Collective flow measurements in Gold-Gold collisions at 1.23 AGeV with HADES

Behruz Kardan

for the HADES Collaboration

Dense Nuclear Matter Equation of State from Heavy-Ion Collisions
INT WORKSHOP INT-22-84W

6th December, 2022
Outline

- Dense nuclear matter and collective phenomena
- HADES and Au+Au data at 1.23 AGeV
- Directed v_1, elliptic v_2, and higher flow harmonics (v_3, v_4, v_5, v_6) of protons, deuterons and tritons
- Scaling properties of flow harmonics
- Model comparisons

Talk based on following publication:
HADES, arXiv:2208.02740 submitted to EPJ A
Motivation

Nuclear and Neutron Star Matter

Neutron Star Merger
Observation via gravitational waves
GW170817: B.P. Abott et al. (LIGO + VIRGO)
PRL **119** (2017) 1611001

Sensitivity to equation-of-state

Matter at super nuclear density in the universe

Heavy-ion Collision
Equation-of-state of dense matter

Matter at super nuclear density in the laboratory
Collective Effects
Flow Phenomenology

Emission relative to event plane
Interactions in medium, nuclear stopping
\[\Rightarrow \text{buildup of non-uniform pressure gradients} \]
provides accelerating forces in different directions

Access to medium properties, e.g. viscosity, equation-of-state

Fourier-decomposition
of the triple differential invariant cross section
\[
E \frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_t \, dp_t \, dy} \left(1 + 2 \sum_{n=1}^{\infty} v_n(p_t, y) \cos(n\phi) \right)
\]
\[\phi = (\varphi - \Psi_{RP}) \]
Extraction of azimuthal moments \(v_n \)
\[
v_n(p_t, y) = \langle \cos(n\phi) \rangle
\]
Event Plane Reconstruction

1st-Order event plane from Q-Vector

Projectile spectators in Forward Wall

Charge-Weighting of the projectile hits, according their energy loss in scintillators

\[
\tan \psi_{EP,1} = \frac{Q_{1,y}}{Q_{1,x}}
\]

\[
Q_{n,x} = \sum_{i=0}^{N_{FW}} w_i \cos(n \phi_{FW,i})
\]

\[
Q_{n,y} = \sum_{i=0}^{N_{FW}} w_i \sin(n \phi_{FW,i}).
\]
Event Plane Determination

Correction of non-uniformities in the EP distribution (day-by-day and centrality)

Re-centering of X and Y of all FW hits

Flattening of residual Fourier components with 8 cos- and 8 sin-terms
Event Plane Resolution

EP-resolution via sub-event method with three implementations

Determination of resolution parameter χ
- directly via $\langle \cos (\Delta \Phi) \rangle$
- Approximation via Fraction of Events with $\Delta \Phi > \pi/2$
- Fit-Method

Calculation of EP-Resolution of different order

$$\frac{dN}{d\Delta \Psi_{EP}}$$

$$\Delta \Psi_{EP}$$

$$\text{Centrality 20-25 \%}$$

$$\text{Au+Au 1.23 AGeV}$$

$$\chi$$

Resolution Parameter

$$\nu_n = \frac{\nu_{n}^{obs}}{\mathcal{R}_n}$$

$$\mathcal{R}_n = \langle \cos[n(\Psi_n - \Psi_{RP})]\rangle$$

Behruz Kardan

INT Workshop - Dense Nuclear Matter Equation of State from Heavy-Ion Collisions - Seattle - 6. December 2022
Systematic Uncertainties
Validation and Consistency Checks

Sources of uncertainties
- Track selection and PID
- Occupancy correction
- Non-uniform acceptance

Toy MC study
Influence of the incomplete acceptance and a non-uniform event-plane distribution

Consistency checks:
- Measurement symmetry with respect to mid-rapidity
- Zero-crossing of odd harmonics at $y_{cm}=0$
- Vanishing residual sine-terms
- Time-dependent systematic effects

Reversed field polarity
Comparison with flow coefficients from the full data set
Collective Effects

Energy-Dependence

Compilation of world data
Good agreement of mean transverse mass \(<m_t>-m_0\), integrated directed flow \(dv_1/dy\) and elliptic flow \(v_2\)

