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Why beyond Standard Model (BSM) physics?
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New physics impact of nuclear -decays
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New physics impact of nuclear -decays
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Question: How reliable are the estimates of
nuclear uncertainties?



New physics impact of nuclear -decays
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Question: How reliable are the estimates of
nuclear uncertainties?

To answer, we need precise and accurate
calculations of nuclear observables



Landscape of ab initio calculations
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Many-body approaches

<

 Coordinate space:
— Quantum Monte Carlo
— Lattice EFT

 Configuration Space (Particle-Hole Expansions):

— No-core shell model (NCSM)
— Coupled Cluster (CC)
= In-medium SRG (IMSRG)

— Self-consistent Green'’s Functions (SCGF) T,
— Many-body perturbation theory (MBPT)

Foulkes et al. Rev. Mod. Phys. 73, 33 (2001)
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 Configuration Space (Geometric Expansions): A reference state

-  Symmetry-adapted NCSM
— Projected GCM
— Deformed HFB + projection
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Chiral effective field theory schematic
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Procedure to root NN interaction in symmetries of
Quantum Chromodynamics*

Scales: Nucleon momentum Q ~ m_~m,-m,Vs.
heavier mesons at the scale A~ 1 GeV ->
Systematically improvable expansion*

Low-energy constants (LECs) subsume the
underlying QCD

van Kolck, Weinberg, Ordéiiez, Epelbaum,
Hammer, MeiBRner, Entem, Machleidt, ...



The Argonne v18 (AV18) interaction

Phenomenological nuclear Hamiltonian with

18 operators, 40 parameters

3 (deg)

Includes one- and two-pion exchange, and N
contact terms |

Fit to np, pp phase shift data through F waves

Used in conjunction with three-body forces
(ex: IL7)

t@ Los Alamos  Wiringa, Stoks, Schiavilla PRC 51, 38 (1995)
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https://www.phy.anl.gov/theory/research/av18/



Quantum Monte Carlo

Solving the many-body problem using random sampling to compute integrals

Variational MC wave function ‘\IJT> — F|(I)> contains model wave
function and many-body correlations optimized by minimizing:

om0}

Green’s function MC improves by removing excited

state contamination and gives the

N
e lim e~ H=E)™g,, = lim e~ (H-Fo)7 ( +Zciwi> —
) i=1

T—00 T—00

.
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NATIONAL LABORATORY



Electroweak charge and current operators

Schematically: P:ZA1P"|‘Z'<'” _
1 P i<s Pif e
[ ] A ®
J:Z¢:13i+zfz<gf Bk

External field interacts with single nucleons and of nucleons

Pastore et al. PRC 80, 034004 (2009), Pastore et al. PRC 84, 024001 (2011), Piarulli et
. al. PRC 87, 014006 (2013), Schiavilla et al. PRC 99, 034005 (2019), Baroni et al. PRC
%@ Los Alamos 93, 049902 (2016), ...
-
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°He B-decay spectrum: Overview

: : dFO 2
Diff tial rate: = |\ M|“Gg(E,
ifferential rate T \ \ B( )

dl’ dl'g Me
New physics can distort this: iE. = JE. 1+ bEE

Similar distortions can be generated when

accounting for nuclear recoil Vector ‘ Fermi
Scalar
Performed calculation with recoil corrections and Axial ‘ GT

Tensor
Pseudoscalar

two-body physics effects
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®He B-decay spectrum: Multipole decomposition

4
iI' = 276(M; — Ef — E. — E,)G%V?2
( ™ ( f = ) F 1Ld29]1,+1
|:(1 + Ve - VI/) Zl()'l((])l2 + (1 — Ve Vy + 2Ve : qvV ’ Q) Z|Ll(q)|2
1>0 1>0

—24- (Ve +vi) Y Re[Ci(@)LF(@)] + (1 = Ve -@vi - @) ) [|Mi(g) >+ Eu(9)]

1>0 1>1

£24- (v, —v2) Y Re M0 E o) |

1>1

dspe d3p1/
(2m)3 (2m)3

Spectrum can be written in terms of multipole operators (C, L, M, E)
Low q value of the decay means we can consider expansion of multipoles

Expand multipoles, kinematics to write down spectrum differential in electron energy
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°He B-decay spectrum: Multipoles

Distortion term is a function of
four nuclear matrix elements:

.

