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QCD PHASE DIAGRAM
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➤ Knowledge of the equation of state of strongly-interacting matter in equilibrium is 
crucial for: 

➤ Fluctuations, via derivatives of the pressure 

➤ The hadronic spectrum, i.e. the composition of the system in HICs, via thermal models 

➤ Hydrodynamic simulations 

➤ Hadronic transport simulations 

➤ Merger simulations 

➤ The behavior of the bulk viscosity & transport 

➤ The interior composition of neutron stars 

➤ …
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What do we know from heavy-ion collisions?
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RHIC Beam Energy Scan

➤ Map out the phase diagram by colliding at different CM energies 

➤ A stated goal of the program: to locate or constrain the location of the QCD CP
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RHIC BES II Data Taken...
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Experimental understanding
For experiments, one collides heavy ions like Au-Au & Pb-Pb 
close to the speed of light. 

One can scan the finite density regime of the phase diagram by 
lowering the center of mass energy √𝑠𝑁𝑁

Many places are trying to do such experiments such as 
1. RHIC @ Brookhaven, USA
2. LHC @ CERN
3. FAIR @ Germany is being constructed to scan the phase 
diagram. 

All these experiments are trying to reach the critical point by 
looking at different observables
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Lattice QCD

➤ Precise knowledge of the QCD pseudocritical temperature and characterization of 
transition line at finite chemical potential

S. Borsanyi et al, PRL (2020) 
See also: A. Bazavov et al, PLB (2019)
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Ref. [5], the peak height would be strongly µB-dependent
and the collapse of the �(h ̄ i) curves at di↵erent (imag-
inary) chemical potentials would not happen.

FIG. 2. Compilation of 4 (left) and 2 (right) coe�cients
from recent lattice studies. We only include those papers
where physical quark masses were used, a controlled con-
tinuum extrapolation was performed, and either strangeness
neutrality or µs = 0 was considered a. The colors encode
the numerical approach. Blue points indicate simulations at
µB = 0 only, where the µB dependence of Tc was extracted
using a Taylor expansion. The green points refer to works
where imaginary chemical potentials were used.
a Note that while µs = 0 implies µS = µB/3 for all values of µB ,
strangeness neutrality implies µS ⇡ µB/4 for small values of
µB .

The transition line and its analytical continuation.—

Keeping the previous observations in mind, one can per-
form a precise determination of Tc, as defined by the
peak of � in Eq. (2) for various values of the imaginary
chemical potential. Tc(µ2

B) can then be fitted for the
coe�cients 2 and 4. This requires the following steps:

i) Determine the renormalized condensate h ̄ i and
susceptibility � in a two-dimensional parameter
scan in T and ImµB using lattice simulations. Use
these to obtain the susceptibility as a function of
the condensate.

ii) Search for the peak of �(h ̄ i) through a low-order
polynomial fit for each Nt and ImµB obtaining
h ̄ ic(Nt, ImµB).

iii) Use an interpolation of h ̄ i(T ) to convert the
h ̄ ic to Tc for each ImµB/T .

iv) Perform a global fit of Tc(Nt, ImµB/Tc) to deter-
mine the coe�cients 2 and 4 for 1/N2

t = 0. For
this step we use various functions – all containing
an independent 6 – with coe�cients depending lin-
early on 1/N2

t . The choice of the fit functions is
motivated by the mock data analysis presented in
the supplemental material.

The total systematic error comes from a pool of 256
analyses: in step i) we have two choices for the scale
setting, two choices for the renormalization of h ̄ i and
two for the renormalization of �; in step ii) we use two
choices for the fit function used to obtain the maximum of
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FIG. 3. Top: Transition line extrapolated from lattice sim-
ulations at imaginary chemical potential using an analytical
continuation with the ansätze used in step iv) of our analysis
(green band) compared with an extrapolation using the for-
mula in Eq. (1) up to the order of 4 (red band) or up to
2 (blue band). The proximity of the full and NLO result
suggests that the higher order corrections are small in the
range of µB considered here. Note that considering only the
error bar of 2 underestimates the full error. The numerical
values for the final analytical continuation, together with its
error, are tabulated in the supplemental material. Bottom:
Crossover line from the lattice compared with a prediction
from truncated Dyson-Schwinger equations [40] and some
estimates of the chemical freezeout parameters in heavy ion
collisions [41–45]. Note that the width of the green band is
not a representation of the width of the crossover region, it de-
picts the statistical and systematic errors achievable with the
particular definition of the crossover temperature Tc adopted
in this work. Note also that the definition of the crossover
temperature adopted in Ref. [40] is di↵erent from the one
used in this work.

�(h ̄ i) and two choices for the fit range; in step iii) we
use two di↵erent interpolations of h ̄ i(T ); in step iv)
we use two global fit functions and two choices for the
range in ImµB/T . This leads to a total of 28 = 256 ways
to analyze our lattice data. These results are combined
with a uniform weight. More details on the analyses, the
fit qualities and the error estimates can be found in the
supplemental material. We finally obtain:

2 = 0.0153± 0.0018 ,

4 = 0.00032± 0.00067 .
(3)

We stress that the uncertainties on these two quantities
are correlated. We put these results in the context of
previous lattice studies in Fig. 2. The extrapolated value
of Tc(µB) is shown in Fig. 3 (green band). Note that the
errors on 2 and 4 are dominated by the statistical er-
rors, as shown in the detailed discussion of the systematic
error estimate in the supplemental material.
Since Ref. [25] we have more than doubled the statis-

tics and introduced a more precise analysis. The overall
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ELTE Eötvös Loránd University,
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We provide the most accurate results for the QCD transition line so far. We optimize the definition
of the crossover temperature Tc, allowing for its very precise determination, and extrapolate from
imaginary chemical potential up to real µB ⇡ 300 MeV. The definition of Tc adopted in this work
is based on the observation that the chiral susceptibility as a function of the condensate is an
almost universal curve at zero and imaganiary µB . We obtain the parameters 2 = 0.0153(18) and
4 = 0.00032(67) as a continuum extrapolation based on Nt = 10, 12 and 16 lattices with physical
quark masses. We also extrapolate the peak value of the chiral susceptibility and the width of
the chiral transition along the crossover line. In fact, both of these are consistent with a constant
function of µB . We see no sign of criticality in the explored range.

Introduction— One of the most important open prob-
lems in the study of Quantum Chromodynamics (QCD)
at finite temperature and density is the determination
of the phase diagram of the theory in the temperature
(T )-baryo-chemical potential (µB) plane. It is now es-
tablished by first principle lattice QCD calculations that
the transition at µB = 0 is a smooth crossover [1, 2] for
physical quark masses. Due to the lack of a real phase
transition, the crossover temperature is of course ambigu-
ous, since di↵erent definitions can lead to di↵erent values
for it. Observables related to chiral symmetry (i.e. the
chiral condensate and its susceptibility) yield a transition
temperature around 155� 160 MeV [3–6].

Extending our knowledge to the µB > 0 part of the
phase diagram turns out to be very challenging, due
to the notorious sign problem. Since this makes direct
simulation at finite µB impossible, the state-of-the-art
for finite density QCD on fine lattices is to use one of
two extrapolation methods. The first method is the di-
rect calculation of Taylor coe�cients [7–17] using sim-
ulations at µB = 0, while the second is to use simula-
tions at imaginary chemical potentials (µ2

B < 0) where
the sign problem is absent, and later perform an ex-
trapolation of di↵erent quantities to a real chemical po-
tential (µ2

B > 0) [18–31]. It is often conjectured that
in the (T, µB) plane the crossover line, departing from
(Tc, µB = 0), eventually turns into a first-order transition
line. The point (TCEP, µCEP) separating the crossover
and the first-order transitions is known as the critical

endpoint (CEP), where the transition is expected to be
of second order. Though there have been attempts in ex-
tracting information about the location of the supposed
CEP from lattice simulations [15, 26, 32–37], these at-
tempts face great di�culties, as extrapolation-type meth-
ods have the property that they give reliable results
mostly in the immediate vicinity of µB = 0.
In this letter, we address the problem of calculating the

Taylor coe�cients of the crossover temperature around
µB = 0, parametrized as:

Tc(µB)

Tc(µB = 0)
= 1� 2

✓
µB

Tc(µB)

◆2

� 4

✓
µB

Tc(µB)

◆4

. . .

(1)
along the phenomenologically relevant strangeness neu-
trality line. In this work we improve the uncertainty on
4 available in the literature [16] by a factor of 6, giving a
state-of-the-art determination of the cross-over line in the
(T, µB) plane. In particular, as we will show, at chemical
potentials µB > 200 MeV the error on the Tc extrapola-
tion is dominated by the sub-leading coe�cients e.g. 4.
The coe�cients 2 and 4 can be calculated with either
one of the standard extrapolation methods. A direct eval-
uation of the µB derivatives from µB = 0 ensembles was
used in Refs. [38, 39]. The current state-of-the art using
the µB = 0 simulation method is Ref. [16], which includes
the first continuum extrapolated results for 4. Here we
will employ an analytical continuation from imaginary
µB instead, and use lattices as fine as Nt = 16. This
is motivated by the fact that the signal/noise ratio of

ar
X

iv
:2

00
2.

02
82

1v
1 

 [h
ep

-la
t] 

 7
 F

eb
 2

02
0

3

Ref. [5], the peak height would be strongly µB-dependent
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The transition line and its analytical continuation.—

Keeping the previous observations in mind, one can per-
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peak of � in Eq. (2) for various values of the imaginary
chemical potential. Tc(µ2
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ii) Search for the peak of �(h ̄ i) through a low-order
polynomial fit for each Nt and ImµB obtaining
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h ̄ ic to Tc for each ImµB/T .

iv) Perform a global fit of Tc(Nt, ImµB/Tc) to deter-
mine the coe�cients 2 and 4 for 1/N2

t = 0. For
this step we use various functions – all containing
an independent 6 – with coe�cients depending lin-
early on 1/N2

t . The choice of the fit functions is
motivated by the mock data analysis presented in
the supplemental material.

The total systematic error comes from a pool of 256
analyses: in step i) we have two choices for the scale
setting, two choices for the renormalization of h ̄ i and
two for the renormalization of �; in step ii) we use two
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continuation with the ansätze used in step iv) of our analysis
(green band) compared with an extrapolation using the for-
mula in Eq. (1) up to the order of 4 (red band) or up to
2 (blue band). The proximity of the full and NLO result
suggests that the higher order corrections are small in the
range of µB considered here. Note that considering only the
error bar of 2 underestimates the full error. The numerical
values for the final analytical continuation, together with its
error, are tabulated in the supplemental material. Bottom:
Crossover line from the lattice compared with a prediction
from truncated Dyson-Schwinger equations [40] and some
estimates of the chemical freezeout parameters in heavy ion
collisions [41–45]. Note that the width of the green band is
not a representation of the width of the crossover region, it de-
picts the statistical and systematic errors achievable with the
particular definition of the crossover temperature Tc adopted
in this work. Note also that the definition of the crossover
temperature adopted in Ref. [40] is di↵erent from the one
used in this work.

�(h ̄ i) and two choices for the fit range; in step iii) we
use two di↵erent interpolations of h ̄ i(T ); in step iv)
we use two global fit functions and two choices for the
range in ImµB/T . This leads to a total of 28 = 256 ways
to analyze our lattice data. These results are combined
with a uniform weight. More details on the analyses, the
fit qualities and the error estimates can be found in the
supplemental material. We finally obtain:

2 = 0.0153± 0.0018 ,

4 = 0.00032± 0.00067 .
(3)

We stress that the uncertainties on these two quantities
are correlated. We put these results in the context of
previous lattice studies in Fig. 2. The extrapolated value
of Tc(µB) is shown in Fig. 3 (green band). Note that the
errors on 2 and 4 are dominated by the statistical er-
rors, as shown in the detailed discussion of the systematic
error estimate in the supplemental material.
Since Ref. [25] we have more than doubled the statis-
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➤ Much of the current knowledge of the QCD phase diagram from ab initio theory and 
experiment from QCD crossover transition & freeze-out

(Less Sketchy) Phase Diagram
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Improved precision equation of state at µB = 0 Contours of constant entropy for µB > 0
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➤ Equilibrium thermodynamics calculated from first principles lattice QCD 
computations are well-established with good agreement amongst techniques

Lattice EoS at Finite T & μB
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Lattice QCD and heavy ion collisions: a review of recent progress 7

Recently, an important validation of the lattice QCD Equation of State has been

obtained from a Bayesian analysis [29]. This framework, based on a comparison of data

from RHIC and the LHC to theoretical models, has applied state-of-the-art statistical

techniques to the combined analysis of a large number of observables while varying the
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Figure 1. Left: Continuum extrapolated results for trace anomaly, entropy density
and pressure. The gray points are from the HotQCD collaboration [17], while the
colored ones are from the WB collaboration [19]. The figure also shows the Stefan-
Boltzmann limit for the pressure and the scaled entropy; the curves at low temperature
correspond to the HRG model predictions. Right: the trace anomaly and pressure in
the 2+1 and 2+1+1 flavor theories (from Ref. [24]).

Figure 2. From Ref [29]: Constraints on the QCD equation of state from the
Bayesian analysis. (a) Fifty equations of state were generated by randomly choosing
the parameters from the prior distribution and weighted by the posterior likelihood (b).
The two red lines in each figure represent the range of lattice equations of state shown
in [17], and the green line shows the equation of state of a non-interacting hadron gas.
This suggests that the matter created in heavy-ion collisions at RHIC and at the LHC
has a pressure that is similar to that expected from equilibrated matter.

Lattice QCD and heavy ion collisions: a review of recent progress 8

model parameters. The posterior distribution over possible equations of states turned

out to be consistent with results from lattice QCD simulations, as shown in Fig. 2. This

analysis has also been successfully applied to infer the behavior of other quantities, such

as the shear viscosity of the QGP at zero [30] and finite density [31].

