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Ingredients of kilonova modeling pipeline

( hydrodynamic modeling \
of merger + dynamical ejecta
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Ingredients of kilonova modeling pipeline
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Often adopted simplifications
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( hydrodynamic modeling \
of merger + dynamical ejecta
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no or simple neutrino transport
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)' \

( hydrodynamic modeling

( kilonova radiative transfer \

Oliver Just

- J




Often adopted simplifications

( hydrodynamic modeling \
of merger + dynamical ejecta

~

ﬁleavy element nucleosynthesiﬁ

e parametrized outflow
trajectories

e time extrapolation assuming
self—similar expansion
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Often adopted simplifications

-

of merger + dynamical ejecta

hydrodynamic modeling

~

ﬂleavy element nucleosynthesiq

e parametrized outflow
trajectories

e time extrapolation assuming
self-31m11ar expansion

X

y,
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( hydrodynamic modeling

\angular momentum transport J

of remnant + post-merger e]ecta
often entirely ignored

manually constructed initial models
no or simple neutrino transport
neglecting turbulent viscosity and

( kilonova radiative transfer \

e spherical symmetry (i.e. 1D)
e analytic density structure
e using only average ejecta
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Challenge: Resolving all relevant processes in the NS remnant

Q torus

NS

‘{,' What process (if any) transports angular
| momentum in the NS most effectively (MRI,
Taylor Sprult dynamo B- fleld w1nd1ng, : )777 “

(many works, e.g. by: Aguilera-Miret, Bauswein,
Ciolfi, Duez, Fujibayashi, Fernandez, Guilet,
Kiuchi, Margalit, Metzger, Moesta, Palenzuela,
Radice, Rezzolla, Siegel, Shibata, ...)
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Challenge: Resolving all relevant processes in the NS remnant

Q torus

NS

log Q(R) “shear”
|g|l =07 ~ dlogQ
1= d1logR
log R
> GBS
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Challenge: Resolving all relevant processes in the NS remnant

Q torus

NS

| Our approach:

log Q(R)
lg| = 07?

“shear”

_dlogQ
~ dlogR

e parametrize turbulent viscosity
depending on the shear q

e in the torus (g~-1.5): “usual” alpha- |
viscosity scheme

e in the NS (|g|<1.5): reduced
viscosity

I« allows to regulate viscosity in the NS ]‘
1ndependently of visc. in the torus' |

log R
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Setup of our models

( hydrodynamic modeling \
of merger + dynamical ejecta

e 3D smoothed-particle hydro
with conformal flatness
condition

\- ILEAS neutrino scheme J

ﬁleavy element nucleosynthesih
e extraction of ~5000 outflow

tracers per model to sample
local hydrodynamic history
until 100 s

e post-processed by two high-end
nuclear networks

( hydrodynamic modeling \
of remnant + post-merger ejecta

e initial conditions mapped from
merger simulations

e 2D axisym. special relativistic
with TOV potential

e energy-dependent M1 neutrino
transport

e newly developed scheme to
parametrize viscosity in the NS

( kilonova radiative transfer \

e 2D axisymmetric radiative
transfer using approximate M1
scheme

e using local time-dependent
results from nucleosynthesis

k indep. of the surrounding disk )
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Evolutionary phases 1: merger

(hypermassive)
neutron star dynamical
accretion disk remnant ejecta
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Evolutionary phases 2: NS-torus evolution

accretion disk expands
due to turbulent viscosity
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polar wind powered by
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Evolutionary phases 3: BH-torus evolution

viscous disk winds

(once neutrino cooling

becomes inefficient)
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polar jet outflow powered by
neutrino annihilation
(or magnetic-field effects
not included here)
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Evolutionary phases 4: expansion until homology
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Evolutionary phases 4: expansion until homology
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NS lifetime until BH formation steep drop marks

BH formation
Mmaximum densities
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NS lifetime until BH formation

Pmax [g/cm3]

variation of >

viscosity
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T T T —
|

| .
e asymmetric mergers tend to

lead to more slowly rotating NS
remnants

—> asymmetric models collapse |
systematically earlier than
symmetric models (for same
viscosity)

strong sensitivity to viscosity
—> solid understanding of
viscosity required to predict NS
lifetime for given progenitor




Neutrino emission

neutrino luminosity
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Neutrino emission

neutrino luminosity
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| » stronger viscosity causes higher |
1052 - ! luminosities —> stronger
— neutrino-driven wind
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Torus mass @ BH formation QA ' <

masses (baryonic)
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Torus mass @ BH formation QA ' <

masses (baryonic)
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Torus neutron-richness @ BH formation

torus avg. Ye

0.6
0.5 -
0.4
_ Nproton ;;J
Ye — N N 0.3 =
proton + neuton

0.2 -

24.07.2023 | INT Workshop |  Oliver Just =55



Torus neutron-richness @ BH formation

N,

Y, =
N, proton + N, neuton
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S
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Y.~ 0.25-0.3 at birth of BH torus