Ci(4) = i
Li(¢;A) = \/Z—W
Ei(q; A) = —\;27
Mi(V) = ——=
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°He B-decay spectrum: Multipoles
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°He B-decay spectrum: Standard Model results
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Fully expanded spectrum in terms of multipole
coefficients with Behrens-Buhring RC, Coulomb,
shielding, and recoil corrections
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°He B-decay spectrum: Standard Model results
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Model uncertainty plus two-body contribution
brings theory precision within needs of experiment

Tuve = 762 +/- 11 ms
ToEmc = 808 +/- 24 ms

Texot, 807.25 +/- 0.16 +/- 0.11 ms

[Kanafani et al. PRC 106, 045502 (2022)]
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King et al. PRC 107, 015503 (2023) FRIB * flca=n



°He B-decay spectrum: Probing new forces

1.010

Included transition operators associated
with new physics

1.0051 GFMC plus
pseudoscalar

With permille precision, it will be possible 1.000
to further constrain new physics O ‘
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°He B-decay spectrum: Probing neutrino physics

Can also investigate impacts from 1.010

production of ~1 MeV sterile neutrinos —
_ 1.000

The shape of the decay endpoint can

exclude some parameter space and %’\I%O_g%

Can no longer emit a
sterile neutrino

ar
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probe BSM scenarios
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Comparison with NCSM results
320{(a) s S

\ Favorable comparison with previous
~ result using NCSM with LO currents

_ / b(NCSM) = -1.52(18) x 1073

b(GFMC) = -1.47(03) x 10

3 / With two-body currents, uncertainty
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Glick-Magid et al. Phys. Lett. B 832 (2022) 137259

ol
1% Los Alamos



A=8 spectra with SA-NCSM
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Nuclear 3-decay for tests of CKM unitarity
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1@ Los Alamos Cirigliano et al., PLB 838 (2023) 137748



Superallowed 0" — 0" decays

K
Fi

= ft(1 +0%)(1 Hns

T 2GRV, (1+AY)

Transition-independent single-nucleon corrections
Correction sensitive to charge and electron energy
Sensitive to internal structure of the nucleus

Broken isospin symmetry between protons and neutrons
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EFT approach to radiative corrections

& = Q/A, 2N
Cirigliano, Dekens, LO LA
Hoferichter, O(Graey) | > -
Mereghetti,
Tomalak, + ...
NLO LA _bd A
O(Gra?) | Lt
N2LO + .
O(Graey)

Cirigliano et al. PRL 133, 211801 (2024)
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EFT approach to radiative corrections
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1°C(0*) — '°B(0*) B-decay

In an effective field theory approach: 1.5} #% ¢ Fp t GTn
x ! | GT,p
ons = ) A" Egcmn My, T oo
™m,mn,1 qg
Can also evaluate: M = / drc(«,-)@(r) %
—0.5} . _ .
Ong = —4.46(48) x 1073 — — 4.64(77) x 1073 0 2 4 6 8
r (fm)
. _ -3
Hardy and Towner:  dons = —4.0(5) x 10 King et al., arXiv:2509.07310v1

Gennari et al PRL 134, 012501: 6ns = —4.22(32) x 1077
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Auxiliary Field Diffusion Monte Carlo (AFDMC)

Use the single particle basis: <S|\If> X fozl (31) faQ (82) . faA (SA)
Can linearize two-body operators: 6—302 — _1 /dxe—gew\/—_AO
V2T

Polynomial scaling in particle number, but technically more complicated to
operate on the wave function

‘5 !.QIOSN ﬁ!gmgg Lonardoni et al., PRC 97, 044318 (2018)



1%0(0*) decay using AFDMC
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Cirigliano et al. PRC 110, 055502 (2024)
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Evaluation using one chiral EFT
potential

Results in  §yg = —2.84(88) x 1073

Agrees with standard result:
ons = —2.83(64) x 1072

Future work to quantify uncertainty by
varying interactions



NCSM + Dispersive approach

AR

C.-Y. Seng PRD 100, 013001 (2019)

cf. talk by Misha Gorshteyn
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NCSM + Dispersive approach
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M. Gennari et al. PRL 134, 012501 (2025)
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Preliminary

—0.20 1 & N*LO, 52 =20 MeV H&T
A N'LO, h2=20 MeV 2020
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X . X
2-0.30] 2
X t
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3 5 7
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M. Gennari, “Electroweak Radiative Corrections in
Super-Allowed Beta Decays from Ab Initio Theory” (2025)



Outlook: Benchmark QMC + Coupled-cluster

1
r [fm]

Figure courtesy of Sam Novario
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Benchmarking different
models, methods in first
step toward global analysis

Qualitative agreement, but
further analysis necessary



Outlook: Global analysis Coupled-cluster

Preliminary
: M(Fp) ‘,r-l~‘ -@- $Be: F = 2.956
4 N
CCSD: 1.8/2.0 EM e S} ~@-°He: F = 1.974
> & N > 3
. T phea Uy @ 10 F = 4.907
: -
. —9~, 2w —i- 0: F = 6.900
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S. J. Novario, “Nuclear-Structure Corrections in Superallowed Beta Decay” (2025)
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Outlook: Higher-order EFT operators

ex = Q/Ay 2N

G. Chambers-Wall, LO |2
Cirigliano, Dekens, O(Grae,) E
Hoferichter,

Mereghetti, Tomalak,
+ ...