It is worth pointing out that results exist for the equation of state of QCD

in background magnetic fields [32, 33]: in Ref. [33] the equation of state for a

system of 2+1 flavors at physical quark masses has been obtained, together with the

magnetic susceptibility and permeability, which show that strongly interacting matter

is paramagnetic around and above the transition temperature.

3.2. Equation of state at µB 6= 0

The equation of state of strongly interacting matter at finite density is a very relevant

quantity, among other things, for the low energy runs of heavy ion collisions and for

neutron star physics. It is worth mentioning that recently, results from perturbative

QCD at very large density have been obtained and used to constrain neutron star

matter [34]. Extracting the equation of state (and other properties) of QCD at finite

chemical potential from regular Monte Carlo simulations is not possible at the moment.

Indeed, ab initio calculations in the baryon dense regime of QCD are hindered by the

fermion sign problem, a fundamental technical obstacle of exponential complexity [35]

inherent to any path integral representation of Fermi systems at finite density.

Over the last few years, alternative methods have been proposed to extract

the properties of QCD matter at small chemical potential. These include Taylor

expansion around µB = 0 [36, 37, 38, 39, 40], analytic continuation from imaginary

µB [41, 42, 42, 43, 44, 45, 46, 47, 48], reweighting of the generated configurations

[49, 50, 51, 52], use of the canonical ensemble [53, 54, 55] and density of state methods

[56, 57]. Here we will focus on the first two.

The pressure of QCD can be expanded in a Taylor series around µB = 0 in the

following way

p(T, µB)
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temperature; more recently, it has been pointed out that the transition becomes first

order in the presence of asymptotically large magnetic fields [87].

3.4. Fluctuations of conserved charges

Fluctuations of conserved charges are defined as

�BSQ
lmn =

@l+m+n(p/T 4)

(@µB/T )l(@µS/T )m(@µQ/T )n
. (14)

They can be calculated on the lattice as combinations of quark flavor fluctuations,

through the following relationship between chemical potentials:

µu =
1

3
µB +

2

3
µQ

µd =
1

3
µB �

1

3
µQ

µs =
1

3
µB �

1

3
µQ � µS. (15)

The relevance of fluctuations for the physics of heavy ion collisions has been increasing

in recent years. The higher order fluctuations of conserved charges are expected to

diverge at the critical point, and therefore they have been proposed long ago as one

of its possible experimental signatures [38, 88, 89]. For this reason, fluctuations have

became one of the central measurements for the Beam Energy Scan at RHIC. Renewed

interest in these observables has been stimulated also at small chemical potentials, due

to the possibility of extracting freeze-out parameters of a heavy-ion collision from first

principles, by comparing measurements to lattice QCD results [90, 91, 92] or of studying

the chiral criticality through higher order fluctuations [93]. Besides, linear combinations

of fluctuations can be used to identify the e↵ective degrees of freedom and study the

chemical composition of the system at a given temperature and chemical potential

[94, 95].

The first continuum-extrapolated results for second order fluctuations of conserved

charges at physical quark masses were presented in Ref. [96] (almost-physical quark

mass results are shown in Ref. [97], heavier quark mass results are shown in Ref. [98])

and later extended to selected fourth-order fluctuations and correlations [99, 100]. From

these results it is evident that, at large temperatures, the observables are much closer

to the ideal-gas limit, compared to the global thermodynamic observable presented in

Section 3.1; also, these observables agree with perturbation theory predictions [101, 102]

for temperatures T � 250 MeV.

Before concentrating on the comparison of fluctuations of conserved charges

with experiments, here we describe a couple of other possible applications for these

observables. For example, it is possible to construct linear combinations of fluctuations

which, in the low-temperature phase, select the contribution to thermodynamic

quantities of hadrons according to their quantum numbers [95, 103, 104]. In the range
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model parameters. The posterior distribution over possible equations of states turned

out to be consistent with results from lattice QCD simulations, as shown in Fig. 2. This

analysis has also been successfully applied to infer the behavior of other quantities, such

as the shear viscosity of the QGP at zero [30] and finite density [31].

It is worth pointing out that results exist for the equation of state of QCD

in background magnetic fields [32, 33]: in Ref. [33] the equation of state for a

system of 2+1 flavors at physical quark masses has been obtained, together with the

magnetic susceptibility and permeability, which show that strongly interacting matter

is paramagnetic around and above the transition temperature.

3.2. Equation of state at µB 6= 0

The equation of state of strongly interacting matter at finite density is a very relevant

quantity, among other things, for the low energy runs of heavy ion collisions and for

neutron star physics. It is worth mentioning that recently, results from perturbative

QCD at very large density have been obtained and used to constrain neutron star

matter [34]. Extracting the equation of state (and other properties) of QCD at finite

chemical potential from regular Monte Carlo simulations is not possible at the moment.

Indeed, ab initio calculations in the baryon dense regime of QCD are hindered by the

fermion sign problem, a fundamental technical obstacle of exponential complexity [35]

inherent to any path integral representation of Fermi systems at finite density.

Over the last few years, alternative methods have been proposed to extract

the properties of QCD matter at small chemical potential. These include Taylor

expansion around µB = 0 [36, 37, 38, 39, 40], analytic continuation from imaginary

µB [41, 42, 42, 43, 44, 45, 46, 47, 48], reweighting of the generated configurations

[49, 50, 51, 52], use of the canonical ensemble [53, 54, 55] and density of state methods

[56, 57]. Here we will focus on the first two.
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The coe�cients ci(T ) of the Taylor series are simulated on the lattice, either directly

at µB = 0 or by using the analytical continuation technique from imaginary µB. This

means that the method traditionally used at µB = 0 can be generalized to any imaginary

µB, and the µB-dependence of the direct derivative is then analyzed, in order to extract

higher order coe�cients. More in detail, in the direct method a derivative of the partition

function can be written in terms of the action with all fermionic degrees of freedom

already integrated out, Seff , as follows:
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Evolution of a Heavy-ion Collision

➤ Strongly-interacting matter proceeds through several different phases during a 
collision event  HIC modeling/phenomenology →

Introduction
Heavy Ion Collisions

Big Bang vs Little Bang

I All RHIC experiments announce
creation of QGP (2005)

I Surprising feature: QGP
behaves as a perfect fluid

12 / 39

Chemical freeze-out

8

Chemical freeze-out: 
inelastic collisions 
cease; the chemical 
composition is fixed 
(particle yields and 
fluctuations) 

Kinetic freeze-out: 
elastic collisions 
cease; spectra and 
correlations are fixed

⟨nQ⟩ = 0.4⟨nB⟩
Nuclear initial conditions

(strangeness neutrality)
⟨nS⟩ = 0
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➤ The low temperature thermodynamics is well-described by the Hadron Resonance 
Gas model but hadronic spectrum still unknown

Hadron Resonance Gas & Hagedorn TH

9

A. Bazavov et al, PRD (2014) 
R. Hagedorn, Nuovo Cim. Suppl (1965, 1968) 
J. Salinas San Martin, R. Hirayama, J. Hammelmann, J.M. Karthein et al, arXiv:2309.01737

Theory: Hadron Resonance Gas model

I Interacting hadrons in the ground state well approximated by non-interacting
resonance gas

I Pressure given by the sum of partial contributions:

P

T 4
=

1

V T 3

X

i

ln Zi(T, V, ~µ)

with:

ln ZM/B
i = ⌥

V di

(2⇡)3

Z
d3p ln

�
1 ⌥ exp

⇥
�
�
✏i � µaX

i
a

�
/T

⇤�

where:

I energy ✏i =
p

p2 + m2

i

I conserved charges ~Xi = (Bi, Si, Qi)

I degeneracy di, mass mi, volume V

NOTE: model fed with hadronic spectrum. Particle spectrum becomes a “variable”!
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We use an interacting hadron resonance gas with the
most up-to-date particle resonance list from the Particle
Data Group (PDG16+) [59], which was shown to be a
reasonable fit compared to lattice QCD data, can describe
net-Kaon fluctuations [11], off-diagonal susceptibilities
[60], thermal fits [61], and works well within relativistic
viscous hydrodynamic calculations [28]. We base the
treatment of the deconfined phase on the parametrized
version of ⌘/s(T, µB = 0) from Ref. [52], which is adjusted
to match the hadron resonance gas model at the phase
transition assuming a minimum value ⌘/s ⇠ 0.08. In this
work we construct four different profiles for ⌘T/w(T, µB):
we first consider the cases of a smooth or sharp crossover,

then the case with a critical point, first at {T, µB} =
{143, 350} MeV – to match to the publicly available BEST
collaboration EoS [62], then at {T, µB} = {89, 724} MeV
– matching the prediction from holography in Ref. [56]3.

II. HADRON RESONANCE GAS MODEL

With the HRG model one can calculate the pressure,
energy density and total particle density of species i as-
suming that the hadrons are point like particles:

p(T, µB , µS , µQ)

T 4
=
X

i

(�1)Bi+1 gi
2⇡2

1Z

0

p2 ln [1 + (�1)Bi+1e(�
p

p2+m2
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T 4
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X
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2⇡2

1Z
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p2
p
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i
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p
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T +µ̃i)

dp (2)

ni(T, µB , µS , µQ)

T 3
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1Z

0

p2
"
exp

 p
p2 +m2

i

T
� µ̃i

!
+ (�1)Bi�1

#�1

dp (3)

where

µ̃i ⌘ BiµB/T + SiµS/T +QiµQ/T (4)

and gi is the degeneracy of each hadron, mi is the mass,
and Bi, Si, and Qi are the baryon number, strangeness
and electric charge carried by each hadron. Additionally,
µB , µS , and µQ are the corresponding chemical potentials
for each conserved charge.

The other thermodynamic quantities follow

s(T, µB , µS , µQ) =
@p(T, µB , µS , µQ)

@T
⇢i(T, µB , µS , µQ)

T 3
=

@p(T, µB , µS , µQ)/T 4

@(µi/T )

p+ ✏ = sT +
X

i=B,S,Q

µi⇢i (5)

where s is the entropy, ⇢i where i = B,S,Q is the net
density, and ✏ is the energy density. Note that for the
rest of the paper we will abbreviate µB , µS , µQ ) µi.

In this paper we first compare two different lists of
hadrons from the Particle Data Group, one from 2005
(PDG05) and another developed in Ref. [59] from 2016
that includes all *-**** states (PDG16+).

3
We remind the reader that, while the result in Ref. [56] is

a prediction on the location of the critical point, the BEST

collaboration EoS allows the user to pick its location, and the

one mentioned here is the one used in Ref. [62] for illustration

purposes.

A. Excluded Volume

One method for taking into account repulsive interac-
tions is the excluded volume approach [63] wherein each
hadron is delegated a volume v, and the excluded volume
pressure pv can then be written as

pv(T, µi)

T
= n(T, µi) exp(�vpv(T, µi)/T ), (6)

which can be solved analytically using the Lambert W
function

pv(T, µi) =
T

v
W (v n(T, µi)) , (7)

where n(T, µi) =
P

i
ni(T, µi) is defined in Eq. (3). The

remaining thermodynamic quantities can be obtained
using the thermodynamic relationships from Eq. (5) and
are denoted with a subscript v for excluded volume. Here
we are assuming that all particles have the same volume.
In fact, one could relax that assumption as in Ref. [64] or
even consider a multicomponent van der Waals [65], but
we leave this for future work.

We obtain the effective hard-core volume from v =
4 · 4⇡r3/3, where r is the effective core radius. The point-
like thermodynamic properties in Eqs. (1-5) can be then
restored with r ! 0.

In the excluded volume calculations, there is always
the issue of constraining the volume size, since it is an
unconstrained free parameter. In an attempt to constrain
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and electric charge carried by each hadron. Additionally,
µB , µS , and µQ are the corresponding chemical potentials
for each conserved charge.

The other thermodynamic quantities follow

s(T, µB , µS , µQ) =
@p(T, µB , µS , µQ)

@T
⇢i(T, µB , µS , µQ)

T 3
=

@p(T, µB , µS , µQ)/T 4

@(µi/T )

p+ ✏ = sT +
X

i=B,S,Q

µi⇢i (5)

where s is the entropy, ⇢i where i = B,S,Q is the net
density, and ✏ is the energy density. Note that for the
rest of the paper we will abbreviate µB , µS , µQ ) µi.

In this paper we first compare two different lists of
hadrons from the Particle Data Group, one from 2005
(PDG05) and another developed in Ref. [59] from 2016
that includes all *-**** states (PDG16+).

3
We remind the reader that, while the result in Ref. [56] is

a prediction on the location of the critical point, the BEST

collaboration EoS allows the user to pick its location, and the

one mentioned here is the one used in Ref. [62] for illustration

purposes.

A. Excluded Volume

One method for taking into account repulsive interac-
tions is the excluded volume approach [63] wherein each
hadron is delegated a volume v, and the excluded volume
pressure pv can then be written as

pv(T, µi)

T
= n(T, µi) exp(�vpv(T, µi)/T ), (6)

which can be solved analytically using the Lambert W
function

pv(T, µi) =
T

v
W (v n(T, µi)) , (7)

where n(T, µi) =
P

i
ni(T, µi) is defined in Eq. (3). The

remaining thermodynamic quantities can be obtained
using the thermodynamic relationships from Eq. (5) and
are denoted with a subscript v for excluded volume. Here
we are assuming that all particles have the same volume.
In fact, one could relax that assumption as in Ref. [64] or
even consider a multicomponent van der Waals [65], but
we leave this for future work.

We obtain the effective hard-core volume from v =
4 · 4⇡r3/3, where r is the effective core radius. The point-
like thermodynamic properties in Eqs. (1-5) can be then
restored with r ! 0.

