Ab initio calculations of muon capture in light nuclei, and connections to neutrinoless double-beta decay matrix elements

Lotta Jokiniemi TRIUMF, Theory Department INT Program 24-1 11/03/2024

Introduction to double-beta decay

Corrections to $0\nu\beta\beta$ -decay nuclear matrix elements

Muon capture as a probe of $0\nu\beta\beta$ decay

Summary and Outlook

Outline

Introduction to double-beta decay

Corrections to 0
uetaeta-decay nuclear matrix elements

Muon capture as a probe of $0
u\beta\beta$ decay

Summary and Outlook

Double-Beta Decay

$$\beta^{-}: n \to p + e^{-} + \bar{\nu}_{e}$$
$$\beta^{-}\beta^{-}: 2n \to 2p + 2e^{-}(+2\bar{\nu}_{e})$$

May happen, when β-decay is not allowed / suppressed

Double-Beta Decay

$$\beta^{-}: n \to p + e^{-} + \bar{\nu}_{e}$$
$$\beta^{-}\beta^{-}: 2n \to 2p + 2e^{-}(+2\bar{\nu}_{e})$$

- May happen, when β-decay is not allowed / suppressed
- Two modes:

Double-Beta Decay

$$\beta^{-}: n \to p + e^{-} + \bar{\nu}_{e}$$
$$\beta^{-}\beta^{-}: 2n \to 2p + 2e^{-}(+2\bar{\nu}_{e})$$

- May happen, when β-decay is not allowed / suppressed
- Two modes:
 - Standard two-neutrino ββ decay (2νββ)

Double-Beta Decay

$$\beta^{-}: n \to p + e^{-} + \bar{\nu}_{e}$$
$$\beta^{-}\beta^{-}: 2n \to 2p + 2e^{-}(+2\bar{\nu}_{e})$$

- May happen, when β-decay is not allowed / suppressed
- Two modes:
 - Standard two-neutrino ββ decay (2νββ)
 - Hypothetical neutrinoless ββ (0νββ) decay

Neutrinoless double-beta decay via light neutrino exhange

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |\boldsymbol{M}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

• Violates lepton-number conservation

SCO

Neutrinoless double-beta decay via light neutrino exhange

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\mathrm{A}}^4 G^{0\nu} |\boldsymbol{M}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles

Neutrinoless double-beta decay via light neutrino exhange

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\mathrm{A}}^4 G^{0\nu} |\boldsymbol{M}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles
- Runs virtually through all J^π states in the intermediate nucleus

Neutrinoless double-beta decay via light neutrino exhange

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\mathrm{A}}^4 G^{0\nu} |\boldsymbol{M}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles
- Runs virtually through all J^π states in the intermediate nucleus
- Momentum transfer $q \sim 100 \text{ MeV}$

Neutrinoless double-beta decay via light neutrino exhange

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |\mathbf{M}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles
- Runs virtually through all J^π states in the intermediate nucleus
- Momentum transfer $q \sim 100 \text{ MeV}$

Half-life of $0\nu\beta\beta$ Decay

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

6/39

Half-life of $0\nu\beta\beta$ Decay

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2 \qquad \text{New physics} \\ m_{\beta\beta} = \sum_k (U_{ek})^2 m_k$$

Half-life of $0\nu\beta\beta$ Decay

Half-life of $0\nu\beta\beta$ Decay

• Axial-vector coupling ($g_A^{free} \approx 1.27$)

Half-life of $0\nu\beta\beta$ Decay

What would be measured $\boxed{\frac{1}{t_{1/2}^{0\nu}}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2 \qquad \text{New physics} \\ m_{\beta\beta} = \sum_k (U_{ek})^2 m_k$

- Axial-vector coupling ($g_A^{\rm free} \approx 1.27$)
 - Quenched or not?

Half-life of $0\nu\beta\beta$ Decay

What would be measured $\boxed{\frac{1}{t_{1/2}^{0\nu}}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2 \qquad \text{New physics} \\ m_{\beta\beta} = \sum_k (U_{ek})^2 m_k$

- Axial-vector coupling ($g_A^{\rm free} \approx 1.27$)
 - Quenched or not?
- Phase-space factor (physics of the emitted electrons)

Half-life of $0\nu\beta\beta$ Decay

What would be measured $g_A^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$ New physics $m_{\beta\beta} = \sum_k (U_{ek})^2 m_k$

- Axial-vector coupling ($g_A^{\rm free} \approx 1.27$)
 - Quenched or not?
- Phase-space factor (physics of the emitted electrons)
 - The most accurately known theory input

Half-life of $0\nu\beta\beta$ Decay

New physics $m_{\beta\beta} = \sum_{k} (U_{ek})^2 m_k$

What would be measured $\begin{array}{c} 1 \\ t_{1/2}^{0\nu} \end{array} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e} \right)$

- Axial-vector coupling ($g_{\rm A}^{\rm free} \approx 1.27$)
 - Quenched or not?
- Phase-space factor (physics of the emitted electrons)
 - The most accurately known theory input
- Nuclear matrix element (NME)

