This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

FROM J/Ψ AT JEFFERSON LAB TO Y AT EIC

New results on threshold J/w production from Hall C and future potential at JLab and the EIC

SYLVESTER JOOSTEN sjoosten@anl.gov

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

NEW RESULTS ON BEHALF OF THE HALL C J/ Ψ -007 COLLABORATION

Proton Mass Workshop INT, June 14, 2022

WHY QUARKONIUM PRODUCTION NEAR THRESHOLD **Gluons are hard to probe**

- Electromagnetic charge and spin of the proton well-studied through electron scattering
- Gluons are harder to directly access, as they do not carry electromagnetic charge
 - Description of mass still in infancy, as most energy (and hence mass) carried by the gluons
 - J/ψ and Y(1S) only couple to gluons, not light quarks
 - Differential cross section of quarkonium near threshold promising channel to directly probe gluons
 - Sufficient data at different photon energies can constrain the GFF slopes and magnitudes in the forward limit (t=0)
 - Access the matter distribution, mass radius, and potentially the trace anomaly of the EMT.

EXCLUSIVE QUARKONIUM PRODUCTION What do we know? 10^{3}

- J/ ψ well constrained for high energies in photoproduction
- Y(1S): not much available
- No significant electroproduction data available
- Almost no data near threshold before JLab 12 GeV

QUARKONIUM AT JEFFERSON LAB AND EIC

Jefferson Lab

CEBAF: very high luminosity (10³⁵-10³⁹ cm⁻²s⁻¹) continuous electron beam on fixed target

4 experimental halls:

- 11GeV in Hall A, B &C
- 12GeV in Hall D

Jefferson Lab is the ideal laboratory to measure J/ψ near threshold, due to luminosity, resolution and energy reach

Electron-ion Collider

EIC: high luminosity (10³³-10³⁴) cm⁻²s⁻¹) polarized electron polarized ion collider

Variable CM energies: 29-140 GeV with 2 possible interactions regions

Reach to J/ψ threshold more difficult, sufficient energy and luminosity to study Y near threshold.

Complementary programs: Jefferson Lab is the ideal laboratory to measure J/ψ near threshold, and EIC has sufficient luminosity to measure Y near threshold

12 GEV J/Ψ EXPERIMENTS AT JEFFERSON LAB

Hall D - GlueX observer the first J/ψ at JLab A. Ali et al., PRL 123, 072001 (2019)

Hall B - CLAS12 has experiments to measure TCS + J/ψ in photoproduction as part of Run Groups A (hydrogen) and B (deuterium): E12-12-001, E12-12-001A, E12-11-003B

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Hall C has the J/ψ -007 experiment (E12-16-007) to search for the LHCb hidden-charm pentaquark

Hall A has experiment E12-12-006 at SoLID to measure J/ψ in electro- and photoproduction, and an LOI to measure double polarization using SBS

J/Y EXPERIMENTS AT JLAB COMPARED

	GlueX HALL D	HMS+SHMS HALL C ²	CLAS 12 with upgrade ¹ HALL B	SoLID HALL A ²
J/ψ counts (photo-prod.)	469 published ~10k phase I + II	2k electron channel 2k muon channel	14k	804k
J/ψ Rate (electro- prod.)	N/A	N/A	1k	21k
Acceptance	4π	<4x10-4	<2π	2π
When?	Finished/Ongoing	Finished	Ongoing/Proposed	~8 years?

¹The CLAS12 projected count rates assume the proposed CLAS12 luminosity upgrade to 2x10³⁵/cm²/s ²Led by Argonne MEP

J/Y NEAR THRESHOLD IN HALL D

- 1D cross section (~469) counts)
- Trends significantly higher than old measurements
- Also released a single 1D tprofile
- Did not see evidence for hidden-charm pentaguarks
- 4x more statistics being analyzed

Z.-E. Meziani, S. Joosten et al., arXiv:1609.00676 [hep-ex] K. Hafidi, S. Joosten et al., Few Body Syst. 58 (2017) no.4, 141

JLAB EXPERIMENT E12-16-007 J/ψ-007: Search for the LHCb Pentaquark

- Ran February 2019 for ~8 PAC days
- High intensity real photon beam (50µA electron beam on a 9% copper radiator)
- 10cm liquid hydrogen target
- Detect J/ψ decay leptons in coincidence
 - Bremsstrahlung photon energy fully constrained

