Exploring Exotic Structures in Rare Isotopes with Relativistic Beams

R. Kanungo Saint Mary's University & TRIUMF, Canada

Stable Nucleus

Proton Number

Rare Isotope weak binding, N/Z>

Borromean nucleus

Neutron Halo

Neutron-rich matter

Neutron Number

Rare isotopes in the laboratory

Intersection of Nuclear Structure and High Energy Collisions, Feb.6-10, 2023 INT, Seattle, USA R. Kanungo

High energy RI beam

Rare Isotope Facilities

Point Matter (rms) Radii : Interaction Cross Section (σ_I)

Intersection of Nuclear Structure and High Energy Collisions, Feb.6-10, 2023 INT, Seattle, USA R. Kanungo

3

Point Proton (rms) Radii : Charge Changing Cross Section (\sigma_{cc})

σ_R to R_m

Glauber Model

Measure

$$\sigma_{R} = \int \int d\vec{b} \left[1 - T(\vec{b}) \right] \qquad T(b) = \left| \exp(i\chi(\vec{b})) \right|^{2} \text{ T: Transmission Function}$$

1 - elastic scattering Does not require any reaction mechanism

Intersection of Nuclear Structure and High Energy Collisions, Feb.6-10, 2023 INT, Seattle, USA

R. Kanungo

Radii and exotic neutron-rich structures

(*...*/

How well does transmission technique work?

Rm : p- elastic scattering

¹¹Li Halo neutron correlation

3

Quantum entanglement

Neutron Surface

Neutron Skin : R_n - R_p

 $\left(\frac{Z}{N}\right)R_p^2 - R_p$

 $\left(\frac{A}{N}\right)R_m^2$ –

 $R_{skin} = \sqrt{$

What lies behind the halo? - a look at orbitals

Coulomb dissociation $^{19}C + ^{208}Pb \rightarrow ^{18}C + n$ framework of direct breakup $\frac{d\sigma_{\rm CD}}{dE_{\rm rel}} = \frac{16\pi^3}{9\hbar c} N_{E1}(E_{\rm x}) \frac{dB(E1)}{dE_{\rm rel}}$ $\frac{dB(E1)}{dE_{rel}} = \left| \langle \mathbf{q} | \frac{Ze}{A} r Y_m^1 | \Phi(\mathbf{r}) \rangle \right|^2$ 0.00 (b/MeV)E/A = 67 MeV $\frac{--S_n}{-} = 530 \text{ keV} \cdot {}^{18}\text{C}(0^+) \otimes 2s_{1/2}$S_n = 160 keV : ${}^{18}\text{C}(0^+) \otimes 2s_{1/2}$ 1.25 $-\cdots - S_n = 160 \text{ keV}: {}^{18}C(2^+) \otimes 2s_{1/2}$ 1.00 $d\sigma_{ m CD}/dE_{ m rel}$ $--S_n = 160 \text{ keV}: {}^{18}C(0^+) \otimes 1d_{5/2}$ 0.75 $2s_{1/2}$ 0.50 $1d_{5/2}$ 0.25 0.00

T. Nakamura et al., PRL 83 (1999) 1112

 $E_{\rm rel}$ (MeV)

Do all shells dissolve into halos ?

28A]

12

²⁸Mg

32 A

³⁰Mg

 ^{32}Mg

N = 20, 28 shells vanish in a Borromean halo

Evolution of orbitals : Tensor Force

Intersection of Nuclear Structure and High Energy Collisions, Feb.6-10, 2023 INT, Seattle, USA

R. Kanungo

Evolution of orbitals : Tensor Force

Evolution of orbitals : Three Nucleon Force

Intersection of Nuclear Structure and High Energy Collisions, Feb.6-10, 2023 INT, Seattle, USA

K. Kanungo

¹⁰C+p scattering : probing the nuclear force

10C °

6

р

Models for EOS differ widely for asymmetric nuclear matter

EOS predictions vary for nuclear force prescriptions

Neutron Skin : EOS - Symmetry energy

Neutron skin is strongly correlated with L

Correlation differs for RMF and *ab initio* frameworks

 $= 3\rho \partial c_{\rm sym}(\rho) / \partial \rho$

160Ab initio calculations have now reached predictions of R_{skin} for ²⁰⁸PbB. Hu et al.

Determine R_{skin} of rare isotopes

$$R_{skin} = R_n - R_p = \sqrt{\left(\frac{A}{N}\right)R_m^2 - \left(\frac{Z}{N}\right)R_p^2 - R_p}$$

R

Neutron skin (PREX & CREX @ JLab) : Symmetry energy

Parity violating electron scattering

Rare isotopes with thicker skins will be more sensitive constraints on 'L'

Summary

High energy reactions produce rare isotopes

Reactions of rare isotopes reveal new features - changing the conventional knowledge

- Few-body correlations emerge in many-body neutron-proton asymmetric nuclei. *Nuclear Halos - Core + halo neutron correlation*
- Nuclear shells changes are related to these new structures.
 Known shells @ N = 8, 20, 28 disappear New Shells appear @ N = 16
- Nuclear force needs to be better understood

5.

Rare isotope scattering shows strong sensitivity to various three-nucleon forces

Our Team

Intersection of Nuclear Structure and High Energy Collisions, Feb.6-10, 2023 INT, Seattle, US

K. <u>Kanung</u>O