In the excluded volume calculations, there is always
the issue of constraining the volume size, since it is an
unconstrained free parameter. In an attempt to constrain
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Figure 2.7: (a) State of the art lattice equation of state at zero chemical
potential. Figure taken from Ref. [116] (b) A sketch of QCD phase diagram as
a function of temperature T and baryon chemical potential µB. The dashed
line indicates a smooth crossover between hadronic and QGP phases, the
solid line—a conjectured first order transition with second order critical end
point (CEP). Figure taken from Ref. [29].

At temperatures below the deconfinement temperature Tc ⇠ 155MeV,
the main degrees of freedom of the QCD are hadrons and a hadron resonance
gas (HRG) model agrees well with the low temperature behavior of lattice
equation of state (see Fig. 2.7(a)). At temperatures much higher than the
deconfinement temperature Tc, the system is better described in terms of
weakly interacting quarks and gluons and the equation of state is not too far
from the massless gas limit. Lattice computations show that at zero chemical
potential the transition between the two phases is a smooth crossover [117].
However, for µB > 0 one can have a first order phase transition line, which
terminates at the critical end point (CEP) [118] (see Fig. 2.7(b)). This part
of the phase diagram is accessible at medium energy nuclear collisions and is
the target of the Beam Energy Scan program at RHIC [119, 120].

In Chapter 3, we use hydrodynamic equations derived in the confor-
mal limit, but with lattice equation of state (s95p-v1 parametrization from
Ref. [121]). The e↵ective kinetic theory of Chapter 4 treats the QGP as a
gas of weakly interacting massless particles, which automatically leads to a
conformal equation of state p = e/3. For the sake of simplicity, the conformal
equation of state is also used in semi-analytical computations of Chapter 5.
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temperatures it agrees with the HRG model result, and it shows a rapid rise across the

transition. It reaches the ideal gas limit much faster than the other observables under

study, yet there is a window of about 100 MeV above Tc, where its value is still smaller

than one. In analogy with χus
11, this observable also gives us information on bound state

survival above Tc.

For convenience we tabulate our continuum results in Table 1.
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study, yet there is a window of about 100 MeV above Tc, where its value is still smaller

than one. In analogy with χus
11, this observable also gives us information on bound state

survival above Tc.

For convenience we tabulate our continuum results in Table 1.
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The HRG model agrees well with lattice QCD 
calculations for many observables

‣ Equation of state (pressure, entropy density, 
energy density)

‣ Susceptibilities (fluctuations of conserved 
charges)

¨  We now have the equation of state for µB/T≤2 or in terms of the 
RHIC energy scan:  
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temperature. In each panel, the black dots are the HRG model results, the red triangles correspond to the lattice QCD results
and the thick blue line indicates the Stefan-Boltzmann limit. The thin solid, black curve shows our parameterization of the
data.

pressure from Eq. (1). The other thermodynamic quan-
tities are then derived from the pressure as follows:

s

T 3
=

1

T 3

@p

@T

����
µi

,
✏

T 4
=

s

T 3
� p

T 4
+
X

i

µi

T

ni

T 3

ni

T 3
=

1

T 3

✓
@p

@µi

◆����
T,µj

, c2s =
@p

@✏

����
ni

+
X

i

ni

✏+ p

@p

@ni

����
✏,nj

.(4)

Everywhere in the above equation, i 6= j is intended.
In Fig. 3 we show the dependence of the normal-

ized pressure, entropy density, energy density, baryonic,
strangeness and electric charge densities on the temper-
ature, along lines of constant µB/T = 0.5, 1, 2, both
with hnSi = 0, hnQi = 0.4hnBi (solid black lines), and
in the case µS = µQ = 0 (dashed red lines). We find
that the thermodynamic quantities that are less sensi-
tive to the chemical composition of the system do not
show large discrepancies between the two scenarios, for

all three values of µB/T . On the other hand, when re-
alistic conditions on the global chemical composition of
the system are imposed, the baryon density is largely af-
fected, and substantially decreased; the opposite e↵ect
is visible for the electric charge density, which is heavily
enhanced.
We also compare the isentropic trajectories between

these two cases. They are shown in Fig. 4 for selected
values of s/nB , which correspond to the indicated colli-
sion energies [40]. Also in this case, the solid black lines
correspond to hnSi = 0, hnQi = 0.4hnBi while the dashed
red lines to µS = µQ = 0.

CONCLUSIONS

In this manuscript, we constructed an equation of state
for QCD at finite temperature and B, Q, S chemical po-

Pressure:

Density:
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predominant radiative decay, analogously to PDG states
with incomplete information. The remaining percentage
is reserved for hadronic decays, for which we use lin-
ear extrapolation from known branching ratios of PDG
particles with the same quantum numbers B, S, I
and Q (baryon number, strangeness, isospin and electric
charge).

The linear extrapolation is performed as follows.
States from the PDG2016+ list are divided into “fam-
ilies” with the same quantum numbers, and all strong
decay modes present in the family are grouped together.
For each channel appearing in the family, a linear inter-
polation of its branching ratio as a function of the particle
mass is performed. Then, QM states of the same fam-
ily are assigned branching ratios by sampling the linear
mass dependence constructed as explained above. At this
point, all negative BR values are discarded, as well as all
decays that violate mass conservation. Finally, the sum
of branching ratios for strong decays is normalized and
put together with the electromagnetic ones.

We emphasize here that for the QM states we have the
least amount of information and, therefore, the largest
amount of uncertainties.

III. THERMAL FITS AND THE HADRON
RESONANCE GAS MODEL

The study of chemical freeze-out we present here
makes use of the Hadron Resonance Gas (HRG) model,
which describes the hadronic phase below the transi-
tion temperature Tc as a system of non-interacting parti-
cles [5, 36, 37]. The HRG model has a wide-spread appli-
cability in heavy-ion studies in reproducing thermal par-
ticle abundances and lately also in providing results on
fluctuations of conserved charges (B, Q, S) [12, 13, 38–
40]. Recently, these observables have been compared to
the measured moments of net-particle distributions, and
provided freeze-out temperatures which are compatible
with the ones obtained by comparing the experimental
data to lattice QCD calculations [38, 41–45].

Historically, the HRG model has been widely employed
to compare data on particle production for energies rang-
ing from the AGS to the LHC [46–54]. Produced particle
yields hNii are obtained by adding the contribution from
resonances to the primordial thermal yield, given by V ni:

hNii = V ni + V
X

R

hniiR nR . (1)

In the above, hniiR is the average number of particles of
type i resulting from a decay of resonance R, ni and nR

are thermal densities calculated through the statistical
model, and V is the system volume. The decay of res-
onance R into stable particles such as p, ⇡, K, ⇤, ⌅
and ⌦ is taken into account by introducing an e↵ec-
tive chemical potential µR =

P
i µihniiR. Here µi =

BiµB+QiµQ+SiµS is the chemical potential for particle i
carrying specific baryonic, electric charge and strangeness

quantum numbers. Conditions on the net-strangeness
and net-charge density are imposed, to match the heavy-
ion collision situation:

hnS(T ;µB , µQ, µS)i = 0 ,

hnQ(T ;µB , µQ, µS)i =
Z

A
hnBi . (2)

These allow one to constrain the three chemical poten-
tials. In this way, yields and ratios calculated within
the HRG model only depend on the thermal parameters
(T, µB) (and V in the case of yields).
Thermal properties at the chemical freeze-out have

been studied using yields and ratios from STAR data in
Au-Au collisions at

p
sNN = 200, 39, 27, 19.6, 11.5, 7.7

GeV [55–57] and from ALICE data in Pb-Pb collisions
at

p
sNN = 2.76TeV and 5.02TeV [9, 11, 58–61].

In this manuscript, we focus on the STAR data atp
sNN = 200 GeV and 0 � 5% centrality, and the AL-

ICE data at
p
sNN = 5.02 TeV and 0 � 10% centrality.

We perform thermal fits of the particle yields and ratios,
using published data on ratios, if available, for STAR [55]
and for ALICE. In order to build the remaining ratios,
published data on yields from both collaborations have
been used with a proper propagation of the errors in
the final result. We evaluate the yields and ratios for
each hadronic list and extract the thermal parameters
(T, µB , V ) by using the thermal fit package FIST [62].
The package allows users to choose their own particle
lists, as well as data sets, in the fit.

IV. SINGLE FREEZE-OUT SCENARIO

Initially, we consider a common freeze-out tem-
perature for strange and light hadrons. We fit
the measured yields for the following particles:
⇡+, ⇡�, K+, K�, p, p̄, ⇤, ⇤̄, �, ⌅, ⌅̄, ⌦, ⌦̄ at the
LHC, while at RHIC the separate ⌦ and ⌦̄ yields are
replaced by the sum ⌦ + ⌦̄. When we take the ratios,
we divide the light particle yields by the yield of either
⇡+ or ⇡� and the strange particle yields by the yield of
either K+ or K�. The results of the thermal fits for both
yields and ratios while varying the particle resonance list
are shown in Table I for LHC data at

p
sNN = 5.02TeV

and in Table II for STAR data at
p
sNN = 200GeV. At

the LHC we hold µB = 1MeV fixed to avoid the possibil-
ity of negative chemical potentials and remain consistent
with previous analyses [63].
From Tables I and II a few trends begin to emerge:

• for both yields and ratios, more hadronic states
generally decrease the chemical freeze-out temper-
ature;

• the chemical freeze-out temperatures from yields
and ratios approximately agree;

• generally, due to the decrease of the chemical
freeze-out temperature with the increase of the

The canonical treatment of charm here assumes that there are no multi-
charmed particles in the particle list and that the system is net charm free,
which is su�cient for most applications. The yields of charmed hadrons in
the charm-canonical ensemble (CCE) are then calculated as follows

hN ce

i i = hNgce

i i
I1(

P
j2ChN

gce

j i)
I0(

P
j2ChN

gce

j i) , i 2 C. (39)

2.9. Thermal fits

Perhaps the most common application of the HRG model is fitting the
hadron yield data from relativistic heavy-ion collisions – the thermal fits.
Such an approach assumes thermal and (partial) chemical equilibrium be-
tween all stable hadrons and all resonances at the so-called “chemical freeze-
out” stage of a heavy-ion reaction. The HRG model fits are performed by
minimizing the value

�2

Ndof

=
1

Ndof

NX

i=1

�
N exp

i � NHRG

i

�2

�2

i

, (40)

where N exp

i and NHRG

i are the experimental and calculated in the HRG
hadron multiplicities, respectively; Ndof is the number of degrees of freedom,
that is the number of the data points minus the number of fitting parameters;
and �2

i = (�syst
i )2 + (�stat

i )2 is the sum of the squares of the statistical and
systematic experimental errors. Note that NHRG

i is the total hadron yield,
including the resonance feeddown, calculated in accordance with Eq. (25)
and using the appropriate feeddown flags. Ni in Eq. (40) can also represent
a ratio of two yields. Thermal-FIST employs the MINUIT2 package [77]
for the �2 minimization procedure.

In the simplest setup, corresponding to the full chemical equilibrium in the
grand canonical ensemble, there are only three fit parameters: the tempera-
ture T , the baryonic chemical potential µB, and the system volume parameter
V . The electric charge and strangeness chemical potentials µQ and µS are
not fitted. Instead, at each fixed temperature T and baryochemical potential
µB, the µQ and µS are determined in a unique way in order to satisfy two
conservation laws given by the “initial” conditions: the electric-to-baryon
charge ratio of Q/B = 0.4, and the vanishing net strangeness S = 0. These
two conditions are relevant if pre-freezeout radiation is neglected. Other-
wise, µS and/or µQ can also be considered as additional fit parameters. For
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Ref. [35]. Each flavour dependent spline fit and error band was
determined in the same manner as in Figure 1. The width of the
lattice curve is based on the width (�) of the chiral susceptibility
[35].
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Figure 2: Strange (blue points) and light (red points) GCE fits to STAR and
ALICE data measured at collision energies ranging from

p
sNN = 11.5 GeV to

5.02 TeV (0 - 10%) via The FIST using the PDG2016+ hadronic spectrum.

Detailed fit results for each energy including V and �2/do f ,
are shown in Table 2. Generally, the separation into light and
strange particles improves the quality of the fits by at least a
factor two at all energies.

In Figure 2, the light and strange fits consistently fall within
the lattice QCD crossover width as determined by detailed stud-
ies of the temperature dependence of the chiral order parame-
ters [35]. Our flavour-dependent fits agree with the calculated
freeze-out temperatures from net-proton, net-charge and net-
kaon fluctuations up to µB ' 150 MeV [36, 12]. Tch remains
constant with increasing µB until µB ' 100 MeV, where the
strange and light fit begin to approach. The two fits converge
within errors at µB ' 300 MeV; therefore, we propose that a
separate treatment of strange and light particles might not be
meaningful at µB � 300 MeV. The convergence of the two
flavour-dependent temperatures is expected in the vicinity of
a critical point in the QCD phase diagram.

The greatest di↵erence between the two temperatures is seen
at the highest energy, namely the ALICE top energy. To ad-
dress the impact of a flavour dependent freeze-out on the par-
ticle abundances, we calculated yields for the full particle set
(⇡K p⇤⌅⌦K

0
S�) for ALICE PbPb 5.02 TeV with a one chemi-

cal freeze-out (1CFO) approach and compared them with yields
calculated for light (⇡K p) and strange (K⇤⌅⌦K

0
S�) particles

separately with a two chemical freeze-out (2CFO) approach.
We fixed the temperature(s) and volume(s) to the Tch and V val-
ues shown in Table 2 for

p
sNN = 5020 GeV. In the 1CFO ap-

proach, we calculated yields using a temperature of 150.4 MeV.
In the 2CFO approach, our light and strange particle yield cal-
culations were done with temperatures fixed to 142.4 MeV and
164.4 MeV, respectively. We note that our 1CFO temperature
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Figure 3: Top and bottom panels show GCE fits to ALICE PbPb at
p

sNN =

5.02 TeV (0 - 10%) and STAR AuAu at
p

sNN = 39.0 GeV (0 - 10%), respec-
tively, via The FIST using the PDG2016+ hadronic spectrum. Single tempera-
ture (1CFO) yield calculations are shown in magenta. Two temperature (2CFO)
yield calculations are shown in dashed blue lines. Experimental values [27, 28]
are shown in green.

di↵ers from the value quoted by ALICE, which is based on the
Heidelberg-GSI model, by about 4 MeV, most likely due to the
di↵erence in the hadronic input spectrum [27].