CLEAR J/W SIGNAL WITH MINIMAL BACKGROUND

settings	HMS	SHMS	target	charge [C]	goal
setting 1	$19.1^{o} \text{ at } +4.95 \text{GeV}$	17.0° at -4.835GeV	LH2 with radiator	5.2	low-t and high energy
			dummy with radiator	0.6	target wall
			LH2, no radiator	0.1	electroproduction
setting 2	$19.9^{o} \text{ at } +4.6 \text{GeV}$	20.1° at -4.3GeV	LH2 with radiator	8.2	low- t and low energy
			dummy with radiator	0.3	target wall
setting 3	$16.4^{o} \text{ at } +4.08 \text{GeV}$	30.0° at -3.5GeV	LH2 with radiator	13.8	high-t
setting 4	$16.5^{o} \text{ at } +4.4 \text{GeV}$	24.5° at -4.4 GeV	LH2 with radiator	6.9	medium-t
			dummy with radiator	0.2	target wall

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

B. Duran, S. Joosten, Z.-E. Meziani, final results

4% scale uncertainty on cross section limit

RESULTS ON THE PENTAQUARK RESONANCES

Cross-section at the resonance peak for model-independent upper limits

Upper limit for P_c cross section almost order of magnitude below GlueX limit.

Results are inconsistent with reasonable assumptions for true 5-quark states.

Door is still open for molecular states, but will be very hard to measure in photoproduction due to small overlap with both γp initial state and J/ ψp final state.

To learn more we need a large-acceptance high-intensity photoproduction experiment, and potentially access to polarization observables. This can be achieved with the future SoLID-J/ψ experiment at Jefferson Lab

PHASE SPACE COVERAGE **Unprecedented access to** large-t region

- Truly 2D measurement
- ~2000 counts in electron channel
- Additional 2000 counts in muon channel still under analysis

 $|t-t_{min}|$ (GeV²)

Results currently under peer-review PRELIMINARY 2D J/W CROSS SECTION RESULTS

EXTRACTING GFFS FROM THE 2D PROFILES First ever extraction of gluonic GFFs from purely experimental data!

- literature
 - 2204.08857 (2022)
 - GPD+VMD approach: Y. Guo, X. Ji, Y. Liu, PRD 103, 096010 (2021)
 - In both cases assume $B_g(t)$ contributes little (supported by lattice)
- Use tripole form for $A_g(t)$ and $C_g(t)$ (differences with dipole negligible)
- Use $A_g(0) = \langle x_g \rangle$ from the CT18 global fit, fit remaining 3 parameters $(m_A, C_{\varrho}(0), m_C)$ to 2D cross section results.

- Model dependent extractions using the available approaches in the
 - Holographic QCD approach: K. Mamo & I. Zahed, PRD 103, 094010 (2021) and

GLUONIC GFF RESULTS Good agreement between Holographic QCD and Lattice results!

- Results from the 2D gluonic GFF fits
- Gluonic $A_g(t)$ and $D_g(t) = 4C_g(t)$ form factors
- χ^2 /n.d.f. in both cases very close to 1
- M-Z (holographic QCD) approach fit to only experimental data gives results very close to the latest lattice results of the same quantities!

M-Z: K. Mamo & I. Zahed, PRD 103, 094010 (2021) and 2204.08857 (2022) G-J-L: Y. Guo, X. Ji, Y. Liu, PRD 103, 096010 (2021) Lattice: D. Pefkou, D, Hackett, P. Shanahan, Phys. Rev. D 105, 054509 (2022).

MASS AND SCALAR RADII Extracted from gluonic GFF results following M-Z and G-J-L

$\left\langle r_m^2 \right\rangle = \frac{6}{A_g(0)}$	$\frac{dA_g(t)}{dt}$	$\int_{t=0}^{t=0} \frac{1}{A_{\xi}}$	6 $C_g(0)$ M_N^2	$\left\langle r_s^2 \right\rangle =$	$= \frac{6}{A_g(0)} \frac{d}{d}$	$\frac{A_g(t)}{dt}\Big _{t=0}$	$-\frac{18}{A_g(0)}\frac{C_g(0)}{M_N^2}$
Theoretical approach GFF functional form	χ²/n.d.f	m_A (GeV ²)	m_C (GeV ²)	$C_g(0)$	$\sqrt{\langle r_m^2 \rangle}$ (fm)	$\sqrt{\langle r_s^2 \rangle}$ (fm)	
Holographic QCD Tripole-tripole	0.925	1.575±0.059	1.12±0.21	-0.45±0.132	0.755±0.035	1.069 ± 0.056	
GPD + VMD Tripole-tripole	0.924	2.71±0.19	1.28 ± 0.50	-0.20 ± 0.11	0.472±0.042	0.695±0.071	·
Lattice Tripole-tripole	1	1.641 ± 0.043	1.07 ± 0.12	-0.483± 0.133	0.7464±0.025	1.073±0.066	·

