Overview of d/u and the SoLID Contribution

Cynthia Keppel **Thomas Jefferson National Accelerator Facility** June 2022

INT Workshop on Parity-Violation and other Electroweak Physics at JLab 12 GeV and Beyond

Science

Current status: large uncertainties on PDFs at large x

Why is the x > ~0.3 valence regime interesting?

- Partonic structure in the valence region *defines* a hadron
 - Baryon number, charge, flavor content, total spin, ...
- Keen discriminator of hadron structure models: QCD and others can make absolute predictions for structure functions
- "Valence regime" at large x, low Q² evolves to low x, high Q²
 - Intersection of nuclear and particle physics
- A generation of experiments at JLab focused on high x

YOU ARE HERE

Multiple predictions for d/u at large x

$$|p\uparrow\rangle = \frac{1}{\sqrt{2}} |u\uparrow (ud)_{S=0}\rangle + \frac{1}{\sqrt{18}} |u\uparrow (ud)_{S=1}\rangle - \frac{1}{3} |u\downarrow (ud)_{S=1}\rangle$$
$$-\frac{1}{3} |d\uparrow (uu)_{S=1}\rangle - \frac{\sqrt{2}}{3} |d\downarrow (uu)_{S=1}\rangle$$

Nucleon Model	F_2^n/F_2^p	d/u
SU(6)	2/3	1/2
Valence Quark	1/4	0
DSE contact interaction	0.41	0.18
DSE realistic interaction	0.49	0.28
pQCD	3/7	1/5

A Longstanding Problem! Numerous Review Articles:

- N. Isgur, PR**D 59** (1999)
- S Brodsky et al NP **B441** (1995)
- W. Melnitchouk and A. Thomas PL B377 (1996)
- R.J. Holt and C. D. Roberts, Rev. Mod. Phys. 82 (2010)
- I. Cloet et al, Few Body Syst. 46 (2009) 1.
- C. Roberts, R.Holt, S. Schmidt, Phys. Lett. B 727 (2013) 249

A measurement (or several) are needed...

Multiple experimental efforts at JLab12 to determine *d/u* at high-*x*

- MARATHON 3H / 3He mirror nuclei
- SoLID PVDIS
- BONuS12 proton spectator tagging

<u>Also:</u> TDIS Hall C F2p, F2d (CJ, JAM)

Jefferson Lab

Multiple experimental efforts at JLab12 to determine *d/u* at high-*x*

Neutron structure is typically derived from deuterium target data by subtracting proton databut....

The deuteron is a nucleus!

n, p e- scattering different...and...

Large uncertainty in 1.00unfolding nuclear 0.95 F_2^d/F_2^p effects (Fermi motion, 0.90 off-shell effects, deuteron wave 0.85 function, coherent ន្ល 0.80 scattering, final state 0.75 interactions, nucleon structure modification 0.70 ("EMC"-effect),.... 0.65 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0

SLAC data

F_{2^n}/F_{2^p} (and, hence, d/u) essentially unknown at large x:

- Conflicting fundamental theory pictures

- $F_{2^{n}}$ data inconclusive due to uncertainties in deuterium nuclear corrections

- Translates directly to large uncertainties on d(x), g(x) parton distribution functions

TDIS to access nucleon valence structure "BONuS" Experiment at Jefferson Lab – use fixed target Tagged DIS to create an effective *free neutron* target

The BONuS approach:

use low mass radial TPC detector / target in magnetic field to TAG "spectator" proton at (very) low momenta (~65 MeV/c) and large angles (> 90° in lab)difficult but doable

BONUS effective neutron target via TDIS *achieved!*

Phys.Rev. C92 (2015) no.1, 015211 Phys.Rev. C91 (2015) no.5, 055206 Phys. Rev. C89 (2014) 045206 – editor's suggestion Phys. Rev. Lett. 108 (2012) 199902 Nucl. Instrum. Meth. A592 (2008) 273-286

- Not quite high enough
 x, Q² in 6 GeV era
- Nonetheless still powerful as input for global PDF fits...