Figure 3 shows a comparison between the 1CFO and 2CFO
approaches for data sets at two exemplary energies, namely the
preliminary 5.02 TeV central PbPb data from ALICE and the
39.0 GeV central AuAu data from STAR. The deviations of
each yield calculation from the experimental value are shown
at the bottom of each plot. We observe that the 2CFO approach
provides an excellent and much improved description of the ex-
perimental data; rendering yields within one standard deviation
of the experimental measurements for most particle species.
The 2CFO treatment all but eliminates the tension between light
and strange baryons, the so-called proton anomaly, seen in the
1CFO approach. It should also be noted that alternative meth-
ods to treat interactions in the SHM via the S-matrix approach
[37] impact in particular the proton yields and improve the per-
formance of the 1CFO method in the Heidelberg-GSI fits [7].

As a cross-check with lattice QCD predictions, we deter-
mined whether our 2CFO parameters lie on the isentropic tra-
jectories in the T-µb plane, which were calculated using a lattice
QCD equation of state [38]. The validity of this approach to fi-
nite densities has been proven out to µb/T = 2. Therefore, in
Figure 4, we show our data only for collision energies down top

(sNN) = 19.6 GeV. The ALICE points are also excluded since

3
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because of the di!culty in obtaining a continuum limit
for ωQ

4
. Because all hadrons except the ” baryons have

unit (or zero) charge, this ratio can deviate from 1 only
due to these isospin multiplets, for each of which there
is a |Q| = 2 state. Every other singly charged state will
bring the ratio closer to 1, including heavier (strange) res-
onances. This explains why the SMASH curve is above
the PDG ones, as it contains fewer states in general, while
the number of ” baryons is similar. The PDG2021+, on
the other hand, falls above the PDG2016+ because of
the recent decrease in the mass of a couple of the lightest
” resonances, as can be seen in the top right panel of
Fig. 1.

B. Thermal Models

The hadron resonance gas model is also often used to
fit the hadron yield data from relativistic heavy-ion col-
lisions, assuming thermal and chemical equilibrium be-
tween all stable hadrons and resonances [50, 51, 86–90].
The HRG model fits are performed by minimizing the
value of the ω2 function,

ω2

Ndof

=
1

Ndof

N∑

i=1

(N exp

i
→ NHRG

i
)2

ε2

i

, (19)

determined from the comparison between experimental
yields and yields calculated in the thermal model. From
this ω2-minimization procedure, the best fitting chemical
freeze-out parameters, T, µB , V are extracted.

We utilized the Thermal-FIST package to perform the
fits [91]. Following the previous results of Refs. [22,
49, 52, 83, 89, 92], in this manuscript we considered
two separate scenarios for chemical freeze-out, namely
a single freeze-out and two freeze-out scenario. In the
single freeze-out scenario, a global fit of all hadrons is
performed, yielding a single set of {T, µB , V }. On the
other hand, in the two freeze-out scenario we consider
the flavor-dependent freeze-out hypothesis. Here, we al-
low for two sets of freeze-out parameters by fitting light
(ϑ, K, p) and strange (K, #, $, %, &, K0

S
, K→0, ϖ) particles

separately.
Figure 10 illustrates the total yields for all stable par-

ticles in the single and two-freeze-out scenarios using the
PDG2021+ resonance list, as well as the corresponding
standard deviations from experimental data for central
ALICE Pb-Pb 0–10% events at 5.02 TeV, along with the
extracted fit parameters and their associated uncertain-
ties [93–95]. In a similar manner, Fig. 11 displays the to-
tal yield when employing the SMASH hadronic list. The
fit quality, indicated by the ω2/N value, is consistently
superior when using the more comprehensive PDG2021+
list for all particle species in both freeze-out scenarios.
Notably, the correlation between thermal yields and ex-
perimental values in the strange sector sees significant
improvement, with the sole exception of # particles.

FIG. 10. (Solid) Single freeze-out temperature particle yield
fit using the PDG2021+ resonance list with extracted volume
VG = 5317.02± 642.58 fm3 and (dotted) Two-freeze-out tem-
perature particle yield fit using the PDG2021+ resonance list
with VL = 8516.1 ± 1176.2 fm3 and VS = 3645.07 ± 380.164
fm3 as the extracted volumes. Experimental data points cor-
respond to ALICE Pb-Pb 0–10% collisions at 5.02 TeV [93–
95].

FIG. 11. (Solid) Single freeze-out temperature particle yield
fit using the SMASH resonance list with extracted volume
VG = 5227.85 ± 633.649 fm3 and (dotted) Two-freeze-out
temperature particle yield fit using the SMASH resonance list
with VL = 8653.23±1228.85 fm3 and VS = 3029.03±432.872
fm3 as the extracted volumes. Experimental data points cor-
respond to ALICE Pb-Pb 0–10% collisions at 5.02 TeV [93–
95].
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Hadronic Composition

➤ Partial pressure from lattice QCD help determine hadronic spectrum  
➤ Improved agreement with lattice when including more  

states: PDG2021+ 

➤ Decays compatible with SMASH hadronic transport 
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J. Salinas San Martin, R. Hirayama, J. Hammelmann, J.M. Karthein et al, arXiv:2309.01737

Updates mainly to strange sector 
including newly measured  baryonΩ

3

decay channels. However, the new version of the list has
some notable di↵erences with respect to its predecessor.
An extensive revision of the PDG2016+ was carried out,
updating the values of mass and width, as well as de-
cay channels and branching ratios to the most recent ex-
perimental data available. For increasingly heavy reso-
nances, information on particle properties such as spin
and parity, and branching ratios becomes less certain;
in several instances, the reported experimental branch-
ing ratios do not add up to 1. Although the formation
of heavy resonances is exponentially suppressed, the han-
dling of their decays can potentially have an e↵ect on the
final spectra of stable particles. Previously, for example,
the PDG2016+ list assigned a ⇠ 80–90% branching ra-
tio to decays of the form N2 ! N1 + �, where N2 and
N1 are hadrons with the same quantum numbers as a
substitute for missing decay channels, while splitting the
remaining percentage between available values. [jordi:
Paolo will tweak the language to make it correct].
In contrast, the PDG2021+ contemplates the experimen-
tally reported values without modification, only adding
radiative decays as a complement to obtain the totality
of decays.

The most common approach in thermal and hadronic
transport models that take hadronic spectra as input
has been to include only the most well-established res-
onances. Notably, SMASH uses an up-to-date set of es-
tablished hadrons while also allowing for the possibility
of including more particles as necessary. Figure 1 shows
the spectra comparison per baryon family between the
PDG2021+, PDG2016+, and SMASH hadronic lists3.
The extended lists contain several resonances that re-
quire additional experimental support and are subject to
change in properties and quantum numbers. Most no-
ticeably, these extended lists add in high-mass states for
every family when compared to the default SMASH col-
lection of particles. We also highlight the incorporation
of a new, relatively light, ⌦ baryon at m ' 2012 MeV on
the PDG2021+ list with respect to PDG2016+; due to
the small number of states in this family, the contribution
represents a 25% increase on the number of triple-strange
hadrons.

Alongside with changes on the number of particles and
their respective decays, the PDG2021+ list also intro-
duces some changes on the PID of resonances. Since
SMASH uses the particle identification number to work
out the quark content of a baryon, a consistent treatment
of the numbering scheme is necessary to implement the
hadronic list into the model. The details on the proposed
numbering scheme can be found on Appendix A.

3 SMASH version 2.2 was used for all results presented in this
paper.
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FIG. 1. Comparison of baryon resonance mass spectra
per family between the new PDG2021+ (red), previous
PDG2016+ (green), and SMASH (blue) hadronic lists. Par-
ticle lists based on the latest experimental data available in-
clude states that are not completely established and are sub-
ject to change in their existence and properties.

A. Hadronic spectrum

The statistical bootstrap model is an approach that
aims at characterizing nuclear matter, where the in-
teractions among hadrons are thought to be well ap-
proximated by the formation of more massive hadronic
resonances, leading to a description of a gas of non-
interacting heavy states. The information on the com-
position of and how rapidly these heavier states decay is
contained in the density of states ⇢(m) that arises as the
solution to the bootstrap condition,

⇢(m, V0) = �(m � m0) +
X

N

1

N !


V0

(2⇡)3

�N�1

⇥
Z NY

i=1

⇥
dmi ⇢(mi)d

3pi
⇤
�4
 
X

i

pi � p

!
,

(1)

where m0 is the mass of the lightest hadron of the spec-
trum and V0 is the size of the system. Hagedorn realized

6

With the explicit contribution from antiparticles and set-
ting µ̂Q = 0 for simplicity, the total pressure can then be
written as

p

T 4
= ω̃0(T ) +

∑

B,S

ω̃BS(T ) cosh(Bµ̂B + Sµ̂S)

= ω̃0(T ) + ω̃0|1|(T ) cosh(µ̂S)

+ ω̃10(T ) cosh(µ̂B)

+ ω̃1|1|(T ) cosh(µ̂B → µ̂S)

+ ω̃1|2|(T ) cosh(µ̂B → 2µ̂S)

+ ω̃1|3|(T ) cosh(µ̂B → 3µ̂S), (17)

where each term in the sum corresponds to the par-
tial pressure associated with a particular set of quantum
numbers. Notice that the dimensionless pressure coef-
ficients ω̃BS are now linear combinations of the more
general ωBSQ; for instance, the kaon contribution is
ω̃0|1| = ω0|1|0+ω0|1||1|. For further details see [15, 82, 83].

In Fig. 3, we show the contribution of each of the
partial pressures to the total pressure. Results from the
HRG model calculations, as described above, with the
updated PDG2021+ list are compared to the lattice QCD
results obtained from imaginary strangeness chemical po-
tential simulations from [15]. This logarithmic plot illus-
trates the range in order of magnitude that the di!erent
sectors span with smaller contributions from more rare
species. We can see that the agreement achieved between
lattice QCD and HRG with the PDG2021+ hadronic
list is remarkable across the orders of magnitude covered
here.

In order to scrutinize further the updates to the
hadronic spectrum with the PDG2021+ list, we show its
agreement with the lattice data in the di!erent sectors
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FIG. 3. Contribution to the total pressure of strange mesons
and di!erent baryonic sectors within the ideal hadron reso-
nance gas using the PDG2021+ particle list, compared to the
lattice results from [15].

FIG. 4. Contribution to the total pressure from K resonances
within the ideal hadron resonance gas using the PDG2021+
(solid red) particle list, compared to the lattice results from
[15] and to the PDG2016+ (dashed blue) and SMASH (dotted
green) hadronic lists.

along with the results from HRG model calculations with
older hadronic lists. We compare the results from the new
list with the list that first incorporated additional PDG
states beyond those that are well-established, known as
PDG2016+, as described in detail in Refs. [15, 22]. In
addition, the PDG2021+ list has been developed for use
in the simulation of strongly-interacting matter, and as
such, we compare it to the hadronic list from the SMASH
hadronic transport framework.

A comparison of the partial pressures for the
PDG2021+ list with the SMASH and PDG2016+ lists
is shown in Figs. 4 and 5. From this we see that the
strange meson content is very similar among the three
hadronic lists, which is due to the fact that there have not
been modern experimental facilities available to study
the strange meson spectrum4. However, for the non-
strange baryons, shown in the top left panel of Fig. 5,
the SMASH list lies below the two extended lists from
2016 and 2021, while the extended lists remain in agree-
ment. This shows that there are resonances missing in
the SMASH list already in the non-strange baryon fam-
ily. Indeed, this trend continues for the S = 1 and
S = 2 baryon sectors, also shown in panels (b) and (c)
of Fig. 5. On the other hand, the partial pressures in
the singly and doubly strange baryon sectors continue to
agree for the extended lists, PDG2016+ and PDG2021+,
with deviations only at the percent level. It it useful to
note that the deviations seen in these plots between the
HRG model and lattice QCD near and above the pseudo-
critical temperature, Tp.c. ↑ 155 MeV, naturally arise

4 The proposal from the COMPASS++/AMBER collaboration of
upgrading and operating the existing facilities at the M2 beam
line at CERN SPS has been approved and is expected to improve
and extend the kaon spectrum [84].
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➤ Expectations for a proper (first order) phase transition 

➤ Cabibbo & Parisi interpreted Hagedorn temperature as evidence for a change in 
degrees of freedom: hadrons to quarks

Historical Theoretical View of the QCD CP

12

	8

Cabibbo	and	Parisi	1975
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➤ Theoretical efforts on the nature of the QCD phase transition

13

➤ Early efforts

What about finite density?

Figures

Figure 1: Susceptibilities for the light quarks for Nt=4 (left panel) and for Nt=6 (right panel) as a function
of 6/g2, where g is the gauge coupling (T grows with 6/g2). The largest volume is eight times bigger than the
smallest one, so a first-order phase transition would predict a susceptibility peak that is eight times higher (for
a second-order phase transition the increase would be somewhat less, but still dramatic). Instead of such a
significant change we do not observe any volume dependence. Error bars are s.e.m.

Figure 2: Normalised susceptibilities T 4/(m2∆χ) for the light quarks for aspect ratios r=3 (left panel) r=4
(middle panel) and r=5 (right panel) as functions of the lattice spacing. Continuum extrapolations are carried
out for all three physical volumes and the results are given by the leftmost blue diamonds. Error bars are s.e.m
with systematic estimates.