$\left\langle r_m^2 \right\rangle = \frac{6}{A_g(0)}$	$\frac{dA_g(t)}{dt}$	$\int_{t=0}^{t=0} \overline{A_{\xi}}$	6 $C_g(0)$ M_N^2	$\left\langle r_s^2 \right\rangle =$	$= \frac{6}{A_g(0)} \frac{d}{d}$	$\frac{A_g(t)}{dt}\Big _{t=0}$	$-\frac{18}{A_g(0)}\frac{C_g(0)}{M_N^2}$
Theoretical approach GFF functional form	χ ² /n.d.f	m_A (GeV ²)	m_C (GeV ²)	<i>C</i> _g (0)	$\sqrt{\langle r_m^2 \rangle}$ (fm)	$\sqrt{\langle r_s^2 \rangle}$ (fm)	
Holographic QCD Tripole-tripole	0.925	1.575 ± 0.059	1.12 ± 0.21	-0.45±0.132	0.755 ± 0.035	1.069 ± 0.056	
GPD + VMD Tripole-tripole	0.924	2.71±0.19	1.28 ± 0.50	-0.20 ± 0.11	0.472±0.042	0.695±0.071	
Lattice Tripole-tripole	1	1.641 ± 0.043	1.07 ± 0.12	-0.483± 0.133	0.7464±0.025	1.073±0.066	

In all cases the extracted r_m is substantially smaller than the proton charge radius

VARIOUS MODEL-DEPENDENT EXTRACTIONS Radius (following DK), and Ma/M (following Ji), for each energy slice

HALL C J/ Ψ -007 RESULTS IN A NUTSHELL

- The Hall C J/ ψ -007 experiment has the first nearthreshold 2D J/ ψ cross section results in this area, currently under peer review.
 - Stringent exclusion limit for the LHCb charmed pentaguarks in photoproduction
 - New window on the gluonic GFFs in the proton
 - Does the proton have a dense energetic core?

FUTURE SOLID EXPERIMENT AT JLAB Ultimate experiment for near-threshold J/ ψ production

- General purpose large-acceptance spectrometer
- 50 days of 3µA beam on a 15cm long LH2 target (10³⁷/cm²/s)
- Ultra-high luminosity: 43.2ab⁻¹
- 4 channels:
- **Electroproduction** (e,e-e+)
- **Photoproduction** (p,e-e+)
- Inclusive (e-e+)
- **Exclusive** (ep,e-e+)

$$p^2$$

EXPERIMENTAL CONSIDERATIONS WITH SOLID Kinematic coverage for SoLID-J/ψ

Photoproduction

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Electroproduction

FUTURE SOLID EXPERIMENT AT JLAB **Precision measurement of quarkonium near threshold**

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

PROJECTED IMPACT FOR SOLID-J/ Radius following the DK approach D, Kharzeev, Phys. Rev. D 104, 054015 (2021)

Dipole Form $A(k) = \frac{A(0)}{(1-\frac{t}{s})^2}$

High sensitivity over the full photon energy range

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

PROJECTED IMPACT FOR SOLID-J/ Ma/M following Ji's approach X. Ji, Phys. Rev. Lett. 74, 1071–1074 (1995)

High sensitivity over the full photon energy range

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

GlueX extraction from R. Wang, J. Evslin and X. Chen, Eur. Phys. J. C 80, no.6, 507 (2020)

HOW ABOUT W' PRODUCTION AT JLAB? What can we do with a larger color dipole?

 ψ a larger color dipole: expect stronger gluonic interactions

Complementary probe: provides an extra handle (color dipole) size) to probe the gluonic field in the proton

Better constrain on model dependencies and factorization assumptions from Jefferson Lab alone (do not need to wait for Y at EIC)

Only really possible at Solid as ultra-high luminosity is required, also requires higher beam energy.

 $I^{G}(J^{PC}) = 0^{-}(1^{--})$

See the Review on " $\psi(2S)$ and χ_c branching ratios" before the $\chi_{c0}(1P)$ Listings.

$\psi(2S)$ MASS

OUR FIT includes measurements of $m_{\psi(2S)}$, $m_{\psi(3770)}$, $m_{\psi(3770)} - m_{\psi(2S)}$

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMME
3686.09 \pm 0.04 OUR FIT	Error	includes scale factor of 1.6		
3686.093±0.034 OUR AVEF	RAGE	Error includes scale factor	of 1.4.	See the
$3686.111 \pm 0.025 \pm 0.009$		AULCHENKO 03	KEDR	e^+e^-
3685.95 ± 0.10	413	¹ ARTAMONOV 00	OLYA	e^+e^-
$3685.98 \pm 0.09 \pm 0.04$		² ARMSTRONG 93B	E760	$\overline{p}p \rightarrow$
• • We do not use the fol	lowing	data for averages, fits, limi	ts, etc.	• • •
3686.00 ± 0.10	413	³ ZHOLENTZ 80	OLYA	e^+e^-

Ψ' PHYSICS AT JLAB? Designing a ψ ' experiment

 $\psi(2s)$ mass is 3686.097 ± 0.025 MeV, with photoproduction threshold at about 11 GeV