Out-of-Plane \(v_2\)
Long spectator passing time at HADES energy
\(\tau_{\text{passing}} \approx \tau_{\text{expansion}} \Rightarrow \text{“squeeze-out”}\)
Collective Effects

Results on v_1, v_2, v_3 and v_4 for Protons, Deuterons and Tritons

Protons

Deuterons

Tritons

ρ_π (GeV/c)

- 0.35 - 0.40
- 0.55 - 0.60
- 0.75 - 0.80
- 0.95 - 1.00
- 1.15 - 1.20
- 1.35 - 1.40
- 1.55 - 1.60
- 1.75 - 1.80
- 1.95 - 2.00

$\sqrt{s_{NN}} = 2.4$ GeV

HADES, arXiv:2208.02740
Collective Effects
Results on v1, v2, v3 and v4 for Protons, Deuterons and Tritons

Protons
Centrality 20-30%

Deuterons

Tritons

$\sqrt{s_{NN}} = 2.4 \text{ GeV}$

HADES, arXiv:2208.02740

$\rho_t (\text{GeV/c})$
- 0.35 - 0.40
- 0.55 - 0.60
- 0.75 - 0.80
- 0.95 - 1.00
- 1.15 - 1.20
- 1.35 - 1.40
- 1.55 - 1.60
- 1.75 - 1.80
- 1.95 - 2.00

$\approx 2.4 \text{ GeV}$

Au+Au

HADES
Collective Effects
Results on v_1, v_2, v_3 and v_4 for Protons, Deuterons and Tritons
Collective Effects
Results on v_1, v_2, v_3 and v_4 for Protons, Deuterons and Tritons

Protons
Centrality 20-30%

Deuterons

Tritons

$\sqrt{s_{NN}} = 2.4$ GeV

HADES, arXiv:2208.02740

$\langle p_T \rangle$ (GeV/c)

$0.40 - 0.60$

$0.60 - 0.80$

$0.80 - 1.00$

$1.00 - 1.20$

$1.20 - 1.40$

$1.40 - 1.60$

$1.60 - 1.80$

$1.80 - 2.00$

Behruz Kardan
INT Workshop - Dense Nuclear Matter Equation of State from Heavy-Ion Collisions - Seattle - 6. December 2022
Collective Effects
Results on v_1, v_2, v_3 and v_4 for Protons, Deuterons and Tritons

Shown only a fraction of the data
In total 17k data points with individual systematic uncertainties available
Collective Effects

Results on $v_1 - v_6$ for Protons, Deuterons and Tritons

Emission Pattern

Protons

Allows to reconstruct a full 3D-picture of the emission pattern in momentum space

Shape determined by flow coefficients $v_1 - v_6$

Complex evolution of shape as function of rapidity

$$1 + 2 \sum_{n=1}^{\infty} v_n(y_{cm}) \cos n(\phi - \psi_{RP})$$

$$v_{1,3,5}(y_{cm}) = a y_{cm} + b y_{cm}^3$$

$$v_{2,4,6}(y_{cm}) = c + d y_{cm}^2$$

First Proposed in S. Voloshin and Y. Zhang

“Ideal fluid scaling”
Relation between v_2 and v_4

Scaling properties
Prediction for ideal fluid:

$$v_4(p_t)/v_2^2(p_t) = 1/2$$

Slightly higher values (~ 0.6) expected in more realistic scenario

Observed ratios for p, d and t
Independent of p_t and centrality
Close to predicted value of ~ 0.6

Confirmed by transport models

Hydro-like matter at SIS energies?