Half-life of $0\nu\beta\beta$ Decay

What would be measured

- Axial-vector coupling ($g_{\rm A}^{\rm free} \approx 1.27$)
 - Quenched or not?
- Phase-space factor (physics of the emitted electrons)
 - The most accurately known theory input
- Nuclear matrix element (NME)
 - Has to be provided from nuclear theory

Half-life of $0\nu\beta\beta$ Decay

What would be measured t_1^0

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2 \qquad \text{New physics} \\ m_{\beta\beta} = \sum_k (U_{ek})^2 m_k$$

- Axial-vector coupling ($g_{\rm A}^{\rm free} pprox 1.27$)
 - Quenched or not?
- Phase-space factor (physics of the emitted electrons)
 - The most accurately known theory input
- Nuclear matrix element (NME)
 - Has to be provided from nuclear theory
 - Currently the biggest uncertainty!

Half-life of $0\nu\beta\beta$ Decay

What would be measured

- Axial-vector coupling ($g_{\rm A}^{\rm free} \approx 1.27$)
 - Quenched or not?
- Phase-space factor (physics of the emitted electrons)
 - The most accurately known theory input
- Nuclear matrix element (NME)
 - Has to be provided from nuclear theory
 - Currently the biggest uncertainty!

Current reach of the experiments

M. Agostini et al., Rev. Mod. Phys. 95, 025002 (2023)

Next generation experiments

∂ TRIUMF

M. Agostini et al., Rev. Mod. Phys. 95, 025002 (2023)

Nuclear Many-body Methods

• Ab initio methods (IMSRG, NCSM,...)

- Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons

- Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
 - VERY complex problem \rightarrow computational limitations

- Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
 - VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)

- Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
 - VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
 - Solves the SE in valence space

- Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
 - VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
 - Solves the SE in valence space
 - $+ \,$ Less complex \rightarrow wider reach

- Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
 - VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
 - Solves the SE in valence space
 - $+ \ \text{Less complex} \rightarrow \text{wider reach}$
 - Effective Hamiltonian relies on experimental data

- Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
 - VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
 - Solves the SE in valence space
 - +~ Less complex \rightarrow wider reach
 - Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)

- Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
 - VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
 - Solves the SE in valence space
 - $+ \ \text{Less complex} \rightarrow \text{wider reach}$
 - Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
 - Describes nuclei as two-quasiparticle excitations

- Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
 - VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
 - Solves the SE in valence space
 - $+ \ \text{Less complex} \rightarrow \text{wider reach}$
 - Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
 - Describes nuclei as two-quasiparticle excitations
 - + Large model spaces, wide reach

- Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
 - VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
 - Solves the SE in valence space
 - $+ \ \text{Less complex} \rightarrow \text{wider reach}$
 - Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
 - Describes nuclei as two-quasiparticle excitations
 - + Large model spaces, wide reach
 - Missing correlations, adjustable parameters,...

Nuclear Many-body Methods

- Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
 - VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
 - Solves the SE in valence space
 - $+ \ \text{Less complex} \rightarrow \text{wider reach}$
 - Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
 - Describes nuclei as two-quasiparticle excitations
 - + Large model spaces, wide reach
 - Missing correlations, adjustable parameters,...

Outline

Introduction to double-beta decay

Corrections to $0\nu\beta\beta$ -decay nuclear matrix elements

Muon capture as a probe of $0
u\beta\beta$ decay

Summary and Outlook

$$\boxed{\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2}$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + \boldsymbol{M}_{\rm S}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + \boldsymbol{M}_{\rm S}^{0\nu} + \boldsymbol{M}_{\rm usoft}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm usoft}^{0\nu} + M_{\rm N^2LO}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

11/39

Traditional $0\nu\beta\beta$ -decay operators

Traditional $0\nu\beta\beta$ -decay operators

Traditional $0\nu\beta\beta$ -decay operators

$$\mathcal{J}^{0} = \tau[g_{\mathrm{V}}(0)]$$
$$\boldsymbol{J} = \tau[g_{\mathrm{A}}(0)\boldsymbol{\sigma} - g_{\mathrm{P}}(0)\boldsymbol{p}(\boldsymbol{p}\cdot\boldsymbol{\sigma})]$$

Traditional $0\nu\beta\beta$ -decay operators

$$\mathcal{J}^{0} = \tau[g_{\mathrm{V}}(0)]$$

$$\mathbf{J} = \tau[g_{\mathrm{A}}(0)\boldsymbol{\sigma} - g_{\mathrm{P}}(0)\boldsymbol{p}(\boldsymbol{p} \cdot \boldsymbol{\sigma})]$$
LO

Traditional $0\nu\beta\beta$ -decay operators

• Traditionally, the nuclear current includes the leading-order (LO) transition operators

$$\mathcal{J}^{0} = \tau[g_{\mathrm{V}}(0)]$$

$$\mathbf{J} = \tau[g_{\mathrm{A}}(0)\boldsymbol{\sigma} - g_{\mathrm{P}}(0)\boldsymbol{p}(\boldsymbol{p}\cdot\boldsymbol{\sigma})]$$
LO

 and next-to-next-to-leading-order (N²LO) corrections absorbed into form factors and induced weak-magnetism terms