Experimentally:

- Easiest decay channel is e^+e^- (BR: $0.793 \pm 0.017 \%$)
- Plenty resolution (<50 MeV) at SoLID to distinguish J/ ψ and ψ (2s)
- Contamination of higher ψ states strongly suppressed in this channel
- Other promising channel (J/ ψ , $\pi\pi$, BR: 34.67 ± 0.30 %) requires more study (4- particle final state after J/ψ decay)

Conclusion: ψ physics possible at JLab with even modest beam energy increase, assuming sufficient cross section

Ψ' CROSS SECTION? **Extrapolating down to threshold**

Experimentally, at higher energies $\psi(2s)/\psi(1s)$ is about 0.16 (from HERA and LHC)

Ansatz (as we really don't know): use n-gluon formalism, assume same ratio between 2- and 3-gluon amplitudes as for J/ψ production

In practice: fix ratio of 2- and 3-gluon amplitudes to n-gluon fit to GlueX data, then fit to higher energy J/ ψ data scaled down by 0.16

End result: factor of about 47 reduction in rate for (

Hence, measurement requires very high luminosity. Could also be approached by exploring other decay channels

$$\gamma p \to \psi(2s)p \to pe^+e^-$$
).

Triple-coincidence phase space for ψ ' production at SoLID assuming 50 days at 10³⁷/cm²s **Ψ' PRODUCTION WITH SOLID AT HIGHER ENERGIES 17 GeV optimum with current SoLID-J/ψ setup**

Photoproduction

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Electroproduction

PHYSICS REACH WITH DIFFERENT BEAM ENERGIES

2D CROSS SECTION POTENTIAL $\psi(2S)$ production with a 17 GeV incident Electron beam

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Y(1S): AN IDEAL GLUONIC PROBE? **Threshold measurement possible at EIC**

- Y(1S) only couples to glue in proton, threshold production ideal probe to probe quantum anomalous energy in proton.
- Can use both quasi-real production and electroproduction at larger Q²
- Can go to near-threshold region
 - **Y(1s)** production possible at threshold!
 - Are there a "beautiful" pentaguarks?
 - Sensitivity down to ~10⁻³ nb!

Strong complementarity between threshold J/ ψ program at JLab 12 with threshold Y production at EIC

REALISTIC PHYSICS REACH OF AN EIC DETECTOR Ma/M following Ji's approach X. Ji, Phys. Rev. Lett. 74, 1071–1074 (1995)

This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

CONCLUSION

- The matter structure of the proton and threshold quarkonium production are rapidly evolving topics that reach from Jefferson Lab to the EIC.
- The Hall C J/ ψ -007 experiment has the first near-threshold 2D J/ ψ **cross section results** in this area, currently under peer review.
 - Stringent exclusion limit for the LHCb charmed pentaguarks in photoproduction
 - New window on the gluonic GFFs in the proton.
 - Does the proton have a dense energetic core?
- More results expected from GlueX and CLAS12 (short term-medium) term), SoLID (longer term). Program could further benefit from a CEBAF beam energy upgrade (higher rates, greater Q2 reach for SoLID, access to ψ').
- Y at EIC is perfectly complementary to Jefferson Lab program. Year-1 measurement comparable to the first GlueX J/ ψ results is realistic

With thanks to the J/ ψ -007 Collaboration

...and many others!

B. Duran^{3,1}, Z.-E. Meziani^{1,3**}, S. Joosten¹, M. K. Jones², S. Prasad¹, C. Peng¹, W. Armstrong¹, H. Atac³, E. Chudakov², H. Bhatt⁵, D. Bhetuwal⁵, M. Boer¹¹, A. Camsonne², J.-P. Chen², M. Dalton², N. Deokar³, M. Diefenthaler², J. Dunne⁵, L. El Fassi⁵, E. Fuchey⁹, H. Gao⁴, D. Gaskell², O. Hansen², F. Hauenstein⁶, D. Higinbotham², S. Jia³, A. Karki⁵, C. Keppel², P. King⁶, H.S. Ko¹⁰, X. Li⁴, R. Li³, D. Mack², S. Malace², M. McCaughan², R. E. McClellan⁸, R. Michaels², D. Meekins², L. Pentchev², E. Pooser², A. Puckett⁹, R. Radloff⁵, M. Rehfuss³, P. E. Reimer¹, S. Riordan¹, B. Sawatzky², A. Smith⁴, N. Sparveris³, H. Szumila-Vance², S. Wood², J. Xie¹, Z. Ye¹, C. Yero⁶, and Z. Zhao⁴

QUESTIONS?

EXCLUSIVE QUARKONIUM PRODUCTION The basics

- Forward direction preferred: t-dependence ~exponential

