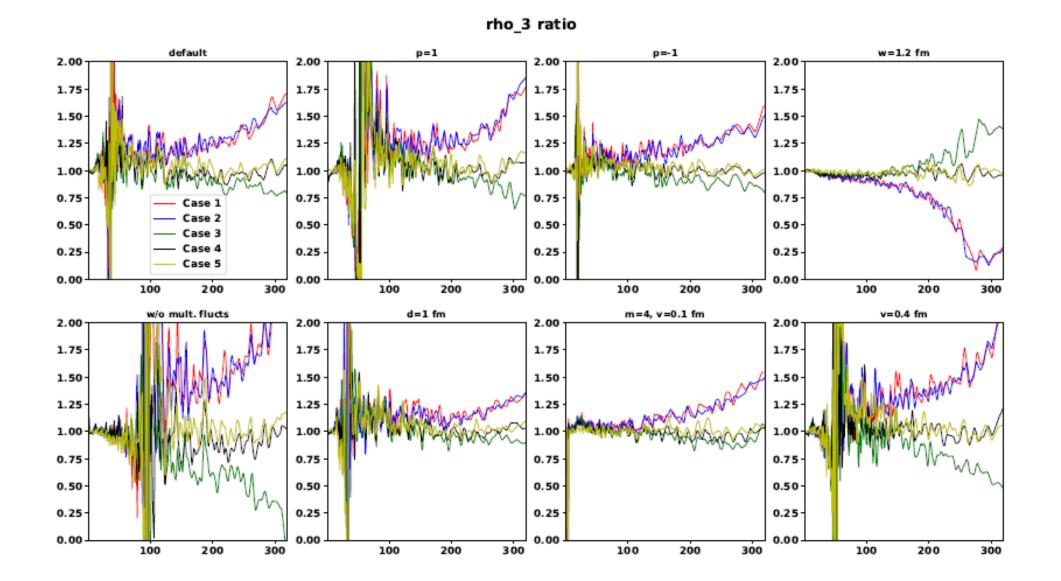


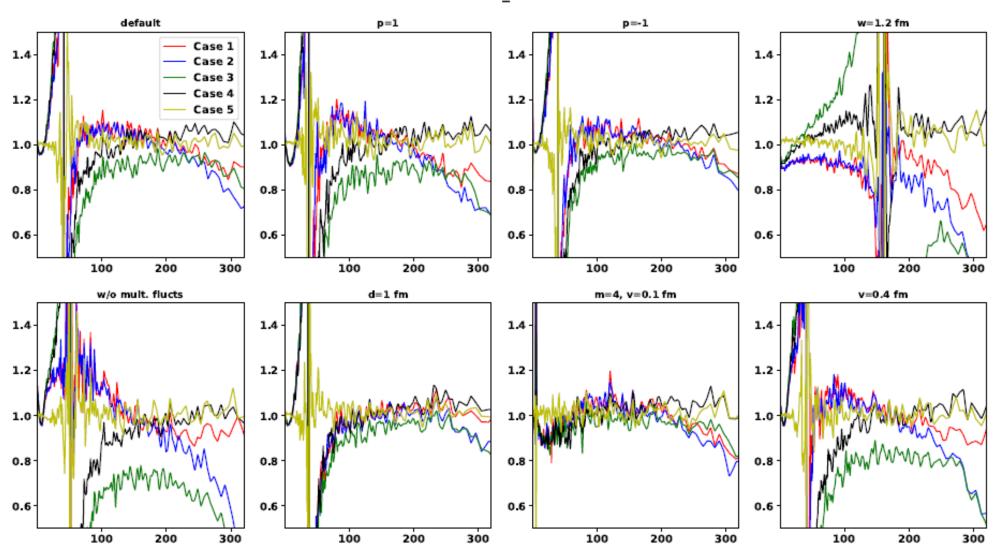




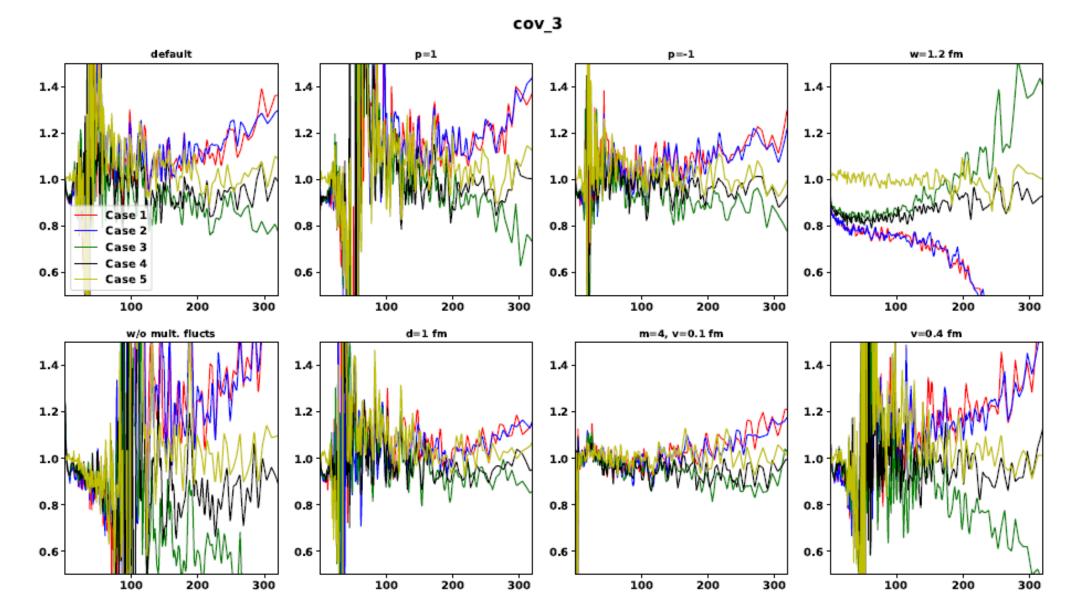


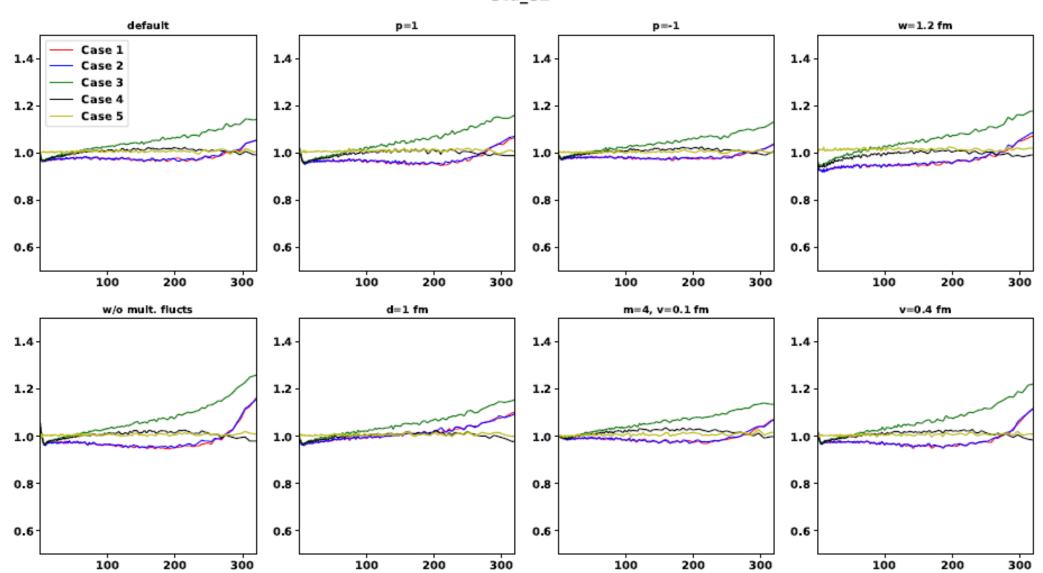
rho_3



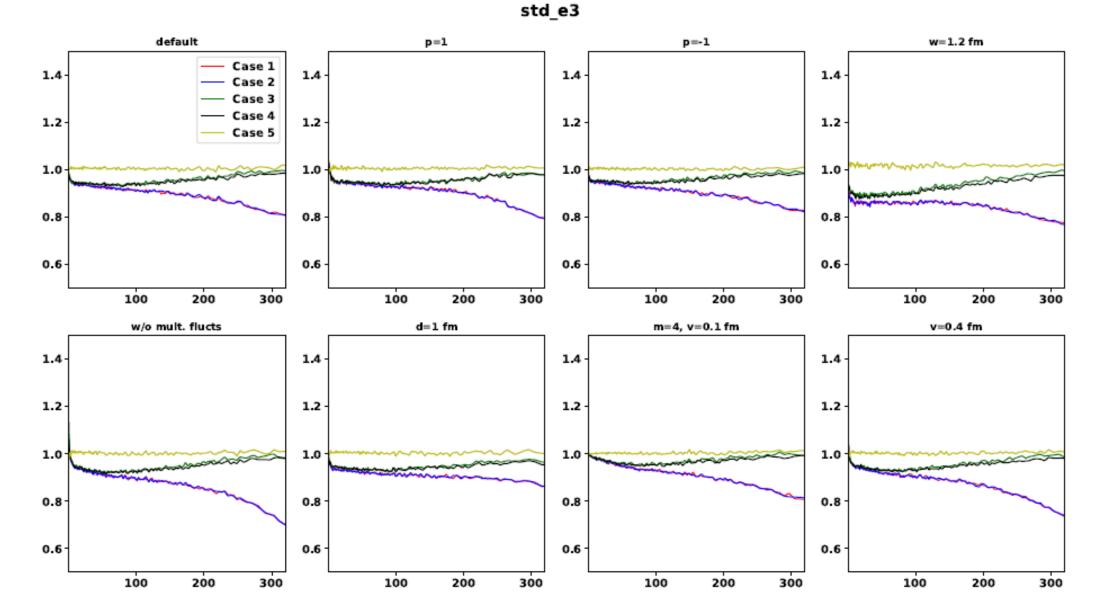


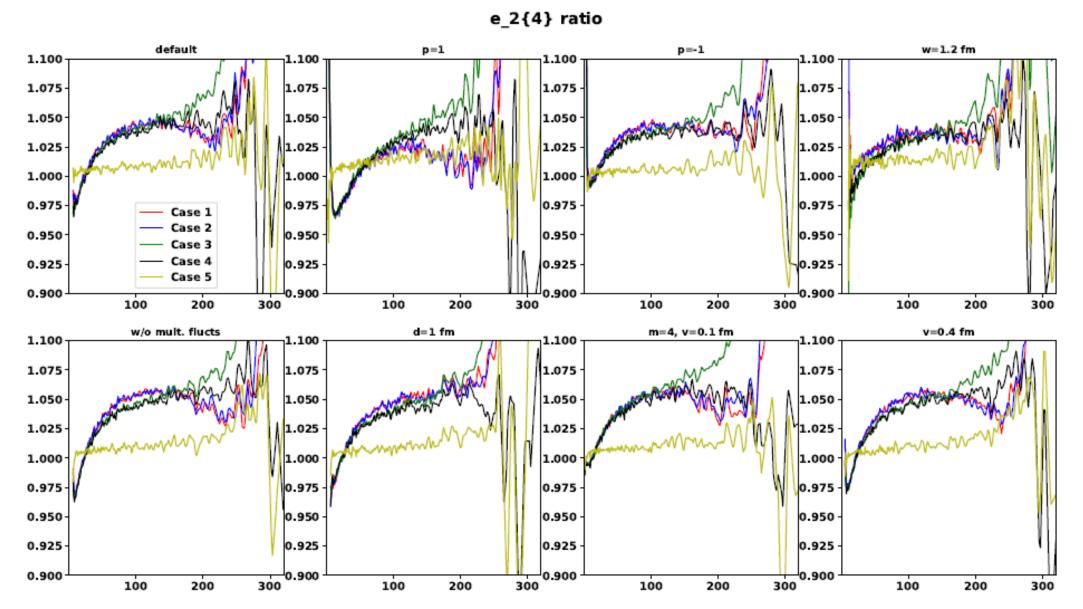
cov_2

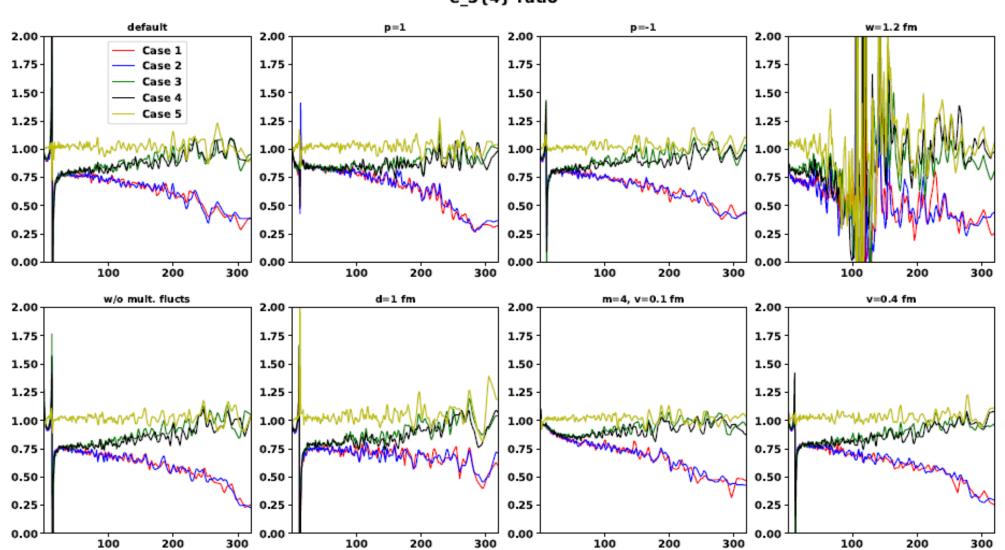




std_e2