Results from E_{h} = 6 GeV BONuS Experiment

х

2020 E12-06-113 "BONUS12": Larger x and bigbor O²

New rTPC

CLAS12 Central Detector

Hall B CLAS12

Spectrometer

New Radial Time Projection Chamber (RTPC)

- \rightarrow Active length: 40 cm
- → Radial drift distance: 4 cm
- → Drift gas He/CO_2 (80/20)
- \rightarrow 3 GEM amplification layers
- → 16 HV sectors per GEM (Segmented in \prec)
- → Pad readout: 2.8 mm x 4 mm Beam
 - => 17,280 channels

CLAS12 RG-F (BONuS12) Data Summary

Finished data taking in September 2020

 \rightarrow Data taking split by start of pandemic

Beam Energy	Target	Spring 2020	Summer 2020
	H2	81M	185M
	D2	37M	45M
2.1	4He	19M	44M
$C \rightarrow V$	Empty	1M	22M
Gev	Total	138M	296M
	H2	151M	266M
	D2	2275M	2355M
10.5	4He	77M	51M
GeV	Empty	21M	45M
	Total	2524M	2717M

- Charge sum over track hits + track length

\rightarrow dE/dx

- Good separation of bands for p, d, triton, ⁴He
- Improvements to pad-pad gain variations in future

Preliminary Analysis – 5 Pass Data (subset)

 \rightarrow Expect first results on F2n / F2p by end of 2022

Also Hall A "TDIS" Experiment RunGroup Approved for F₂ⁿ

The TDIS experiment

mTPC current design. Courtesy N.Liyanage

Efficiency > 50% for transverse recoil protons with *p* < 300 MeV/c

Latest TDIS configuration from conditional release document used for our studies and satisfactory as is Running over Hydrogen or Deuterium at 4 atm with a beam intensity of 50 μ A will be capable of providing instantaneous luminosity of:

2.9x10³⁶ cm⁻² s⁻¹

10

<u>Same</u> technique for measuring F_2^n as BONuS, but:

- different detector, different systematics
- independent physics normalization
- higher luminosity = higher statistics at the largest x, Q²

<u>Or...</u> a nuclear physicists approach to the d/u question....

JLab Hall A HRS Spectrometer

• Problem:

- The deuteron experiments present free nucleon extraction complications.
- Solution: Add another nucleon!
- ³H/³He ratio: minimizes nuclear physics uncertainties

Deep Inelastic Scattering from A=3 Nuclei

$$R(^{3}\text{He}) = rac{F_{2}^{^{3}\text{He}}}{2F_{2}^{p} + F_{2}^{n}} , \qquad R$$

$$R(^{3}\mathrm{H}) = \frac{F_{2}^{^{3}\mathrm{H}}}{F_{2}^{p} + 2F_{2}^{n}}$$

- Mirror symmetry of A=3 nuclei
 - Extract F₂ⁿ/F₂^p from ratio of measured ³He/³H structure functions

$$\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^3He}/F_2^{^3H}}{2F_2^{^3He}/F_2^{^3H} - \mathcal{R}}$$

R = SUPER ratio of "EMC ratios" for ³He and ³H

- Relies only on <u>difference</u> in nuclear effects in ³H, ³He
- Calculated to within 1%
- Most systematic and theoretical uncertainties cancel

Hall A Tritium Target first in over 3 decades!!

Lab	Year	Quantity (kCi)	Thickness (g/cm²)	Current (μA)	Current <i>x</i> thickness (μA-g/cm²)
Stanford	1963	25	0.8	0.5	0.4
MIT-Bates	1982	180	0.3	20	6.0
Saskatoon	1985	3	0.02	30	0.6
JLab	2017	1	0.08	20	1.6

JLab Luminosity ~ 2.0 x 10³⁶ tritons/cm²/s

MARATHON Results (D. Abrams et. al. PRL 129, 132003 (2022)) See H. Liu

 \rightarrow MARATHON F2n / F2p data consistent with BONuS at 6 GeV, with smaller uncertainties and extending to much larger x

 \rightarrow Consistent with Kulagin-Petti Model, but in tension with CJ pdf at largest x

