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WHAT ARE WE TRYING TO MEASURE?




SEMI-INCLUSIVE DEEP-INELASTIC SCATTERING

3-D imaging of quarks and

k gluons in momentum space
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Discrete:

Measuring an identified hadron in

coincidence with the scattered electron > BEEIe) Epin @l [PIEIE Sl

« Hadron flavor (1, K, p/n)
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WHAT DO WE NEED TO MEASURE FOR THIS?

Degrees of freedom:

Continuous:
« Electron variables (x, O, ¢): » Electron: x, gz, 1
= Event vertex’ . Hadron z, P, ¢,
= 3-momentum (preferably through a direct measurement) Sl
« Electron spin and proton spin
= Electron identification (are we sure this is an electron?) « Hadron flavor (11, K, p/n)

= Scattered electron selection (are we sure this is the scattered electron?)
= Hadron variables (z, Phl, ¢,,), flavor

= Reconstructed hard scattering (i.e. measured scattered electron)

= Hadron vertex (should be the same as the event vertex)

= 3-momentum

= Positive hadron identification (how sure are we that this is a 1, K, p/n?)
» Beam spin states:

= Polarimetry to determine the polarization percentage
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HOW DO WE DO THIS MEASUREMENT?




Particles: e-, e+, m+, -, K+, K-, p, Y-, u+

CHARGED PARTICLE MOMENTUM AND VERTEX

Tracking detectors in a solenoidal magnetic field

Principle:

| \ » Charged particles curl in the
magnetic field of the detector and
leave hits in the tracking detector

= The radius of the particle trajectory

= \ fully constrains its momentum

Considerations:

» Neutral particles do not leave hits
in the tracking detectors

» Sensitive to material effects
(multiple scattering and radiation in
detector material worsens
resolution)
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ELECTRON-PION SEPARATION

0.015 4

Mostly carried by the electromagnetic calorimeters oo

0.005

0.000

1 T Principle: 0.0 0.5 HE/P 1.0 15
\; = Electrons lose all their energy in
the electromagnetic calorimeters,
while pions only sometimes loose

all their energy.

=0 1 ‘ = Electron showers and pion

showers look different.
Considerations:

= Electron shower tails overlap pion
shower tails: source of irreducible
contamination

= Very high amounts of pion rejection
(103 - 104) needed to achieve
reasonable levels of background
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Particles: y, (110), KO-long, n

NEUTRAL PARTICLE MEASUREMENTS

Combined EM and Hadronic Calorimeters

Principle:

= Neutrals travel in a straight line through the
detector

» Neutrals deposit their energy in the
combined calorimeter system

= Can use known event vertex and calorimeter
information to reconstruct 3-momentum

= Photons (and pi0) fully measured by EM
— calorimeters

Considerations:

= Hadronic calorimeter in some cases only
sees the tail of the energy distribution (e.g.
magnet material in-between)

= Worse position resolution (intrinsic loss of
S I precision in calorimeter showers)

= Difficulty separating particles close to each
other.
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Particles: 1+, T1-, K+, K-, p, (e-, e+, u-, u+) g

CHARGED HADRON PID

Mostly through Cherenkov detectors op T

Momentum (GeV/c)

1000

6 (radian)

500

; Principle:
. \; » Charged particles traveling through a
[ medium at a velocity faster than the
speed of light in this medium emit
Cherenkov radiation in a cone
= The opening angle of this cone is related
to the particle’s velocity

—H E = Combining this velocity with the

momentum from tracking detectors gives
a handle on mass (and hence PID)
Considerations:
= Very sensitive to tracking resolution
= Only sensitive in limited momentum range

= Assigning detected Cherenkov rings to
reconstructed trajectories non-trivial

= Non-zero probability of misidentification
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ePIC Simulation
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THE PROBABILISTIC NATURE OF PID
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THE EPIC BARREL IMAGING CALORIMETER

Optimized for electron-pion separation by combining a high-performance
sampling calorimeter with inexpensive silicon sensors for shower profiling