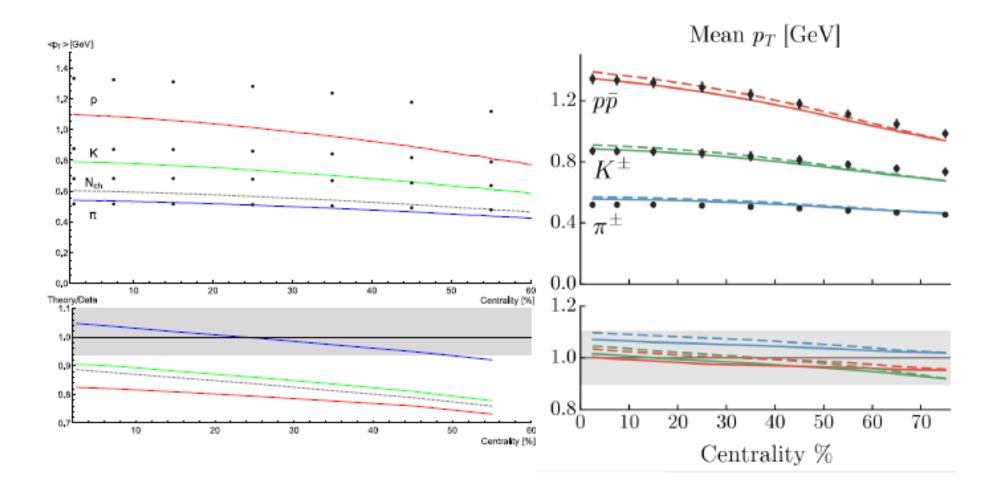


e_3{4} ratio

Backup - Validation: Results

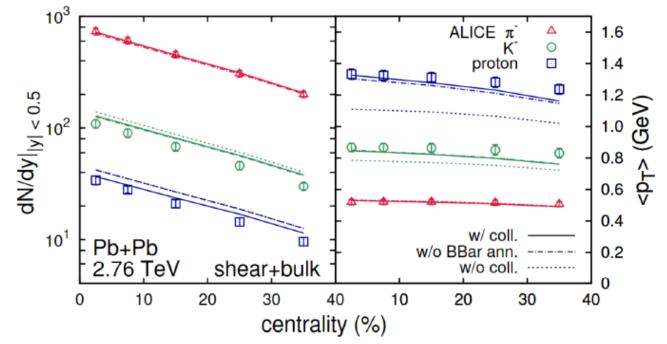
FluiduM

Duke



Backup - Validation: Interpretation

- Same tendencies for spectra as results from Duke group, but to many kaons and protons
- <pT> to small for heavier particles (kaons, protons)
- Both discrepancies ascribable to the UrQMD afterburner implemented in the Duke analysis (absent in FluiduM)



Arxiv: 1704.04216

Backup – Mode-by-mode fluctuations

• Expand event-by-event entropy profiles

$$s(r, arphi) = ar{s}(r)(1 + \delta s(r, arphi))$$
 $a^{(m)}(r) = \sum_{l} a_{l}^{(m)} \psi_{l}^{(m)}(r)$ $a^{(m)}(r) = \sum_{l} a_{l}^{(m)} \psi_{l}^{(m)}(r)$

• Choose polynomials as radial basis

- Fluctuations encoded in two-point function
- Flow coefficient given by linear response of two-point function

$$v_n^2 = \tilde{S}^{l_1} < \epsilon_{l_1}^{(n)} \epsilon_{l_2}^{(-n)} > \tilde{S}^{l_2}$$

Backup - preliminary flow coefficients

