

End-to-end merger models including all phases of matter ejection

ApJL 951, L12 (2023), arXiv:2302.10928

Oliver Just Relativistic Astrophysics Group, GSI

INT Workshop

Astrophysical neutrinos and the origin of the elements

with: A. Bauswein, G. Martinez-Pinedo, S. Goriely, H.-Th. Janka, J. Guilet, Z. Xiong, V. Vijayan, T. Soultanis

Established by the European Commission

Basic picture

Central Neutron Star

Central Black Hole

24.07.2023 | INT Workshop | Oliver Just

Basic picture

Central Neutron Star Central Black Hole

24.07.2023 | INT Workshop | Oliver Just

Ingredients of kilonova modeling pipeline

Often adopted simplifications

Often adopted simplifications

Often adopted simplifications

1. How does the lifetime of the NS remnant until BH formation depend on the binary mass ratio and turbulent viscosity?

- 1. How does the lifetime of the NS remnant until BH formation depend on the binary mass ratio and turbulent viscosity?
- 2. Properties of the ejecta from the NS remnant?

- 1. How does the lifetime of the NS remnant until BH formation depend on the binary mass ratio and turbulent viscosity?
- 2. Properties of the ejecta from the NS remnant?
- 3. Mass and neutron richness of accretion torus around newly formed BH?

- 1. How does the lifetime of the NS remnant until BH formation depend on the binary mass ratio and turbulent viscosity?
- 2. Properties of the ejecta from the NS remnant?
- 3. Mass and neutron richness of accretion torus around newly formed BH?
- 4. How does the NS lifetime affect the nucleosynthesis yields?

- 1. How does the lifetime of the NS remnant until BH formation depend on the binary mass ratio and turbulent viscosity?
- 2. Properties of the ejecta from the NS remnant?
- 3. Mass and neutron richness of accretion torus around newly formed BH?
- 4. How does the NS lifetime affect the nucleosynthesis yields?
- 5. How does the NS lifetime affect the kilonova?

- 1. How does the lifetime of the NS remnant until BH formation depend on the binary mass ratio and turbulent viscosity?
- 2. Properties of the ejecta from the NS remnant?
- 3. Mass and neutron richness of accretion torus around newly formed BH?
- 4. How does the NS lifetime affect the nucleosynthesis yields?
- 5. How does the NS lifetime affect the kilonova?

Challenge: Resolving all relevant processes in the NS remnant

What process (if any) transports angular momentum in the NS most effectively (MRI, Taylor Spruit dynamo, B-field winding, ...)???

(many works, e.g. by: Aguilera-Miret, Bauswein, Ciolfi, Duez, Fujibayashi, Fernandez, Guilet, Kiuchi, Margalit, Metzger, Moesta, Palenzuela, Radice, Rezzolla, Siegel, Shibata, ...)

Challenge: Resolving all relevant processes in the NS remnant

24.07.2023 | INT Workshop | Oliver Just

Challenge: Resolving all relevant processes in the NS remnant

Setup of our models

hydrodynamic modeling of merger + dynamical ejecta

- 3D smoothed-particle hydro with conformal flatness condition
- ILEAS neutrino scheme

heavy element nucleosynthesis
extraction of ~5000 outflow tracers per model to sample

local hydrodynamic history until 100 s

 post-processed by two high-end nuclear networks

hydrodynamic modeling of remnant + post-merger ejecta

- initial conditions mapped from merger simulations
- 2D axisym. special relativistic with TOV potential
- energy-dependent M1 neutrino transport
- newly developed scheme to parametrize viscosity in the NS indep. of the surrounding disk

kilonova radiative transfer

- 2D axisymmetric radiative transfer using approximate M1 scheme
- using local time-dependent results from nucleosynthesis calculations

Evolutionary phases 1: merger

Evolutionary phases 2: NS-torus evolution

GSI

Evolutionary phases 4: expansion until homology

Evolutionary phases 4: expansion until homology

Neutrino emission

neutrino luminosity v_e 10⁵³ v_{x} 10⁵² L L_v [erg/s] Цi 10⁵¹ ţ, 11 1 sym-n1-a6 **10**⁵⁰ sym-n05-a3 sym-n05-a6 sym-n10-a3 sym-n10-a6 10⁴⁹ TT 10⁰ 10^{-1} 10¹ *t*_{pm} [s]

Neutrino emission

neutrino luminosity

- stronger viscosity causes higher luminosities —> stronger neutrino-driven wind
- however, total wind mass comparable between all models, because cases of stronger viscosity have shorter NS lifetimes

Neutron richness by ejecta component

Neutron richness by ejecta component

Total neutron richness by model

INT Workst op I

Oliver Just

24.07.2023 I

- dominance of high Y_e material causes underproduction of A>130 elements cp. to solar abundance pattern
- suggests that delayed collapse mergers are sub-dominant r-process sites and that most mergers have short delay times (<~0.1seconds)
- results consistent with models of short and very long delay times by Fujibayashi et al.