But.... Tropiano et al. considered isospin dependent off-shell modifications

A. J. Tropiano, J. J. Ethier, W. Melnitchouk, and N. Sato Phys. Rev. C 99, 035201 (2019)

- \rightarrow Consider 2 different isoscalar off-shell cor:
- CTEQ-JLab (CJ)
- Kulagin-Petti (KG)
- \rightarrow Fit ³He/D ratios from JLab Hall C E03-103 t proton off-shell function. Then the neutron is

$$\delta f^{n} = \frac{1}{F_{2}^{n}} \left[(F_{2}^{p} + F_{2}^{n}) \delta f^{0} - F_{2}^{p} \delta f^{p} \right]$$
$$= \delta f^{0} - \frac{F_{2}^{p}}{F_{2}^{n}} (\delta f^{p} - \delta f^{0}).$$

• *Resulting super ratios have significat differences @ x>0.6*

$$R_{3H} = \frac{F_2^{3H}}{2F_2^n + F_2^p} \quad R_{3He} = \frac{F_2^{3He}}{F_2^n + 2F_2^p}$$

Such and effect can **not** be unambiguously disentangled from F_2^n with A=3 inclusive data. (see also C. Cocuzza et al., Phys.Rev.Lett. 127 (2021

d(x) at Large x: Constraints

The whole is greater than the sum of the parts.

Deep inelastic deuterium

- Large body of data from multiple experiments
- Extensive range in x and Q²
- Requires deuteron nuclear
 - corrections and precision

Nuclear target approaches

- Nearly model-independent *neutron* data from BONuS obtained in 6 GeV
 JLab era at low W, Q
- MARATHON 12 GeV extends range, nuclear correction questions
- Two experiments to verify TDIS technique at 12 GeV

Science

F₂^p & F₂^d Structure Functions from JLab Hall C

JLab12 Hall C commissioning experiment aimed to reduce uncertainties in F_2^{p} and F_2^{d} structure functions at large x and high Q^2

Goal @ 12 GeV: ~2% total precision cross sections, (as achieved previously @ 6 GeV)

Hall C E12-10-002: High Precision Measurement of the F₂ Structure Function on p,D

First results from JLab Hall C E12-10-002

- Significant improvement in precision
- First publication in preparation

Preliminary CJ pdf Impact Studies

Studies courtesy of A. Accardi and Shujie Li

Preliminary JAM pdf Impact Studies

Studies courtesy of C. Cocuzza, W. Melnitchouk, N. Gonzalez

uncertainty

Jefferson Lab

Without E12-10-002

Also! Polarized predictions for d/u structure at large x

Proton Wavefunction (Spin and Flavor Symmetric)

$$\left| \begin{array}{c} p \uparrow \end{array} \right\rangle = \frac{1}{\sqrt{2}} \left| u \uparrow (ud)_{S=0} \right\rangle + \frac{1}{\sqrt{18}} \left| u \uparrow (ud)_{S=1} \right\rangle - \frac{1}{3} \left| u \downarrow (ud)_{S=1} \right\rangle \\ - \frac{1}{3} \left| d \uparrow (uu)_{S=1} \right\rangle - \frac{\sqrt{2}}{3} \left| d \downarrow (uu)_{S=1} \right\rangle \end{array}$$

Model	F_{2}^{n}/F_{2}^{p}	d/u	∆ u/u	$\Delta d/d$	A_1^n	A ₁ ^p
SU(6) = SU3 flavor + $SU2$ spin	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark + Hyperfine	1/4	0	1	-1/3	1	1
pQCD + HHC	3/7	1/5	1	1	1	1
DSE-1 (realistic)	0.49	0.28	0.65	-0.26	0.17	0.59
DSE-2 (contact)	0.41	0.18	0.88	-0.33	0.34	0.88

Existing World Data on Spin at High X

D. Parno et al.

PRL 113 (2014) 2, 022002, 1404.4003

X. Zheng et al.

PRL 92 (2004) 012004, arXiv: nucl-ex/0308011;

PRC 70 (2004) 065207, arXiv: nucl-ex/0405006.