Systematic Error of v_2 and v_4 are treated as correlated

P. Kolb, PRC 67 (2003) 031902
C. Gombeaud and J.-Y. Ollitrault, PRC 81 (2010) 014901

J. Wang et al., PRC 90 (2014) 054601 IQMD
Justin Mohs et al., PRC 105 (2022) 034906 SMASH
Nucleon Coalescence
Scaling Properties of v_2 at Mid-Rapidity

Scaling of v_2 and p_t with nuclear mass number A (including higher terms)

Works as expected in simple coalescence picture for the dominant flow coefficient

Only at mid-rapidity: odd flow coefficients vanish and v_4 contribution is negligible

Approximation for small v_n

$$v_{n,A}(A p_t) = A v_n(p_t)$$

$$v_{n,A=2}(A p_t) = 2 v_n(p_t) \frac{1}{1 + 2 v_n^2(p_t)}$$

$$v_{n,A=3}(A p_t) = 3 v_n(p_t) \frac{1 + v_n^2(p_t)}{1 + 6 v_n^2(p_t)}$$

P.F. Kolb et al., PRC 69 (2004) 051901
Nucleon Coalescence
Scaling Properties of v_4 at Mid-Rapidity

Scaling of v_4 and p_t with nuclear mass number A (including higher terms)

Works as expected in simple coalescence picture if contribution of dominant flow coefficient is included

Approximation for small v_4 with v_2 contribution:

$$v_{n,A}(Ap_t) = A^2 v_n(p_t)$$

P.F. Kolb et al., PRC 69 (2004) 051901

HADES, arXiv:2208.02740

$$v_{4,A=2}(p_t) = 4v_4(p_t) \frac{1}{1 + 4v_4(p_t) + 2v_2^2(p_t)}$$

assuming: $v_4(p_t)/v_2^2(p_t) = 1/2$

P.F. Kolb et al., PRC 69 (2004) 051901
Geometry Scaling
Elliptic Flow v_2

Scaling with initial eccentricities
Calculated for overlap zone with Glauber MC

$v_2/\langle \varepsilon_2 \rangle$ almost independent of centrality and p_t

Orientation of symmetry-planes
Negative $v_2/\langle \varepsilon_2 \rangle$ values
$\implies v_2$ Flow- and ε_2 eccentricity-plane are perpendicular
Geometry Scaling

Quadrangular Flow v_4

Scaling with initial eccentricities
Calculated for overlap zone with Glauber MC

\[
\frac{v_4}{\langle \varepsilon_2 \rangle^2} \text{ almost independent of centrality and } p_t \quad (v_4/\langle \varepsilon_4 \rangle \text{ is not})
\]

\[\Rightarrow \text{ Fixed relation between } v_2 \text{ and } v_4 \text{ (different to high energies)}\]
Model Comparisons to Proton Data

Determination of EOS
New level of precision
Additional information from higher orders

Models:
- JAM 1.9 NS3 (hard EOS, mom.-indep.)
- JAM 1.9 MD1 (hard EOS, mom.-dep.)
- JAM 1.9 MD4 (soft EOS, mom.dep.)
- UrQMD 3.4 (hard EOS, mom.-indep.)
- GiBUU Skyrme 12 (soft EOS)

Conclusions
Overall trend reasonably described, but no model works everywhere

Several systematic deviations

Unified description of cluster production missing
Model Comparisons to Proton Data

HADES

Slope v_1

0.6 < p_t < 0.9 GeV/c

Aberrancy v_1

0.6 < p_t < 0.9 GeV/c

Curvature v_2

0.6 < p_t < 0.9 GeV/c

Aberrancy v_3

0.6 < p_t < 0.9 GeV/c

Curvature v_4

0.6 < p_t < 0.9 GeV/c

Aberrancy: the third derivative of a curve
Conclusions and Outlook

Scaling properties of Flow Coefficients
Relation between v_2 and v_4
Hydro-like matter at SIS energies?

Scaling of v_2 and v_4 according simple “nucleon coalescence” via momentum addition

Scaling with Initial Eccentricities reveals fixed relation between v_2 and v_4

Model Comparison
New level of precision - multi-differential
Additional information from higher orders

Consistent modelling of cluster formation is essential

Next Steps towards EOS
Detailed comparisons and sensitivity to model parameter space \Rightarrow Bayesian analysis

System-Size and Energy-dependence
Ag+Ag Beam data
at 1.23 and 1.58 AGeV (2019)

SIS Beam Energy Scan
Au+Au 0.2, 0.4, 0.6 and 0.8 AGeV is planned
HADES Collaboration

Thank you for your attention!