24.07.2023 | INT Workshop | Oliver Just

Elemental yields + spec. heating rate

GSİ

Ejecta geometry and composition

time dependent location of photosphere

Ejecta geometry and composition

- 1. How does the lifetime of the NS remnant until BH formation depend on the binary mass ratio and turbulent viscosity?
 - systematically shorter lifetime for asymmetric mass ratios
 - even stronger sensitivity on viscosity

- 1. How does the lifetime of the NS remnant until BH formation depend on the binary mass ratio and turbulent viscosity?
 - systematically shorter lifetime for asymmetric mass ratios
 - even stronger sensitivity on viscosity
- 2. Properties of the ejecta from the NS remnant?
 - massive and fast neutrino-driven wind with high Y_e
 - stronger viscosity —> higher wind masses

- 1. How does the lifetime of the NS remnant until BH formation depend on the binary mass ratio and turbulent viscosity?
 - systematically shorter lifetime for asymmetric mass ratios
 - even stronger sensitivity on viscosity
- 2. Properties of the ejecta from the NS remnant?
 - massive and fast neutrino-driven wind with high Y_e
 - stronger viscosity —> higher wind masses
- 3. Mass and neutron richness of accretion torus around newly formed BH?
 - mass can both grow or decline depending on NS viscosity
 - $Y_e \sim 0.2$ -0.3 @ BH formation —> higher than previously assumed

- 1. How does the lifetime of the NS remnant until BH formation depend on the binary mass ratio and turbulent viscosity?
 - systematically shorter lifetime for asymmetric mass ratios
 - even stronger sensitivity on viscosity
- 2. Properties of the ejecta from the NS remnant?
 - massive and fast neutrino-driven wind with high Y_e
 - stronger viscosity —> higher wind masses
- 3. Mass and neutron richness of accretion torus around newly formed BH?
 - mass can both grow or decline depending on NS viscosity
 - $Y_e \sim 0.2$ -0.3 @ BH formation —> higher than previously assumed
- 4. How does the NS lifetime affect the nucleosynthesis yields?
 - long lifetime —> more high- Y_e ejecta —> less consistent with solar pattern
 - events with short lifetime may dominate galactic chemical evolution

- 1. How does the lifetime of the NS remnant until BH formation depend on the binary mass ratio and turbulent viscosity?
 - systematically shorter lifetime for asymmetric mass ratios
 - even stronger sensitivity on viscosity
- 2. Properties of the ejecta from the NS remnant?
 - massive and fast neutrino-driven wind with high Y_e
 - stronger viscosity —> higher wind masses
- 3. Mass and neutron richness of accretion torus around newly formed BH?
 - mass can both grow or decline depending on NS viscosity
 - $Y_e \sim 0.2$ -0.3 @ BH formation —> higher than previously assumed
- 4. How does the NS lifetime affect the nucleosynthesis yields?
 - long lifetime —> more high-*Y*_e ejecta —> less consistent with solar pattern
 - events with short lifetime may dominate galactic chemical evolution
- 5. How does the NS lifetime affect the kilonova?
 - long NS lifetime —> more anisotropic ejecta composition (polar neutrino wind, equatorial dynamical ejecta)
 - MHD effects maybe not required to explain blue component of GW170817

Impact of fast flavor conversions in BH disks

OJ, Abbar, Wu, Tamborra, Janka, Capozzi '22

Characteristic regimes of Y_e equilibria in BH disks

Ne

Impact of instantaneous flavor mixing

flavor equipartition, e.g. like: $n_{\nu} = \frac{1}{6} \left(n_{\nu_e,q}^0 + n_{\bar{\nu}_e,q}^0 + 2n_{\nu_x,q}^0 + 2n_{\bar{\nu}_x,q}^0 \right)$

- ✓ two main effects due to the effective creation of mu/tau neutrinos:
- → enhanced neutrino cooling rates lead to high electron degeneracy and lower value of $Y_e^{eq,em}$
- → reduced abundances of electrontype neutrinos reduce impact of absorption and lead to additional reduction of Y_e^{eq}

Impact on nucleosynthesis and kilonova

moderate enhancement of r-process yields

mildly prolonged kilonova signal due to enhanced lanthanide abundance

possibly larger effect for more realistic mixing/QKT treatment (???)