N?LO 7 a e
O(GFOin) — -
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Outlook: Higher-order EFT operators
G.

C(r) [fm™]

<

Chambers-Wall

Preliminary calculation
of NLO contributions
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. ~5% corrections to LO
two-body from NLO



Isospin breaking corrections with GFMC

Fermi matrix element evaluated using
wave functions with isospin breaking
correlations

AV18+IL7 results consistent with Hardy
and Towner with ~2.6 times smaller error
bar

Chiral interaction predicts ~1.4 times
larger correction, ~2 times larger error

ol
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Piarulli, Lovato, Wiringa



Outlook



Two questions/challenges

Model uncertainty procedures are presently ad hoc— can we leverage emulations
techniques in order to provide robust error bars on theory?

There are a number of EFT interactions on the market— how can we establish
consistent benchmarks between the methods?



Conclusions

Reach of ab initio methods has progressed over the last 15 years

Recent studies of spectra, superallowed decays in light nuclei contributing to
precision beta decay studies

Methods amenable to heavy nuclei can expand reach of cases ab initio nuclear
theory can help interpret

Uncertainties and benchmarks remain a challenge, should be addressed

1% Los Alamos
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Additional slides



Variational Monte Carlo

Slater determinant of nucleons in s- and p-shell coupled to the appropriate
gquantum numbers

encoding appropriate cluster structure

Two- and three-body correlation operator to reflect impact of nuclear interaction
at short distances

- . (Uy |[H|Py)
Optimize when you minimize: Ey = > Ey
(Uy |¥y)
1@ Los Alamos Carlson et al. Rev. Mod. Phys. 87, 1607 (2015)



Variational Monte Carlo: 1D Example

Vig) = le
2
Vo(z) = <1>1/4e—12/2 Use Monte Carlo to compute:
1
Ey, = ¢
2
T o (Vr|H|Vr) _ [dRIVr(R)PEL®R), o oy HIT(R)
16 oot E— B | o) JdR[¥(R)[Z Ur(R)
1.4 H °’°°§ ;ﬁ?‘L"OS s
& 0.8 T et 1/4
0.6 T et 2c 2
o Cantune VYr = <?) g to solve

Variational Parameter (ALPHA)

Pottorf et al, Eur. J. Phys. 20 205 (1999)
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Green’s function Monte Carlo

Recast ;2w = (0 - Br)juw) 85— |8() = (H - Ex) [¥(0)

Solution: U (7)) = e~ H=ED)T |5 (0))

Recall  |¥(0)) =) cili) andnote e =27 |(0) = cotio + D e e i) s >0

For a proper offset lim e~ =F0)7 19(0)) — corho

T—00
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Green’s function Monte Carlo: 1D example

0.6 T T T | T T
— T1t=0a.u.
0.5 Wﬂn t=0.5a.u.| 0.5
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3 >
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= o 0.3
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0.2 =] Ll
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0.1 _
| 0:1
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G(R,, R) = <Rl|e—(H—E0)AT‘R>

‘IJ(RN; ’7') — /dRN_l...dedR()G(RN, RN—l) “e G(RQ, Rl)G(Rl, Ro)\IJ(RQ; O)

% Los Alamos
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B-decay rates

Computed with two models:
Fit to 3H beta decay or purely strong data
Many-body correlations important

Two-body can be ~few % to several %

O 4 L°
g0
1 X

N2LO

N3LO
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Three-body LECs and sub-leading contact

» (%< i529(q; CT) = %0;(q)

20 X (¢ + known LECs)

Specific parameter in the is connected to a parameter in the
two-body weak transition operator

Short-range dynamics will depend on these values, influenced by fit

‘5 Los Alamos Gardestig and Phillips PRL 96, 232301 (2006)

AAAAAAAAAAAAAAAAAA



Universal behavior in GT densities
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Interpreting universal and tail behaviors

Decay takes nn/np (ST=01/10) pair
to an np/pp (ST=10/01) pair

The ST=01 and 10 pair densities at £ oo}
short distances scale Ni‘f o

Consequence of how pairs form in

the nUC|eUS 0.0

Nsr = / drigdmry;piy (rij)
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1B B-decay

E 2.15MeV

E 0.72 MeV

https://nucldata.tunl.duke.edu/

1% Los Alamos

NATIONAL LABORATORY

Two states of the same quantum
numbers nearby

The result depends strongly on the
LS mixing of the p-shell

Particularly sensitive to the °S_ and
°D, mixing because S to S produces
a larger m.e. and '°C is
predominantly S wave



SHe B-decay
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Three (17;1) states within a few MeV

Different dominant spatial symmetries —
sensitivity to the precise mixing of small
components in the wave function

Improving the mixing of the small
components in the (1%;1) states is
crucial to getting an improved m.e.



A=8 level scheme
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°He B-decay spectrum: Multipoles
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°He B-decay spectrum: Absolute spectrum
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°He B-decay spectrum: SM corrections
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