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WHAT ARE WE TRYING TO MEASURE?
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SEMI-INCLUSIVE DEEP-INELASTIC SCATTERING
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3-D imaging of quarks and 
gluons in momentum space
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Parton distribution 
function (PDF)

Fragmentation 
Function (FF)

Measuring an identified hadron in 
coincidence with the scattered electron

Degrees of freedom: 
Continuous:  
• Electron:  
• Hadron  

Discrete: 
• Electron spin and proton spin 
• Hadron flavor (π, K, p/n)

x, Q2, ϕ
z, P⊥

h , ϕh
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WHAT DO WE NEED TO MEASURE FOR THIS?

▪ Electron variables ( ): 
▪ Event vertex’ 
▪ 3-momentum (preferably through a direct measurement) 
▪ Electron identification (are we sure this is an electron?) 
▪ Scattered electron selection (are we sure this is the scattered electron?) 

▪ Hadron variables ( ), flavor 

▪ Reconstructed hard scattering (i.e. measured scattered electron) 
▪ Hadron vertex (should be the same as the event vertex) 
▪ 3-momentum 
▪ Positive hadron identification (how sure are we that this is a π, K, p/n?) 

▪ Beam spin states: 
▪ Polarimetry to determine the polarization percentage

x, Q2, ϕ

z, P⊥
h , ϕh
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Degrees of freedom: 
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HOW DO WE DO THIS MEASUREMENT?
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CHARGED PARTICLE MOMENTUM AND VERTEX
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Tracking detectors in a solenoidal magnetic field
Principle: 
▪ Charged particles curl in the 

magnetic field of the detector and 
leave hits in the tracking detector 

▪ The radius of the particle trajectory 
fully constrains its momentum 

Considerations: 
▪ Neutral particles do not leave hits 

in the tracking detectors 
▪ Sensitive to material effects 

(multiple scattering and radiation in 
detector material worsens 
resolution)

Particles: e-, e+, π+, π-, K+, K-, p, µ-, µ+
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ELECTRON-PION SEPARATION
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Mostly carried by the electromagnetic calorimeters
Principle: 
▪ Electrons lose all their energy in 

the electromagnetic calorimeters, 
while pions only sometimes loose 
all their energy. 

▪ Electron showers and pion 
showers look different. 

Considerations: 
▪ Electron shower tails overlap pion 

shower tails: source of irreducible 
contamination  

▪ Very high amounts of pion rejection 
(103 - 104) needed to achieve 
reasonable levels of background

Particles: e-, e+, π+, π-, (K+, K-, p, µ-, µ+)
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NEUTRAL PARTICLE MEASUREMENTS
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Combined EM and Hadronic Calorimeters
Principle: 
▪ Neutrals travel in a straight line through the 

detector 
▪ Neutrals deposit their energy in the 

combined calorimeter system 
▪ Can use known event vertex and calorimeter 

information to reconstruct 3-momentum 
▪ Photons (and pi0) fully measured by EM 

calorimeters 
Considerations: 
▪ Hadronic calorimeter in some cases only 

sees the tail of the energy distribution (e.g. 
magnet material in-between) 

▪Worse position resolution (intrinsic loss of 
precision in calorimeter showers) 

▪ Difficulty separating particles close to each 
other.

Particles: γ, (π0), K0-long, n
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CHARGED HADRON PID
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Mostly through Cherenkov detectors
Principle: 
▪ Charged particles traveling through a 

medium at a velocity faster than the 
speed of light in this medium emit 
Cherenkov radiation in a cone 

▪ The opening angle of this cone is related 
to the particle’s velocity 

▪ Combining this velocity with the 
momentum from tracking detectors gives 
a handle on mass (and hence PID) 

Considerations: 
▪ Very sensitive to tracking resolution 
▪ Only sensitive in limited momentum range 
▪ Assigning detected Cherenkov rings to 

reconstructed trajectories non-trivial 
▪ Non-zero probability of misidentification

Particles: π+, π-, K+, K-, p, (e-, e+, µ-, µ+)
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THE PROBABILISTIC NATURE OF PID
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THE EPIC BARREL IMAGING CALORIMETER
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Optimized for electron-pion separation by combining a high-performance 
sampling calorimeter with inexpensive silicon sensors for shower profiling

▪ Start from mature layered Pb/ScFi 
technology with side-readout (same as 
the GlueX calorimeter) for state-of-the-
art sampling calorimeter performance

▪ Insert layers of monolithic AstroPix 
sensors (inexpensive ultra-low-power 
silicon sensor developed for NASA) in the 
first half of the calorimeter to capture a 3-
D image of the developing shower
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E/Π SEPARATION - EXAMPLE METHOD
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Steps:
1. Optimized cut on E/p from different depth of Pb/ScFi layers at very high electron efficiency
2. AI to leverage 3-D shower evolution “pictures” to optimally classify electrons and pions (our proof-of-concept used CNNs, 

now working to move to GNNs or PointNet-like architectures
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E/Π SEPARATION - EXAMPLE RESULTS
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E/Π SEPARATION - EXAMPLE RESULTS
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Challenging goal: at least 90% 
electron purity everywhere 

However, this means there are 
regions were 10% of our 
“electrons” are really pions! 

Not all of these will be 
problematic (i.e. reconstruct as 
the most likely primary electron), 
but some effects unavoidable.
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TOWARDS AN UNBINNED APPROACH 
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TYPES OF EFFECTS
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What did we measure that we shouldn’t have measured?
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TYPES OF EFFECTS
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What did we miss (or almost miss)?
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SYSTEMATIC UNCERTAINTIES
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DISCUSSION
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