JLab 12 GeV A₁ⁿ E12-06-110 (Hall C)

- First experiment in Hall C's 12 GeV era to utilize polarized beam
- 10.4 GeV beam, 85% polarization
- HMS and SHMS detecting electrons in the inclusive mode
 - both at 30 deg to reach high x
- First time polarized 3He target is installed in Hall C
 - achieved 30 uA beam incident on 40-cm long target, with 50-55% inbeam polarization
 - factor 2 increase in 3He target FOM vs. 6 GeV era

- Ran in Hall C from Nov 2019 to March 2020 (run group continued in July-Sept.2020)
 - Spokespeople: J.P. Chen, G.D. Cates, Z.-E. Meziani, X. Zheng
 - Grad students:
 - Mingyu Chen, Melanie Cardona
 - Postdocs:
 - → A. Tadepalli, W. Henry
 - → M. Nycz, J. Zhang

One part of a broad 12 GeV spin structure program! Taking data in Hall B as we talk...!...

Polarized ³He Target Performance Evolution

Jefferson Lab

in FOM (larger pumping chamber)

$A_{1} = \frac{1}{D(1+\eta\xi)} A_{\parallel} - \frac{\eta}{d(1+\eta\xi)} A_{\perp} \qquad \text{Preliminary } A_{1}(^{3}\text{He}) \text{ Results}$

Jefferson Lab

APS April Meeting, April 9, 2022

Near and Far-Future Projection including JLab 24 GeV

- 30 days of 22 GeV
- Projection using Hall C's
 - HMS @ 30 deg, 4.6 GeV
 - SHMS @ 20 deg, 7.8 GeV
- Polarized 3He target
 - 40cm, 50%, 30uA
- "F1F221 fit" for ³He → neutron "nuclear correction"
- projections (12 and 24 GeV) plotted on pQCD

Figure credit: Cameron Cotton (UVA/HUGS2021) David Flay (JLab)

Similar x, Q extended range expected for unpolarized DIS, tagged and untagged

Multiple experimental efforts at JLab12 to determine *d/u* at high-*x*

PVDIS Measurements - SoLID Proposed Setup

Solenoidal Large Intensity Device - 12 GeV Hall A at JLab Parity-violating DIS program on deuterium and hydrogen

$$\begin{aligned} A_{\rm PV} &\approx -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[a_1(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right] \\ a_1(x) &= 2 \frac{\sum C_{1q} e_q(q + \bar{q})}{\sum e_q^2(q + \bar{q})}, a_3(x) = 2 \frac{\sum C_{2q} e_q(q - \bar{q})}{\sum e_q^2(q + \bar{q})} \end{aligned}$$

For high x on proton target:

$$a_1^p(x) = \left[\frac{12C_{1u}u(x) - 6C_{1d}d(x)}{4u(x) + d(x)}\right] \approx \left[\frac{1 - 0.91d(x)/u(x)}{1 + 0.25d(x)/u(x)}\right]$$

Projected 12 GeV d/u Extractions

 The SoLID extraction of d/u is made directly from ep DIS: no nuclear corrections

Probing the Valence Regime: the role of SoLID

- SOLID PVDIS is <u>the only</u> d/u measurement that is <u>nuclear effect free</u>
- BONuS still requires a deuteron target
 - SoLID will check BONuS technique

- SoLID will thereby help to determine correct deuteron corrections
- This can facilitate using the large global deuterium data set!
- The MARATHON results have been interpreted using different approaches to the nuclear effects in the A=3 nuclei. See, for example: *Phys.Rev.Lett.* 127 (2021) 24, 242001 and *Phys.Rev.Lett.* 128 (2022) 13, 132003
- A nuclear effect free measurement can provide information if there are (or are not) isoscalar off-shell effects
- SOLID will enable us to learn about nuclear effects in light nuclei by providing a testing ground for models of the MARATHON and BONUS data

SoLID will provide a benchmark for precisely leveraging the beautiful MARATHON, BONuS, TDIS, F2d data to higher x

Thank You!