6

Historical Theoretical View of the QCD CP

➤ Physical point: Aoki et al (2006) 
Rapid crossover!  MeVTc ∼ 155
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➤ Change in the order of the transition  critical point: enter universality classes 

➤ Static: 3D Ising - Rajagopal & Wilczek, Nucl.Phys.B (1993) 

➤ Dynamic: Model H - Son & Stephanov, Phys.Rev.D (2004) 

➤ Scaling equation of state of 3D Ising model - Guida & Zinn-Justin, Nucl.Phys.B 
489 (1997) based Josephson-Schofield (1969) parametric equation of state

→

14

PART I: critical exponents 

March11th 2013 3 

PART I: critical exponents 

March11th 2013 3 

How to make use of universal EoS?

Historical Theoretical View of the QCD CP
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➤ Fluctuations serve as critical signal  

➤ Higher order susceptibilities diverge 
with higher power of the correlation 
length,  

➤ Susceptibilities are derivatives of 
EoS:

κ4 ∝ ξ7

Baryon kurtosis as a critical signature

3

M.A. Stephanov PRL (2011)

• Higher order susceptibilities diverge with higher 
power of the correlation length, . 

• Related to moments of the net-proton 
distribution  can be measured experimentally.

κ4 ∝ ξ7

→

χB
n ≡ ∂n(p/T4)

∂(μB/T)n

κ4σ2 = χB
4 /χB

2

• Universal qualitative behavior from 3D Ising model without the inclusion of 
all sub-leading terms ( ) ∂μB

∼ ∂h

M = M0Rβθ
h = h0Rβδh̃(θ)
r = R(1 − θ2)

C. Nonaka, M. Asakawa, 
PRC (2005)

sNN

• Parameterization: 
(R, θ) → (r, h) κ4(r, h) = ( ∂3M

∂h3 )
r
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FIG. 2: The µB-dependence of !4p, the normalized 4th cu-
mulant of the proton number distribution defined in (1.13),
with a µB-dependent ⇠ given by (1.17). We only include the
Poisson and critical contributions to the cumulant. In the top
panel we choose µc

B = 400 MeV and illustrate how !4p is af-
fected if we vary the width � of the peak in ⇠ from 50 to 100
to 200 MeV, as in Fig. 1. The inset panel zooms in to show
how !4p is dominated by the Poisson contribution well below
µc
B . In the lower panel, we take � = 100 MeV and illustrate

the e↵ects of changing µc
B and of reducing the sigma-proton

coupling gp from our benchmark gp = 7 to gp = 5.

reasons, because their fluctuations are proxy to the fluc-
tuations of the conserved baryon number [30] and be-
cause their coupling to the critical mode � is relatively
large.

We have defined the normalized cumulants of the pro-
ton and pion distributions in (1.13) and (1.12) and the
normalized mixed cumulants in (1.15). Fig. 2 shows how
!4p might look like, with ⇠(µB) given by Eq. (1.17). We
illustrate how !4p changes if we vary the location of the
critical point µc

B and the width � of the peak in Fig. 1,
as well as the sigma-proton coupling gp. As we shall see
in Section IIA, there are four nonuniversal parameters
that (for a given ⇠max) govern the height of the peaks
of the normalized cumulants. These include gp and the
sigma-pion coupling G, as well as two parameters �̃3 and
�̃4 that we shall define in Section IIA. We have used as
our benchmark values G = 300 MeV, g = 7, �̃3 = 4 and
�̃4 = 12. As we shall discover in Section II and discuss
at length in Section III, the heights of the peaks of dif-
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FIG. 3: The µB-dependence of selected normalized cu-
mulants, defined in (1.12), (1.13) and (1.15), with a µB-
dependent ⇠ given by (1.17) as in Fig. 1. We only include
the Poisson and critical contributions to the cumulants. We
have set all parameters to their benchmark values, described
in the text, and we have chosen the width of the peak in
⇠ to be � = 100 MeV. Note the di↵erent vertical scales in
these figures and in Fig. 2; The magnitude of the e↵ect of
critical fluctuations on di↵erent normalized cumulants di↵ers
considerably, as we shall discuss in Sections II and III. As we
shall also discuss in those Sections, ratios of the magnitudes
of these di↵erent observables depend on (and can be used to
constrain) the correlation length ⇠, the proton number den-
sity np, and four non-universal parameters. We shall also see
in Section III that there are ratios among these observables
that are independent of all of these variables, meaning that
we can predict them reliably. For example, we shall see that
critical fluctuations must yield !2

2p2⇡ = (!4p�1)(!4⇡�1) and
!3
2p1⇡ = (!3p � 1)2(!3⇡ � 1) and !3

1p2⇡ = (!3p � 1)(!3⇡ � 1)2.
(The subtractions of 1 are intended to remove the Poisson
background; in an analysis of experimental data these sub-
tractions could be done by subtracting the !ip or !j⇡ de-
termined from a sample of mixed events, as this would also
subtract various other small background e↵ects.)

ferent normalized cumulants are a↵ected di↵erently by
variations in these four parameters. Fig. 3 shows how six
more di↵erent normalized cumulants vary with µB . In
this figure we keep all parameters set at their benchmark
values, deferring a discussion of how these peaks change
with parameters to Section III.
In the case of free particles in the classical Boltzmann

3

We now define the cumulants of the event-by-event dis-
tribution of a single observable, say x. The second and
third cumulants are given by

2x ⌘ hhx2ii ⌘ h (�x)2 i (1.2)

3x ⌘ hhx3ii ⌘ h (�x)3 i , (1.3)

where we have introduced two equivalent notations for
the cumulants. The second cumulant 2x is the variance
of the distribution, while the skewness of the distribution

is given by 3x/
3/2
2x . The fourth cumulant is di↵erent

from the corresponding fourth moment:

4x ⌘ hhx4ii ⌘ h (�x)4 i � 3 h (�x)2 i2 . (1.4)

The kurtosis of the distribution is given by 4x/2
2x.

The defining property of the cumulants is their addi-
tivity for independent variables. For example, if a and
b are two independent random variables, then i(a+b) =
ia+ib. This property is easily seen from the cumulant
generating function

g(µ) = logheµ �xi , (1.5)

which is manifestly additive. The n’th cumulant of the
x-distribution is given by

nx =
@ng(µ)

@µn

����
µ=0

. (1.6)

Using the double bracket notation introduced above,
g(µ) = hheµxii. As a result of their additivity, cumulants
of extensive variables, such as Np or N⇡, are all them-
selves extensive, meaning that they are proportional to
the volume of the system V in the thermodynamic limit.

We shall also consider mixed cumulants, which gener-
alize the more familiar Gaussian measures of correlations
to non-Gaussian measures. These are generated by

g(µ, ⌫) ⌘
X

n,m

nxmy µn⌫m

m!n!
= logheµ �x+⌫ �yi , (1.7)

and, for example, are given by

1x1y ⌘ hhxyii = h �x �y i , (1.8)

1x2y ⌘ hhxy2ii = h �x (�y)2 i , (1.9)

2x2y ⌘ hhx2y2ii
= h (�x)2 (�y)2 i � 2h �x �y i2 � h (�x)2 i h (�y)2 i ,

(1.10)

1x3y ⌘ hhxy3ii
= h �x (�y)3 i � 3 h �x �y i h (�y)2 i . (1.11)

For two extensive variables x and y such mixed cumulants
are also extensive, proportional to V .
We have described how to obtain the cumulants ix,

jy and ixjy from a data set consisting of an ensemble
of events in each of which x and y have been measured.

We can now define the intensive normalized cumulants
that we shall analyze:

!i⇡ ⌘ i⇡

hN⇡i
, (1.12)

!ip ⌘ ip

hNpi
, (1.13)

!i(p�p̄) ⌘
i(p�p̄)

hNp +Np̄i
, (1.14)

!ipj⇡ ⌘ ipj⇡

hNpii/rhN⇡ij/r
, (1.15)

!i(p�p̄)j⇡ ⌘
i(p�p̄)j⇡

hNp +Np̄ii/rhN⇡ij/r
, (1.16)

where r ⌘ i+ j.
If N⇡, Np and Np̄ are statistically independent and

Gaussian distributed, then the !2’s in (1.12), (1.13) and
(1.14) are nonzero and all the other !’s vanish.
If N⇡, Np and Np̄ are statistically independent and

Poisson distributed, then all the !i’s in (1.12), (1.13)
and (1.14) with i � 2 are equal to 1, and all the mixed
cumulants vanish and therefore so do the !’s in (1.15)
and (1.16).
In this paper we shall calculate the contributions of

critical fluctuations to the normalized cumulants (1.12),
(1.13) and (1.14) for i = 2, 3 and 4 and the normalized
mixed cumulants (1.15) and (1.16) for i’s and j’s such
that r = 2, 3 and 4.

B. Dependence of ⇠ on µB

We shall close this Introduction (in Section I.C) by
illustrating possible experimental outcomes of measure-
ments of the cumulants defined in Section I.A, assuming
that the matter produced at the freezeout point of the
fireball evolution for some collision energy

p
s is near the

critical point. In Section I.C we shall present only results,
while the calculations involved are presented in Section
II. What we shall calculate in Section II is the contribu-
tion of critical fluctuations to the observables defined in
Section I.A, in terms of the correlation length ⇠. In order
to give an example of possible experimental outcomes, we
need to make an illustrative choice of how the correlation
length ⇠ that is achieved in a heavy ion collision depends
on µB .
To start, let us assume that the critical point occurs

at µc
B = 400 MeV. Let us also assume that because the

fireball only spends a finite time in the vicinity of the
critical point the correlation length reaches a maximum
value of ⇠max = 2 fm in the collisions in which the freeze-
out point is closest to the critical point during an energy
scan. We stress that our choices of µc

B and ⇠max are
arbitrary, made for illustrative purposes only, and are in
no way predictions.
How does the correlation length achieved in a heavy

ion collision depend on the µB at which the matter pro-
duced in the collision freezes out? Close to the critical

➤ Relate baryon fluctuations to 
experimentally observable proton 
fluctuations

(diverging ):ξ

M. Stephanov, K. Rajagopal and E. Shuryak, PRD (1999) 
M. Stephanov, PRL (2009) & PRL (2011) 
C. Athanasiou, K. Rajagopal, M. Stephanov, PRD (2010)

CAN WE EXPLOIT UNIVERSALITY TO FIND THE CEP?
theory

• net-baryon susceptibilities from the pressure 

μB
n = Tn→4 𝒟np

𝒟φn
B

•  show universal scaling near CEP,  e.g.,  

• scaling near the CEP: non-monotonic beam-
energy dependence of kurtosis 

μn μ4 ⟨ δ7

⟨ RB
42 = μ4/μ2

What should we see in the BES?

M. Stephanov (UIC) QCD Phase Diagram and BES BNL 2015 11 / 17

What should we see in the BES?

M. Stephanov (UIC) QCD Phase Diagram and BES BNL 2015 11 / 17

[Stephanov, 0809.3450]

measurements can be sensitive to critical fluctuations, but there are many caveats and subtleties!

experiment: heavy-ion collisions

• measure net-proton distributions P(NP)

[STAR, 2001.02852]

• net-proton susceptibilities from the distribution

μP
n ⟨ ∑

NP

[(NP → ⋯NP⟩)n + ∼] P(NP)
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FIG. 1. Event-by-event net-proton number distributions for head-on
(0-5% central) Au+Au collisions for nine

p
sNN values measured by

STAR. The distributions are normalized to the total number of events
at each

p
sNN. The statistical uncertainties are smaller than the sym-

bol sizes and the lines are shown to guide the eye. The distributions
in this figure are not corrected for proton and anti-proton detection
efficiency. The deviation of the distribution for

p
sNN = 54.4 GeV

from the general energy dependence trend is understood to be due to
the reconstruction efficiency of protons and anti-protons being dif-
ferent compared to other energies.

inverse hyperbolic tangent of the component of speed parallel
to the beam direction in units of the speed of light. The pre-
cise measurement of dE/dx with a resolution of 7% in Au+Au
collisions allows for a clear identification of protons up to 800
MeV/c in transverse momentum (pT). The identification for
larger pT (up to 2 GeV/c, with purity above 97%) is made by
a Time Of Flight detector (TOF) [34] having a timing resolu-
tion of better than 100 ps. A minimum pT threshold of 400
MeV/c and a maximum distance of closest approach to the
collision vertex of 1 cm for each p( p̄) candidate track is used
to suppress contamination from secondaries and other back-
grounds [15, 35]. This pT acceptance accounts for approx-
imately 80% of the total p + p̄ multiplicity at mid-rapidity.
This is a significant improvement from the results previously
reported [35] which only had the p + p̄ measured using the
TPC. The observation of non-monotonic variation of the kur-
tosis times variance (ks2) with energy is much more signif-
icant with the increased acceptance. For the rapidity depen-
dence of the observable see Supplemental Material [34].

Figure 1 shows the event-by-event net-proton (Np �Np̄ =
DNp) distributions obtained by measuring the number of pro-
tons (Np) and anti-protons (Np̄) at mid-rapidity (|y| < 0.5) in
the transverse momentum range 0.4 < pT (GeV/c)< 2.0 for
Au+Au collisions at various

p
sNN. To study the shape of

the event-by-event net-proton distribution in detail, cumulants
(Cn) of various orders are calculated, where C1 = M, C2 = s2,
C3 = Ss3 and C4 = ks4.