2 D e =25 2 P
e g b T GG T ] P

B ™ o b

. Insert layers of monolithic AstroPix

technology with side-readout (same as sensors (inexpensive ultra-low-power
silicon sensor developed for NASA) in the

the GlueX calorimeter) for state-of-the- _ (
art sampling calorimeter performance first half of the calorimeter to capture a 3-
D image of the developing shower

= Start from mature layered Pb/ScFi
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E/I1 SEPARATION - EXAMPLE METHOD

Steps:

1. Optimized cut on E/p from different depth of Pb/ScFi layers at very high electron efficiency

2. Al to leverage 3-D shower evolution “pictures” to optimally classify electrons and pions (our proof-of-concept used CNNs,

now working to move to GNNs or PointNet-like architectures
Example for 2 GeV e/t
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E/T1 SEPARATION - EXAMPLE RESULTS

e

PIC Simulation
T T T
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e/1r separation - n, energy and efficiency dependence

Results depend strongly on electron efficiency

[

e For desired 95% efficiency for all n regions we are 2 10° above ~ 1.5
GeV

e Responses at different energies and n have been folded into the purity
studies
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E/T1 SEPARATION - EXAMPLE RESULTS

-12<n<-0.8 -08<n<-0.2 -02<n<+0.2

Challenging goal: at least 90%

electron purity everywhere
x However, this means there are
10I:)/Iomentum [GeV] o 10hellomentum [GeV] o 10I\ollomentum [GeV] o regions Were 10% Of Our
“electrons” are really pions!

n~/e ratio
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+0.2<n<+0.8 +0.8<n<+1.2

Raw Contamination
+EMCal suppression
+Total E—p, cut
+DIRC suppression

10x100 GeV

Not all of these will be
problematic (i.e. reconstruct as
the most likely primary electron),
but some effects unavoidable.

/

Momentum [GeV] Momentum [GeV]
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TOWARDS AN UNBINNED APPROACH




TYPES OF EFFECTS

What did we measure that we shouldn’t have measured?

1. Misidentification: We detected an electron ~__ Give events an associated
but really this was a pion (or anything else) weight?
2. Ambiguity:
a. We detected an electron, but this is not a scattered
electron (e.g. a decay electron from a neutral pion).
b. We detected a scattered electron but it is not from a /
DIS event (e.g. elastically scattered electron)

c. Same as b but it’s really from accelerator
background

Subtract estimated (or
measured) fraction of
events) — negative weights?
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TYPES OF EFFECTS

What did we miss (or almost miss)?

1. Misidentification: We classified our electron as a pion

2 Acceptance: \ Classically: Acceptance
a. Our electron fell in a gap between sensors so we did not see it. H°pefu"¥:orrecti on)f-N eed :)o
there wasn’t anything else that looked like an electron! ensure detector model
3. Smearing: does this properly.
a. Radiative effects, e.g. Our electron radiated a hard photon which
changed its four-momentum. Now it does not look like a scattered

electron anymore
b. Our detector did not reconstruct the correct four-vector for the electron
(e.g. our tracking algorithm gives us a lower momentum by adding some

erroneous detector hits to our track). Classicall foldi
assically: unfolding.
\ Need to ensure detector

model does this properly
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SYSTEMATIC UNCERTAINTIES

Classically: Scale uncertainty

e Uncertainty on the normalization (“luminosity”) _— Eventlevel: 72?7
o  We measure counts/# potential interactions. There is an uncertainty
on the denominator C|assica"y: Change
e Uncertainty due to exact size of background contributions background model and look
o  E.g. How certain are we of the probabilities assigned to our particle at impact on results
identification? Event-level: Same?
e Uncertainty due to changing detector performance over
time —____  Classically: Evaluate key
o  Maybe some detector started to degrade due to radiation? metrics over time. Try to
e Uncertainty due to knowledge of detector limitations. correct (weigh) data, residual
e Uncertainties related to doing corrections on binned data effect becomes uncertainty.

o  E.g. model uncertainty for unfolding, etc.
Uncertainty due to limitations in our detector modeling \

e ... Many more depending on the exact experimental setup! Classically: Fluctuate model

and look at impact on results.

Bottom line: many systematic uncertainties could require Event-level: Same?

us to process the workflow multiple times
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