Pulse Profile Modelling of Thermonuclear Burst Oscillations

Contact: y.kini@uva.nl

University of Amsterdam

in collaboration with Tuomo Salmi, Serena Vinciguerra, Anna Watts, Devarshi Choudhury and others INT, June 2023

Intro Accretion leads to thermonuclear bursts

Thermonuclear burst : sudden and intense release of X-rays that happens in a neutron star's outer layers and caused by a runaway nuclear fusion process

Neutron star

Donor star

Artist impression Adapted from: NASA/CXC/M.Weiss

Intro Accretion leads to thermonuclear bursts

Thermonuclear burst : sudden and intense release of X-rays that happens in a neutron star's outer layers and caused by a runaway nuclear fusion process

Neutron star

Donor star

Artist impression Adapted from: NASA/CXC/M.Weiss

What is thermonuclear burst?

Intro

Properties (normal burst)			
Fuel :	H/He		
Duration :	10-100 s		
Energy released :	10 ³⁹ ergs		
Recurrence time:	hours – days		

Intro What are burst oscillations?

Burst oscillations (BOs) : coherent pulsations found in some of the burst light curves of some neutron stars

Cause: Uneven heat distribution on the NS surface or in their atmosphere

Motiv. What makes **BOs** sources interesting for PPM?

1	The pulsations		Used to constrain the stellar properties: Mass, radius, etc. See Bas' talk
	2 Spin very $f \sim 250 - 6$		→ Helps constrain the mass & radius separately
3	Different popula	ation	 Allows for independent cross-checks
	4 Very brigh Energy r	t events eleased ~ 10 ³⁹ ergs	 Accumulation of more photons Hence tighter constraints on parameters

Modelling BOs is challenging

What is the origin of uneven heat distribution ?

Motiv.

Modelling BOs is challenging

RMPs have very stable light-curves & pulsations, still modelling is computationally expensive. See Bas' & Devarshi talk.

Motiv.

Burst light-curves are highly variable; modelling even more computationally expensive

Motiv. Modelling BOs is challenging?

Model.

XTE J1814-338

Model. Phenomenological models

Models that mimic J1814 bursts light-curves & oscillation properties

XTE J1814-338

1st Approach: neglecting variability

Synthetic data produced with models that has variability

> Inference runs performed with a model that has no time dependance

XTE J1814-338

10⁵ counts: Broad posteriors

10⁷ counts: median of the distribution is very far from the injected value.

XTE J1814-338

1st Approach: neglecting variability

PP-Plots

Results Study case: XTE J1814-338

2st Approach: keeping track of varying parameters using only 10⁶ counts data set

Inference runs performed with a model that has now time dependence

XTE J1814-338

2st Approach: accounting for variability

PP-Plots

Results Study case: XTE J1814-338

2st Approach: accounting for variability

Conclusion

Modelling burst oscillations to constrain NS mases and radii is possible.
Modelling is challenging .
Variability needs to be addressed to get useful constraints.

 \blacktriangleright We need theoretical models to reduce some of the uncertainties.