Figure 2 shows the net-proton cumulants (Cn) as a func-
tion of

p
sNN for central and peripheral (see Supplemental

Material [34] for a magnified version). Au+Au collisions.
The cumulants are corrected for the multiplicity variations
arising due to finite impact parameter range for the measure-
ments [7]. These corrections suppress the volume fluctuations
considerably [7, 36]. A different volume fluctuation correc-
tion method [37] has been applied to the 0-5% central Au+Au
collision data and the results were found to be consistent with
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FIG. 2. Cumulants (Cn) of the net-proton distributions for central
(0-5%) and peripheral (70-80%) Au+Au collisions as a function of
collision energy. The transverse momentum (pT) range for the mea-
surements is from 0.4 to 2 GeV/c and the rapidity (y) range is -0.5 <
y < 0.5.

those shown in Fig 2 . The cumulants are also corrected for
finite track reconstruction efficiencies of the TPC and TOF
detectors. This is done by assuming a binomial response of
the two detectors [35, 38]. A cross-check using a different
method based on unfolding [34] of the distributions for central
Au+Au collisions at

p
sNN = 200 GeV has been found to give

values consistent with the cumulants shown in Fig. 2. Further,
the efficiency correction method used has been verified in a
Monte Carlo calculation. Typical values for the efficiencies
in the TPC (TOF-matching) for the momentum range stud-
ied in 0-5% central Au+Au collisions at

p
sNN = 7.7 GeV are

83%(72%) and 81%(70%) for the protons and anti-protons,
respectively. The corresponding efficiencies for

p
sNN = 200

GeV collisions are 62%(69%) and 60%(68%) for the protons
and anti-protons, respectively. The statistical uncertainties
are obtained using both a bootstrap approach [28, 38] and
the Delta theorem [28, 38, 39] method. The systematic un-
certainties are estimated by varying the experimental require-
ments to reconstruct p ( p̄) in the TPC and TOF. These require-
ments include the distance of the proton and anti-proton tracks
from the primary vertex position, track quality reflected by the
number of TPC space points used in the track reconstruction,
the particle identification criteria passing certain selection cri-
teria, and the uncertainties in estimating the reconstruction ef-
ficiencies. The systematic uncertainties at different collision
energies are uncorrelated.

The large values of C3 and C4 for central Au+Au collisions
show that the distributions have non-Gaussian shapes, a possi-
ble indication of enhanced fluctuations arising from a possible
critical point [11, 22]. The corresponding values for periph-

Realistic estimates from universal input?
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Kurtosis and Critical Lensing in Phase Diagram
Critical lensing in equilibrium 
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Along the crossover, we have 
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Equation of state for QCD with a critical point

4

Up to !("B4):
P. Parotto, DM, et al PRC (2020)

• Map a parameterization of the 3D Ising model critical point to QCD variables 
(BEST EoS): 

P(T, μB) = T4 ∑
n

cNon−Ising
n (T )( μB

T )
n

+ PQCD
crit (T, μB)

• Reconstruct QCD pressure via Taylor 
expansion using coefficients extracted on the 
lattice: T4cLAT

n (T ) = T4cNon−Ising
n (T ) + cIsing

n (T )

Up to !("B4) + strangeness neutrality:
J.M. Karthein, DM, et al EPJ+ (2021)

• Reduce number of free parameters by 
imposing:

16
T. Dore, J.M. Karthein, D. Mroczek et al, PRD (2022)

➤ Critical lensing: critical point (CP) 
is an attractor of trajectories in the 
QCD phase diagram 

➤ Study how the size and shape of 
the critical region affects these 
trajectories within the Equation 
of State with a critical point 
from the 

➤ Critical regions extending along 
the T-direction show a stronger 
lensing effect 
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Equation of State for QCD with a Critical Point

➤ Incorporate universal critical features into the QCD phase diagram from the 3D 
Ising Model equation of state via BEST framework
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➤ Reconstruct the pressure via Taylor 
expansion coefficients from Lattice QCD

➤ Reduce free parameters by imposing 
constraints from Lattice
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Equation of State for QCD with a Critical Point
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diagram was first developed in Ref. [62] and was later updated in Refs. [63, 64]. The method of mapping has been

studied in further detail in Refs. [65, 66]. This framework has also been utilized for various studies both in and out

of equilibrium [67–69], and in studies of a first-order phase transition [70, 71]. Another approach to implementing a

critical point from universality can be found in Ref. [72]. The Ising model phase diagram has axes r (Ising-temperature

direction) and h (Ising-magnetic-field direction) with a critical point at r = h = 0. Upon mapping to the QCD phase

diagram whose axes are µ and T , the Ising variables r and h are analytic functions of µ and T . By definition, r = h = 0

is mapped onto the QCD critical point at T = Tc and µ = µc. In the close vicinity of the critical point, the Ising r

and h axes will be mapped onto straight lines on the QCD phase diagram and in this region a linear mapping between

(r, h) and !T → T ↑ Tc and !µ → µ ↑ µc su”ces to describe the leading singular behavior. Following the notation

introduced by Parotto et al [62], a linear mapping between the variables can be parametrized as:

h(µ, T ) = ↑
!T cosω1 +!µ sinω1

wTc sin(ω1 ↑ ω2)
(3a)

r(µ, T ) =
!T cosω2 +!µ sinω2

εw Tc sin(ω1 ↑ ω2)
. (3b)

The parameters ω1 and ω2 are the angles between the axes of the QCD phase diagram and those of the Ising model,

and w and ε are the scaling parameters between Ising and QCD coordinates: w determines the overall scale of both

r and h, while ε determines the relative scale between them. We shall visualize the consequence of changes in the

values of w and ε in the next Subsection.

Note that if one always chooses the critical point to lie on the chiral crossover line as in Refs. [62–64], this fixes Tc

once µc has been chosen. Furthermore, requiring that the Ising crossover line h = 0; r > 0 maps onto a line on the

QCD phase diagram that is tangent to the chiral crossover line fixes ω1 once µc has been chosen. This means that

the linear mapping from the Ising phase diagram to the QCD phase diagram (3) is specified by the four parameters

µc, ω2, w and ε.

The linear mapping (3) is not su”cient for our purposes precisely because it is linear: it maps the Ising r-axis

(h = 0 with r > 0) which corresponds to the crossover onto a straight line on the QCD phase diagram, whereas

in QCD the crossover follows a curve in the (µB , T ) phase diagram. The authors of Ref. [64] have taken advantage

of the charge conjugation symmetry of the QCD Lagrangian to extend the linear mapping in (µ ↑ µc, T ↑ Tc) to a

mapping in (µ2
↑ µ

2
c , T ↑ Tc). Employing a quadratic mapping in µ makes it possible to map the Ising crossover

line (h = 0, r > 0) onto a curve in the QCD phase diagram that follows the chiral crossover. Ref. [64] further

improved the extrapolation of lattice data from small µ to large µ by using the T
→
expansion introduced in Ref. [22].

We shall employ the resulting mapping since even though it is more complicated than (3) it represents a significant

improvement. The parametrization of the mapping from the Ising model variables to QCD variables introduced in

Ref. [64] is given by:

h(µ, T ) = ↑
!T

→ cosω1

Tcw sin(ω1 ↑ ω2)
, r(µ, T ) = ↑

µ
2
↑ µ

2
c

2µcTc εw cosω1
+

!T
→ cosω2

Tc εw sin(ω1 ↑ ω2)
(4)
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Utilize critical EoS mapped quadratically to QCD
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➤ Utilize the maximum entropy freeze-out procedure to calculate proton fluctuations 
due to critical point & study the influence of the unknown EoS parameters 

➤ Determine the particle fluctuations (G) from only the input of the EoS and by 
matching to the hydrodynamic description (H)

19
J.M. Karthein, K. Rajagopal, M. Pradeep, M. Stephanov, Y. Yin, arXiv:2508.19237
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nonuniversal mapping parameters w and ε with µc = 600MeV, Tc = 90 MeV and ϑ2 = 0↑. The dotted line reflects
this choice of ϑ2 = 0↑ in that it shows the Ising h-axis, while the dashed line shows the Ising r-axis which is chosen
to lie along the QCD crossover curve.

write expressions for the leading scaling behavior of various quantities in the region h → 0, meaning the region where

x is real. The corresponding expressions for h < 0 can be obtained upon noting that GIsing is an even function of h

and that di”erentiating GIsing an odd (even) number of times with respect to h yields an odd (even) function of h.

In Figs. 3, 4 and 5 we have plotted our results for !Hnp in the regions of the QCD phase diagram on both sides of

the crossover curve, where h takes either sign, but in the next Subsection we will focus on the freezeout curve which

lies below the crossover curve. We shall choose our sign convention for h such that h > 0 corresponds to the region of
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!̂H into IRCs of particle multiplicity distributions !̂G. Eq. (26) specifies necessary conditions that the matching

from the hydrodynamic !̂H to the particle multiplicity !̂G must satisfy at freeze-out. However, although Eq. (26)

specifies the H that corresponds to any given phase space distribution G, for any specified H there are infinitely many

solutions G to these matching conditions. That is, Eq. (26) by itself does not su”ce for our purposes. The authors of

Ref. [34] have used the prescription that the kinetic theory distribution functions for the hadrons immediately after

freezeout should be chosen from among the space of possibilities that satisfy Eq. (26) in such a way as to maximize

the entropy of the correlated hadron gas to derive the matching condition

!̂GA1...Ak = !̂Ha1a2...anP
a1
A1

P
a2
A2

. . . P
an
Ak

, (33)

where, consistent with the notation that we have introduced above, we have defined

P
a
A → (H̄→1)abPB

b ḠBA . (34)

The central result (33) from Ref. [34] is the generalization of Cooper-Frye freezeout [76] that maps (critical) fluctuations

in the hydrodynamic fluid just before freezeout to correlations among the hadrons just after freezeout, in a way that

faithfully respects all conservation laws and minimizes additional information. In Eq. (33), as before, !̂ refers to

irreducible relative cumulants of either the hydrodynamic flucutations (H) or the hadron gas phase space densities

(B). The sub(super)scripts denoted by lower-case letters refer to the hydrodynamic variables (ω(x), n(x)) at a space-

time coordinate x. The subscripts denoted by upper-case letters collectively refer to the quantum numbers and phase

space coordinates of the particles in the hadron resonance gas, as already discussed at the beginning of this Section

where we introduced Eq. (26). And, the repeated upper-case indices inside each P
a
A imply summation over hadron

species and spins as well as integrations over hadron momenta and over the freezeout hypersurface. Also as above, in
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FIG. 2: Three freezeout curves displaced downward relative to the crossover curve !T
→ = 0 (orange) by !Tf = 4, 6

and 9 MeV (solid blue, red and black curves, respectively). By construction, the Ising-r axis maps onto the crossover
curve. Because we have chosen ω2 = 0, the Ising-h axis maps onto the horizontal orange dotted line. The dashed
blue, red and black curves are curves of constant Ising-h that are coincident with the three freezeout curves where the
freezeout curves each cross the Ising-h axis. We see that the freezeout curves are close to being curves of constant h.

that relied upon making a parametrized ansatz for how the correlation length ε varies with T and µB [39]. We

shall see, though, that our results for the fluctuations of thermodynamic quantities (in particular, the baryon number

density) and, consequently via the maximum entropy freeze-out prescription, for the factorial cumulants of the proton

multiplicity are fully consistent with our results from Section II for how the correlation length depends on T and

µB . In that Section, we presented an update on εQCD(µB , T ) utilizing what is known from universality [73] and the

mapping (4) between the universal Ising variables and the ones for QCD. In Fig. 1 we illustrated the e”ects of the

nonuniversal mapping parameters w and ϑ on the contours of ε2QCD/w
2 obtained via mapping the universal features

of an Ising critical point onto the QCD phase diagram. In the first part of this Section, Sect. IVA, we use the full

3D Ising EoS to study the behavior of contour plots of the critical contribution to ordinary cumulants of the baryon

number density, i.e !Hkn →
〈
ϖn

k
〉
, (where k indicates the order of the correlation function and n stands for baryon

number density) while varying the mapping parameters w and ϑ in the same way that we did in Sect. II B, choosing

w = {1, 5, 20} and ϑ = {0.5, 1, 2}. These choices were motivated by previous studies on the causality and stability of

the critical EoS [62, 64, 66]. We shall compare our results for !H2n = ↑ϖn
2
↓ directly to ε

2
QCD/w

2 plotted in Fig. 1.

We also fix the remaining parameters in the mapping between QCD and the Ising model as in Sect. II B, choosing:

µc = 600 MeV (leading to Tc = 90 MeV and ω1 = 16.6o) and ω2 = 0. The choice ω2 = 0 is somewhat special for

baryon density cumulants, since this reduces derivatives with respect to µ to derivatives with respect to h at constant

r. We do know from the work of Ref. [65], though, that ω2↔ω1 vanishes in the chiral limit and so is reasonably small

in the real world. Since ω1 = 16.6↑ at µc = 600 MeV, this means that ω2 cannot be far from zero.

EoS input (here k=4):

Quantifying Fluctuation Signatures

μc = 600 MeV, α2 = 0o (α1 = 16.6o, Tc = 89 MeV)
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➤ Utilize the maximum entropy freeze-out procedure to calculate proton fluctuations 
due to critical point & study the influence of the unknown EoS parameters37
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FIG. 8: Fourth factorial cumulant of the proton multiplicity distribution, !̂ω4p, along the three freezeout curves from

Fig. 2. The di”erent panels show !̂ω4p for various values of the nonuniversal mapping parameters w and ε, with
µc = 600MeV, Tc = 90 MeV and ϑ2 = 0→ in all panels.

contributions that involve fluctuations in the energy density which are discussed in Appendix C.) From Eq. (53), we

expect that as you vary w, going across a row of panels in any of the three Figures, the peak heights should vary like

(1/w)6/5, where we have taken ϖ = 5. This scaling is reasonably well satisfied in all three figures.