Ye higher than assumed by many previous BH torus
studies based on manually constructed initial conds. |

reason: disk expansion during NS phase
—> low densities = high weak equilibrium Ye
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Neutron richness by ejecta component
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Neutron richness by ejecta component

sym-nl-ab6
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Total neutron richness by model

symmetric models asymmetric models
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Lo Y, pattern relatively robust w.r.t.
different viscosities and mass ratio
e trend towards less neutron-rich

matter for longer NS lifetime “
e e — === Il
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Ejecta nucleosynthesis yields

solar abundances
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Ejecta nucleosynthesis yields

solar abundances

N\, sym-nl-a6

Mass fraction
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— BH-torus ejecta
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160
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240

I

+ » dominance of high Y. material causes

underproduction of A>130 elements cp.
to solar abundance pattern

suggests that delayed collapse mergers
are sub-dominant r-process sites and that }
most mergers have short delay times
(<~0.1seconds)

results consistent with models of short
and very long delay times by Fujibayashi
et al.




Elemental yields + spec. heating rate
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Ejecta expansion towards homology

density temperature
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Ejecta geometry and composition

time dependent
location of photosphere
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Ejecta geometry and composition

time dependent

location of photosphere
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' polar neutrino-driven wind pushes aside dynamical
| ejecta and creates a polar “hole” for abundances of

—> impact of anisotropy on the kilonova may be used
to distinguish prompt from delayed collapse events (cf.




Kilonova: comparison with GW170817/AT2017gfo

L [erg/s]
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Kilonova: comparison with GW170817/AT2017gfo

symmetric models asymmetric models
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| » overall good agreement with AT2017gfo

e post-merger ejecta make the KN signal brighter and longer than
for just the dynamical ejecta

e slightly too faint at early times t < 1day

e MHD effects may not be necessary to explain blue component of
GW170817 (e.g. Metzger '18, Siegel 22, Ki
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Summary of results suggested by our models
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Summary of results suggested by our models

1. How does the lifetime of the NS remnant until BH formation depend on the binary mass ratio and
turbulent viscosity?
- systematically shorter lifetime for asymmetric mass ratios
- even stronger sensitivity on viscosity
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Summary of results suggested by our models

1. How does the lifetime of the NS remnant until BH formation depend on the binary mass ratio and
turbulent viscosity?
- systematically shorter lifetime for asymmetric mass ratios
- even stronger sensitivity on viscosity

2. Properties of the ejecta from the NS remnant?
- massive and fast neutrino-driven wind with high Y.
- stronger viscosity —> higher wind masses

3. Mass and neutron richness of accretion torus around newly formed BH?
- mass can both grow or decline depending on NS viscosity
- Ye~0.2-0.3 @ BH formation —> higher than previously assumed

4. How does the NS lifetime affect the nucleosynthesis yields?
- long lifetime —> more high-Y. ejecta —> less consistent with solar pattern
- events with short lifetime may dominate galactic chemical evolution

5. How does the NS lifetime affect the kilonova?
- long NS lifetime —> more anisotropic ejecta composition (polar neutrino wind, equatorial
dynamical ejecta)
- MHD effects maybe not required to explain blue component of GW170817
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Impact of fast flavor conversions in BH disks

0], Abbar, Wu, Tamborra, Janka, Capozzi ‘22
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Characteristic regimes of Y. equilibria in BH disks
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. . . cyey s eq,em
Neutrino emission equilibrium: Y 91

properties at emission equilibrium
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generically low Y. for neutrino-cooled disks because
of moderate electron degeneracy eta~1

!

freeze-out at relatively low Ye roughly when weak
timescales tau_{em} > 1-10 seconds
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Impact of instantaneous flavor mixing

radial profiles @ t=50ms

flavor equipartition, e.g. like:
1

_ L0 0 0 0
Ny = 6 (nve,q + g g+ 20, 4+ Qnﬂx,q)

v two main effects due to the effective
creation of mu/tau neutrinos:

B cnhanced neutrino cooling rates
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and lower value of Y.eaem

m» reduced abundances of electron-
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Impact on nucleosynthesis and kilonova

nucleosynthesis vyi kilonova light curve
no flavor conversion ---
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mix1f ---

m— luminosity
- heating rate

= = no flavor conversion
— with flavor conversion

@
~~
(@)]
—
2
>
o
(7]
o
<
£
2
)
o]

AB magnitude

100 150
mass number, A

time [d]

B moderate enhancement of r-process yields
B mildly prolonged kilonova signal due to enhanced lanthanide abundance

B possibly larger effect for more realistic mixing/QKT treatment (???)
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