Next, let us consider the dependence of the peak heights on !Tf . Varying !Tf from 4 to 6 or from 4 to 9 MeV

corresponds to increasing the h where the freezeout curve crosses the h-axis (and consequently to a good approximation

the h along the freezeout curve) by the same factor of 6/4 or 9/4. (As long as !Tf → Tc as we are assuming, a

freezeout curve displaced downward from the crossover curve by !Tf crosses the Ising-h axis at µ ↑ µc↓!Tf/ tanϑ1,

as can be seen from Fig. 2. Here and throughout we are assuming for simplicity that ϑ2 = 0, when all that we know

is that it must be small. If ϑ2 were nonzero, the freezeout curve displaced downward from the crossover curve by

!Tf would cross the Ising-h axis at µ ↑ µc ↓ !Tf cosϑ1 cosϑ2/ sin(ϑ1 ↓ ϑ2), see Eq. (4).) From Eq. (53) we see

that increasing !Tf by a factor of (say) 6/4 should reduce the heights of the peaks in !̂ωkp by (4/6)k↑6/5, where

we have taken ϖ = 5. This argument would suggest that in Figs. 6, 7, and 8, with k = 2, 3 and 4, respectively,

the peaks in the red curves should be lower than the peaks in the blue curves by factors that are close to (4/6)4/5,

26

FIG. 2: Three freezeout curves displaced downward relative to the crossover curve !T
→ = 0 (orange) by !Tf = 4, 6

and 9 MeV (solid blue, red and black curves, respectively). By construction, the Ising-r axis maps onto the crossover
curve. Because we have chosen ω2 = 0, the Ising-h axis maps onto the horizontal orange dotted line. The dashed
blue, red and black curves are curves of constant Ising-h that are coincident with the three freezeout curves where the
freezeout curves each cross the Ising-h axis. We see that the freezeout curves are close to being curves of constant h.

that relied upon making a parametrized ansatz for how the correlation length ε varies with T and µB [39]. We

shall see, though, that our results for the fluctuations of thermodynamic quantities (in particular, the baryon number

density) and, consequently via the maximum entropy freeze-out prescription, for the factorial cumulants of the proton

multiplicity are fully consistent with our results from Section II for how the correlation length depends on T and

µB . In that Section, we presented an update on εQCD(µB , T ) utilizing what is known from universality [73] and the

mapping (4) between the universal Ising variables and the ones for QCD. In Fig. 1 we illustrated the e”ects of the

nonuniversal mapping parameters w and ϑ on the contours of ε2QCD/w
2 obtained via mapping the universal features

of an Ising critical point onto the QCD phase diagram. In the first part of this Section, Sect. IVA, we use the full

3D Ising EoS to study the behavior of contour plots of the critical contribution to ordinary cumulants of the baryon

number density, i.e !Hkn →
〈
ϖn

k
〉
, (where k indicates the order of the correlation function and n stands for baryon

number density) while varying the mapping parameters w and ϑ in the same way that we did in Sect. II B, choosing

w = {1, 5, 20} and ϑ = {0.5, 1, 2}. These choices were motivated by previous studies on the causality and stability of

the critical EoS [62, 64, 66]. We shall compare our results for !H2n = ↑ϖn
2
↓ directly to ε

2
QCD/w

2 plotted in Fig. 1.

We also fix the remaining parameters in the mapping between QCD and the Ising model as in Sect. II B, choosing:

µc = 600 MeV (leading to Tc = 90 MeV and ω1 = 16.6o) and ω2 = 0. The choice ω2 = 0 is somewhat special for

baryon density cumulants, since this reduces derivatives with respect to µ to derivatives with respect to h at constant

r. We do know from the work of Ref. [65], though, that ω2↔ω1 vanishes in the chiral limit and so is reasonably small

in the real world. Since ω1 = 16.6↑ at µc = 600 MeV, this means that ω2 cannot be far from zero.

Along freeze-out curves:

Increasing  
increases peak width

ρ

Quantifying Fluctuation Signatures
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Recall that the repeated index b corresponds to integrating over fluid cells on the freezeout hypersurface and summing

over b → {ω, n} and the repeated index B corresponds to integrating over phase space variables according to Eq. (23)

and summing over all hadronic species in the particle description of the system just after freezeout. The
∫
Ã is only

an integration over phase space variables and summation over spin as defined in Eq.(37).) The singular contribution

to the IRCs of the particle multiplicities near the critical point can now be evaluated directly from the EoS using the

expression (43) because !̂H is specified directly by the EoS according to Eqs. (19), (20), (28), (29), and (32). In

order to evaluate the critical contribution, it su”ces to consider the µ- and T -dependence of !H only. Note that the

normalization by mean multiplicity ensures that the !̂εk’s are volume-independent, intensive, quantities.

Without loss of generality, we restrict the analysis in this work to the study of factorial cumulants of proton

multiplicity. The extension to cumulants of other particles such as pions, or even mixed particle cumulants is straight-

forward. We start from Eq. (43) and specialize to the factorial cumulant of proton multiplicity, !̂ε
k
p1...pk

, which we

denote by !̂εkp:

!̂εkp =
!̂Ha1...akP

a1
p . . . P

ak
p

↑Np↓
(45)

where the P
a
p ’s are defined in Eq. (44) with Â = p here, denoting protons.

Note that in any experimental measurement of the factorial cumulants of the proton multiplicity distribution, only

some of the detected protons are produced directly at freezeout, as described via the particlization procedure that

we are treating. Other protons in the final state measured by the detector are the daughters coming from strange

baryons and excited baryons that were produced at freezeout via the particlization procedure that we describe, and

that subsequently decayed. The total contribution from both direct as well as daughter protons to !̂εkp can be

determined using the following freeze-out formula:

!̂εkp =
!̂Ha1...ak

(∑
B1

#B1→pP
a1
B1

)
. . .

(∑
Bk

#B2→pP
ak
Bk

)
∑

B #B→p ↑NB↓
(46)

where the summations go over all hadrons that decay into a proton, including the proton itself, and where #B→p

represents the probability that a baryon B decays into a proton. In the main part of this paper, we restrict ourselves to

computing the contribution of direct protons only, which is to say we compute, !̂εkp using Eq. (45). The calculation of

factorial cumulants of total proton multiplicity including both direct and feed-down protons, using Eq. (46), is reported

in Appendix B. The plots in Appendix B show that including the daughter protons makes only a quantitative change

to our results; the qualitative form of all of our results are unchanged.

IV. RESULTS IN THE QCD PHASE DIAGRAM

With the maximum entropy freeze-out prescription, we are able to determine the critical contribution to the

fluctuations using only the equation of state as an input. This is a significant improvement over earlier approaches

Normalized proton factorial 
cumulants:

=
κ4p

κ1p
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FIG. 8: Fourth factorial cumulant of the proton multiplicity distribution, !̂ω4p, along the three freezeout curves from

Fig. 2. The di”erent panels show !̂ω4p for various values of the nonuniversal mapping parameters w and ε, with
µc = 600MeV, Tc = 90 MeV and ϑ2 = 0→ in all panels.

contributions that involve fluctuations in the energy density which are discussed in Appendix C.) From Eq. (53), we

expect that as you vary w, going across a row of panels in any of the three Figures, the peak heights should vary like

(1/w)6/5, where we have taken ϖ = 5. This scaling is reasonably well satisfied in all three figures.

Next, let us consider the dependence of the peak heights on !Tf . Varying !Tf from 4 to 6 or from 4 to 9 MeV

corresponds to increasing the h where the freezeout curve crosses the h-axis (and consequently to a good approximation

the h along the freezeout curve) by the same factor of 6/4 or 9/4. (As long as !Tf → Tc as we are assuming, a

freezeout curve displaced downward from the crossover curve by !Tf crosses the Ising-h axis at µ ↑ µc↓!Tf/ tanϑ1,

as can be seen from Fig. 2. Here and throughout we are assuming for simplicity that ϑ2 = 0, when all that we know

is that it must be small. If ϑ2 were nonzero, the freezeout curve displaced downward from the crossover curve by

!Tf would cross the Ising-h axis at µ ↑ µc ↓ !Tf cosϑ1 cosϑ2/ sin(ϑ1 ↓ ϑ2), see Eq. (4).) From Eq. (53) we see

that increasing !Tf by a factor of (say) 6/4 should reduce the heights of the peaks in !̂ωkp by (4/6)k↑6/5, where

we have taken ϖ = 5. This argument would suggest that in Figs. 6, 7, and 8, with k = 2, 3 and 4, respectively,

the peaks in the red curves should be lower than the peaks in the blue curves by factors that are close to (4/6)4/5,

26

FIG. 2: Three freezeout curves displaced downward relative to the crossover curve !T
→ = 0 (orange) by !Tf = 4, 6

and 9 MeV (solid blue, red and black curves, respectively). By construction, the Ising-r axis maps onto the crossover
curve. Because we have chosen ω2 = 0, the Ising-h axis maps onto the horizontal orange dotted line. The dashed
blue, red and black curves are curves of constant Ising-h that are coincident with the three freezeout curves where the
freezeout curves each cross the Ising-h axis. We see that the freezeout curves are close to being curves of constant h.

that relied upon making a parametrized ansatz for how the correlation length ε varies with T and µB [39]. We

shall see, though, that our results for the fluctuations of thermodynamic quantities (in particular, the baryon number

density) and, consequently via the maximum entropy freeze-out prescription, for the factorial cumulants of the proton

multiplicity are fully consistent with our results from Section II for how the correlation length depends on T and

µB . In that Section, we presented an update on εQCD(µB , T ) utilizing what is known from universality [73] and the

mapping (4) between the universal Ising variables and the ones for QCD. In Fig. 1 we illustrated the e”ects of the

nonuniversal mapping parameters w and ϑ on the contours of ε2QCD/w
2 obtained via mapping the universal features

of an Ising critical point onto the QCD phase diagram. In the first part of this Section, Sect. IVA, we use the full

3D Ising EoS to study the behavior of contour plots of the critical contribution to ordinary cumulants of the baryon

number density, i.e !Hkn →
〈
ϖn

k
〉
, (where k indicates the order of the correlation function and n stands for baryon

number density) while varying the mapping parameters w and ϑ in the same way that we did in Sect. II B, choosing

w = {1, 5, 20} and ϑ = {0.5, 1, 2}. These choices were motivated by previous studies on the causality and stability of

the critical EoS [62, 64, 66]. We shall compare our results for !H2n = ↑ϖn
2
↓ directly to ε

2
QCD/w

2 plotted in Fig. 1.

We also fix the remaining parameters in the mapping between QCD and the Ising model as in Sect. II B, choosing:

µc = 600 MeV (leading to Tc = 90 MeV and ω1 = 16.6o) and ω2 = 0. The choice ω2 = 0 is somewhat special for

baryon density cumulants, since this reduces derivatives with respect to µ to derivatives with respect to h at constant

r. We do know from the work of Ref. [65], though, that ω2↔ω1 vanishes in the chiral limit and so is reasonably small

in the real world. Since ω1 = 16.6↑ at µc = 600 MeV, this means that ω2 cannot be far from zero.

Along freeze-out curves:

Increasing  
reduces peak height

w

Quantifying Fluctuation Signatures

25

Recall that the repeated index b corresponds to integrating over fluid cells on the freezeout hypersurface and summing

over b → {ω, n} and the repeated index B corresponds to integrating over phase space variables according to Eq. (23)

and summing over all hadronic species in the particle description of the system just after freezeout. The
∫
Ã is only

an integration over phase space variables and summation over spin as defined in Eq.(37).) The singular contribution

to the IRCs of the particle multiplicities near the critical point can now be evaluated directly from the EoS using the

expression (43) because !̂H is specified directly by the EoS according to Eqs. (19), (20), (28), (29), and (32). In

order to evaluate the critical contribution, it su”ces to consider the µ- and T -dependence of !H only. Note that the

normalization by mean multiplicity ensures that the !̂εk’s are volume-independent, intensive, quantities.

Without loss of generality, we restrict the analysis in this work to the study of factorial cumulants of proton

multiplicity. The extension to cumulants of other particles such as pions, or even mixed particle cumulants is straight-

forward. We start from Eq. (43) and specialize to the factorial cumulant of proton multiplicity, !̂ε
k
p1...pk

, which we

denote by !̂εkp:

!̂εkp =
!̂Ha1...akP

a1
p . . . P

ak
p

↑Np↓
(45)

where the P
a
p ’s are defined in Eq. (44) with Â = p here, denoting protons.

Note that in any experimental measurement of the factorial cumulants of the proton multiplicity distribution, only

some of the detected protons are produced directly at freezeout, as described via the particlization procedure that

we are treating. Other protons in the final state measured by the detector are the daughters coming from strange

baryons and excited baryons that were produced at freezeout via the particlization procedure that we describe, and

that subsequently decayed. The total contribution from both direct as well as daughter protons to !̂εkp can be

determined using the following freeze-out formula:

!̂εkp =
!̂Ha1...ak

(∑
B1

#B1→pP
a1
B1

)
. . .

(∑
Bk

#B2→pP
ak
Bk

)
∑

B #B→p ↑NB↓
(46)

where the summations go over all hadrons that decay into a proton, including the proton itself, and where #B→p

represents the probability that a baryon B decays into a proton. In the main part of this paper, we restrict ourselves to

computing the contribution of direct protons only, which is to say we compute, !̂εkp using Eq. (45). The calculation of

factorial cumulants of total proton multiplicity including both direct and feed-down protons, using Eq. (46), is reported

in Appendix B. The plots in Appendix B show that including the daughter protons makes only a quantitative change

to our results; the qualitative form of all of our results are unchanged.

IV. RESULTS IN THE QCD PHASE DIAGRAM

With the maximum entropy freeze-out prescription, we are able to determine the critical contribution to the

fluctuations using only the equation of state as an input. This is a significant improvement over earlier approaches

Normalized proton factorial 
cumulants:

=
κ4p

κ1p
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EoS for First Order Regime

➤ Considering a mean field Ising model mapped to QCD, we can implement first order 
features in the phase diagram: isotherms show coexistence and spinodal points
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EoS for First Order Regime

➤ With Landau theory, we find expected spinodal features in  isotherms unlike with 
3D Ising where spinodals are Lee-Yang edge singularities in complex plane 

➤ Mapping parameters including  control the shape of critical region and first 
order features
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FIG. 3. Net-proton cumulant ratios: (a) C2/→p + p̄↑, (b) C3/C1, and (c) C4/C2 and proton factorial cumulant ratios: (d)
ω2/ω1, (e) ω3/ω1 and (f) ω4/ω1 in Au+Au collisions. Results from BES-II (

↓
sNN = 7.7 – 27 GeV with RefMult3X) and

BES-I [12, 15] (
↓
sNN = 39 – 200 GeV with RefMult3) program at RHIC are shown. (Anti-)protons are measured at mid-

rapidity (|y| < 0.5) within 0.4 < pT < 2.0 GeV/c. The bars and bands on the data points reflect statistical and systematic
uncertainties, respectively. Theoretical calculations from a hydrodynamical model [26] (Hydro, blue dashed line), thermal
model with canonical treatment for baryon charge [38] (HRG CE, black dashed line), transport model [39, 40] (UrQMD, brown
band), and lattice QCD [41, 42] (LQCD, light blue band) are also presented.

critical baselines/references is shown in Fig. 4 for net-
proton C4/C2 (a), proton ω2/ω1 (b), proton ω3/ω1 (c),
and proton ω4/ω1 (d). These deviations are obtained by
taking the di!erence between the 0-5% data and base-
lines and dividing with the total uncertainties (εtotal,
obtained adding uncertainties in data and baselines in
quadrature). Three typical calculations including the
UrQMD, the HRG CE, and the hydro EV are used in
the analysis. In addition, the 70-80% peripheral collision
data are used for comparison.

For the net-proton cumulant ratio C4/C2, maximum
deviations of 2 – 5ε are seen at

→
sNN = 19.6 GeV from

all references. A minimum at same collision energy is
also seen for data after subtracting the references (see
Fig. 5 of the supplemental material [31]). On the other
hand, in the case of collisions at 3 GeV [18] or above 27
GeV [15], the central data is consistent with all of the
references within ↑ 2ε. For the factorial cumulants ra-
tios, the amplitude of the deviation seems to decrease as
a function of the order of the correlation: the maximum
deviation is seen in ω2/ω1 while the minimum is in ω4/ω1,
shown in Fig. 4 (b) and (d), respectively. Clearly, precise
experimental data between

→
sNN = 3.0 and 7.7 GeV is

needed to extend the search for the signal of the QCD
critical point and the 1st-order phase boundary at the

Si
gn

ifi
ca

nc
e 

of
 D

ev
ia

tio
ns

 (GeV)NNsCollision Energy 

0

3

3−

5−

Au+Au Collisions at RHIC
)c < 2.0 (GeV/

T
0-5%, |y| < 0.5, 0.4 < p

2C
4C

(a) net-p  
Data (70-80%)

HRG CE
Hydro EV

UrQMD (0-5%)
Reference:

0

10

10−

20− 1κ
2κ(b) proton  

2 5 10 20 50 100 200

0

3

3−

5−

1κ
3κ(c) proton  

BES-II BES-I

2 5 10 20 50 100 200

0

3

3−

5−

1κ
4κ(d) proton  

BES-II BES-I

FIG. 4. Significance of deviation (data↔reference)/εtotal for
(a) net-proton cumulant ratios C4/C2; proton factorial cu-
mulant ratios (b) ω4/ω1; (c) ω3/ω1 and (d) ω2/ω1 in 0-5%
Au+Au collisions [12, 15, 18, 19]. References include the
non-critical model calculations, such as the UrQMD transport
model [39, 40] (blue square), HRG with canonical ensemble
for baryon charge [38] (HRG CE, black cross), hydrodynamic
model with excluded volume [26] (Hydro EV, black triangle),
and data from 70-80% peripheral collisions (red dots).
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FIG. 3. Net-proton cumulant ratios: (a) C2/→p + p̄↑, (b) C3/C1, and (c) C4/C2 and proton factorial cumulant ratios: (d)
ω2/ω1, (e) ω3/ω1 and (f) ω4/ω1 in Au+Au collisions. Results from BES-II (

↓
sNN = 7.7 – 27 GeV with RefMult3X) and

BES-I [12, 15] (
↓
sNN = 39 – 200 GeV with RefMult3) program at RHIC are shown. (Anti-)protons are measured at mid-

rapidity (|y| < 0.5) within 0.4 < pT < 2.0 GeV/c. The bars and bands on the data points reflect statistical and systematic
uncertainties, respectively. Theoretical calculations from a hydrodynamical model [26] (Hydro, blue dashed line), thermal
model with canonical treatment for baryon charge [38] (HRG CE, black dashed line), transport model [39, 40] (UrQMD, brown
band), and lattice QCD [41, 42] (LQCD, light blue band) are also presented.

critical baselines/references is shown in Fig. 4 for net-
proton C4/C2 (a), proton ω2/ω1 (b), proton ω3/ω1 (c),
and proton ω4/ω1 (d). These deviations are obtained by
taking the di!erence between the 0-5% data and base-
lines and dividing with the total uncertainties (εtotal,
obtained adding uncertainties in data and baselines in
quadrature). Three typical calculations including the
UrQMD, the HRG CE, and the hydro EV are used in
the analysis. In addition, the 70-80% peripheral collision
data are used for comparison.

For the net-proton cumulant ratio C4/C2, maximum
deviations of 2 – 5ε are seen at

→
sNN = 19.6 GeV from

all references. A minimum at same collision energy is
also seen for data after subtracting the references (see
Fig. 5 of the supplemental material [31]). On the other
hand, in the case of collisions at 3 GeV [18] or above 27
GeV [15], the central data is consistent with all of the
references within ↑ 2ε. For the factorial cumulants ra-
tios, the amplitude of the deviation seems to decrease as
a function of the order of the correlation: the maximum
deviation is seen in ω2/ω1 while the minimum is in ω4/ω1,
shown in Fig. 4 (b) and (d), respectively. Clearly, precise
experimental data between

→
sNN = 3.0 and 7.7 GeV is

needed to extend the search for the signal of the QCD
critical point and the 1st-order phase boundary at the
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FIG. 4. Significance of deviation (data↔reference)/εtotal for
(a) net-proton cumulant ratios C4/C2; proton factorial cu-
mulant ratios (b) ω4/ω1; (c) ω3/ω1 and (d) ω2/ω1 in 0-5%
Au+Au collisions [12, 15, 18, 19]. References include the
non-critical model calculations, such as the UrQMD transport
model [39, 40] (blue square), HRG with canonical ensemble
for baryon charge [38] (HRG CE, black cross), hydrodynamic
model with excluded volume [26] (Hydro EV, black triangle),
and data from 70-80% peripheral collisions (red dots).

CAN WE EXPLOIT UNIVERSALITY TO FIND THE CEP?
theory

• net-baryon susceptibilities from the pressure 

μB
n = Tn→4 𝒟np

𝒟φn
B

•  show universal scaling near CEP,  e.g.,  

• scaling near the CEP: non-monotonic beam-
energy dependence of kurtosis 

μn μ4 ⟨ δ7

⟨ RB
42 = μ4/μ2

What should we see in the BES?

M. Stephanov (UIC) QCD Phase Diagram and BES BNL 2015 11 / 17

What should we see in the BES?

M. Stephanov (UIC) QCD Phase Diagram and BES BNL 2015 11 / 17

[Stephanov, 0809.3450]

measurements can be sensitive to critical fluctuations, but there are many caveats and subtleties!

experiment: heavy-ion collisions

• measure net-proton distributions P(NP)

[STAR, 2001.02852]

• net-proton susceptibilities from the distribution

μP
n ⟨ ∑

NP

[(NP → ⋯NP⟩)n + ∼] P(NP)

4

2

10− 0 10 20 30 40

0

0.02

0.04

0.06

0.08

0.1
7.7

11.5

14.5

19.6

27

39

54.4

62.4

200

 (GeV)
NN

s Au+Au Collisions
0-5% Central
< 2.0 (GeV/c), |y|  < 0.5

T
0.4 < p

N
o

rm
a

liz
e
d

 N
u
m

b
e

r 
o

f 
E

ve
n
ts

Net-proton (∆Np = Np - Np)

10 20 30 40 50 60

0.4

0.6

0.8

1.0

/ndf = 0.72)2χpoly5 (

σ(1) S

   
 < 2.0 GeV/c

T
|y| < 0.5, 0.4 < p
0%-5% - Au+Au collisions
Net-proton

3.0
2.0 1.0 0.0

0%-5% Central

0%-5% Central

10 20 30 40 50 60

0

1

2

3 2
systσ+2

statσ = dataσ

Poisson baseline
/ndf = 1.3)2χpoly4 (

2σκ(2) 3.0 

10 20 30 40 50 60
0.05−

0

0.05
σNonmonotonic: 1.0 

 (GeV)NNsCollision Energy 

10 20 30 40 50 60
0.5−

0

0.5 σNonmonotonic: 3.1 

N
et

-p
ro

to
n 

M
om

en
ts

D
er

iv
at

iv
e

 (GeV)NNsCollision Energy 

FIG. 1. Event-by-event net-proton number distributions for head-on
(0-5% central) Au+Au collisions for nine

p
sNN values measured by

STAR. The distributions are normalized to the total number of events
at each

p
sNN. The statistical uncertainties are smaller than the sym-

bol sizes and the lines are shown to guide the eye. The distributions
in this figure are not corrected for proton and anti-proton detection
efficiency. The deviation of the distribution for

p
sNN = 54.4 GeV

from the general energy dependence trend is understood to be due to
the reconstruction efficiency of protons and anti-protons being dif-
ferent compared to other energies.

inverse hyperbolic tangent of the component of speed parallel
to the beam direction in units of the speed of light. The pre-
cise measurement of dE/dx with a resolution of 7% in Au+Au
collisions allows for a clear identification of protons up to 800
MeV/c in transverse momentum (pT). The identification for
larger pT (up to 2 GeV/c, with purity above 97%) is made by
a Time Of Flight detector (TOF) [34] having a timing resolu-
tion of better than 100 ps. A minimum pT threshold of 400
MeV/c and a maximum distance of closest approach to the
collision vertex of 1 cm for each p( p̄) candidate track is used
to suppress contamination from secondaries and other back-
grounds [15, 35]. This pT acceptance accounts for approx-
imately 80% of the total p + p̄ multiplicity at mid-rapidity.
This is a significant improvement from the results previously
reported [35] which only had the p + p̄ measured using the
TPC. The observation of non-monotonic variation of the kur-
tosis times variance (ks2) with energy is much more signif-
icant with the increased acceptance. For the rapidity depen-
dence of the observable see Supplemental Material [34].

Figure 1 shows the event-by-event net-proton (Np �Np̄ =
DNp) distributions obtained by measuring the number of pro-
tons (Np) and anti-protons (Np̄) at mid-rapidity (|y| < 0.5) in
the transverse momentum range 0.4 < pT (GeV/c)< 2.0 for
Au+Au collisions at various

p
sNN. To study the shape of

the event-by-event net-proton distribution in detail, cumulants
(Cn) of various orders are calculated, where C1 = M, C2 = s2,
C3 = Ss3 and C4 = ks4.

Figure 2 shows the net-proton cumulants (Cn) as a func-
tion of

p
sNN for central and peripheral (see Supplemental

Material [34] for a magnified version). Au+Au collisions.
The cumulants are corrected for the multiplicity variations
arising due to finite impact parameter range for the measure-
ments [7]. These corrections suppress the volume fluctuations
considerably [7, 36]. A different volume fluctuation correc-
tion method [37] has been applied to the 0-5% central Au+Au
collision data and the results were found to be consistent with
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FIG. 2. Cumulants (Cn) of the net-proton distributions for central
(0-5%) and peripheral (70-80%) Au+Au collisions as a function of
collision energy. The transverse momentum (pT) range for the mea-
surements is from 0.4 to 2 GeV/c and the rapidity (y) range is -0.5 <
y < 0.5.

those shown in Fig 2 . The cumulants are also corrected for
finite track reconstruction efficiencies of the TPC and TOF
detectors. This is done by assuming a binomial response of
the two detectors [35, 38]. A cross-check using a different
method based on unfolding [34] of the distributions for central
Au+Au collisions at

p
sNN = 200 GeV has been found to give

values consistent with the cumulants shown in Fig. 2. Further,
the efficiency correction method used has been verified in a
Monte Carlo calculation. Typical values for the efficiencies
in the TPC (TOF-matching) for the momentum range stud-
ied in 0-5% central Au+Au collisions at

p
sNN = 7.7 GeV are

83%(72%) and 81%(70%) for the protons and anti-protons,
respectively. The corresponding efficiencies for

p
sNN = 200

GeV collisions are 62%(69%) and 60%(68%) for the protons
and anti-protons, respectively. The statistical uncertainties
are obtained using both a bootstrap approach [28, 38] and
the Delta theorem [28, 38, 39] method. The systematic un-
certainties are estimated by varying the experimental require-
ments to reconstruct p ( p̄) in the TPC and TOF. These require-
ments include the distance of the proton and anti-proton tracks
from the primary vertex position, track quality reflected by the
number of TPC space points used in the track reconstruction,
the particle identification criteria passing certain selection cri-
teria, and the uncertainties in estimating the reconstruction ef-
ficiencies. The systematic uncertainties at different collision
energies are uncorrelated.

The large values of C3 and C4 for central Au+Au collisions
show that the distributions have non-Gaussian shapes, a possi-
ble indication of enhanced fluctuations arising from a possible
critical point [11, 22]. The corresponding values for periph-