Traditional $0\nu\beta\beta$ -decay operators

• Traditionally, the nuclear current includes the leading-order (LO) transition operators

$$\mathcal{J}^{0} = \tau[g_{\mathrm{V}}(0)]$$

$$\mathbf{J} = \tau[g_{\mathrm{A}}(0)\boldsymbol{\sigma} - g_{\mathrm{P}}(0)\boldsymbol{p}(\boldsymbol{p}\cdot\boldsymbol{\sigma})]$$
LO

 and next-to-next-to-leading-order (N²LO) corrections absorbed into form factors and induced weak-magnetism terms

Traditional $0\nu\beta\beta$ -decay operators

• Traditionally, the nuclear current includes the leading-order (LO) transition operators

$$\mathcal{J}^{0} = \tau[g_{\mathrm{V}}(0)]$$

$$\mathbf{J} = \tau[g_{\mathrm{A}}(0)\boldsymbol{\sigma} - g_{\mathrm{P}}(0)\boldsymbol{p}(\boldsymbol{p}\cdot\boldsymbol{\sigma})]$$
LO

 and next-to-next-to-leading-order (N²LO) corrections absorbed into form factors and induced weak-magnetism terms

$$egin{split} \mathcal{J}^0 &= au[oldsymbol{g_V}(oldsymbol{p}^2)] \ oldsymbol{J} &= au\left[oldsymbol{g_A}(oldsymbol{p}^2)oldsymbol{\sigma} - oldsymbol{g_P}(oldsymbol{p}^2)oldsymbol{p}(oldsymbol{p}\cdotoldsymbol{\sigma}) + ig_{\mathrm{M}}(oldsymbol{p}^2)rac{\sigma imes p}{2m_{\mathrm{N}}}
ight] \end{split}$$

Traditional $0\nu\beta\beta$ -decay operators

• Traditionally, the nuclear current includes the leading-order (LO) transition operators

$$\mathcal{J}^{0} = \tau[g_{\mathrm{V}}(0)]$$

$$\mathbf{J} = \tau[g_{\mathrm{A}}(0)\boldsymbol{\sigma} - g_{\mathrm{P}}(0)\boldsymbol{p}(\boldsymbol{p}\cdot\boldsymbol{\sigma})]$$
LO

 and next-to-next-to-leading-order (N²LO) corrections absorbed into form factors and induced weak-magnetism terms

$$egin{split} \mathcal{J}^0 &= au[oldsymbol{g}_{\mathbf{V}}(oldsymbol{p}^2)] \ oldsymbol{J} &= au\left[oldsymbol{g}_{\mathbf{A}}(oldsymbol{p}^2)oldsymbol{\sigma} - oldsymbol{g}_{\mathbf{P}}(oldsymbol{p}^2)oldsymbol{p}(oldsymbol{p}\cdotoldsymbol{\sigma}) + i oldsymbol{g}_{\mathbf{M}}(oldsymbol{p}^2)rac{oldsymbol{\sigma} imesoldsymbol{p}}{2m_{\mathbf{N}}}
ight] \end{split}$$

No Solo

Traditional nuclear matrix elements of neutrinoless double-beta decay

$$M^{0\nu} = \frac{R}{g_{\rm A}^2} \int \frac{\mathrm{d}\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{E_{\nu} + E_{n} - \frac{1}{2}(E_{i} + E_{f}) - \frac{1}{2}(E_{1} - E_{2})}$$

• Energy of the virtual neutrino typically $E_{\nu} = \sqrt{m_{\nu}^2 + {
m k}^2} \sim |{
m k}| \sim k_{
m F} \sim 100$ MeV ("soft neutrinos")

Traditional nuclear matrix elements of neutrinoless double-beta decay

$$M^{0\nu} = \frac{R}{g_{\rm A}^2} \int \frac{\mathrm{d}\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{E_{\nu} + E_{n} - \frac{1}{2}(E_{i} + E_{f}) - \frac{1}{2}(E_{1} - E_{2})}$$

- Energy of the virtual neutrino typically $E_{\nu} = \sqrt{m_{\nu}^2 + \mathbf{k}^2} \sim |\mathbf{k}| \sim k_{\mathrm{F}} \sim 100 \text{ MeV}$ ("soft neutrinos")
- Electrons carry away roughly the same amount of energy: $E_1 E_2 \sim 0~{
 m MeV}$

Traditional nuclear matrix elements of neutrinoless double-beta decay

$$M^{0\nu} = \frac{R}{g_{\rm A}^2} \int \frac{\mathrm{d}\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{E_{\nu} + E_{n} - \frac{1}{2}(E_{i} + E_{f}) - \frac{1}{2}(E_{1} - E_{2})}$$

- Energy of the virtual neutrino typically $E_{\nu} = \sqrt{m_{\nu}^2 + k^2} \sim |\mathbf{k}| \sim k_{\mathrm{F}} \sim 100 \text{ MeV}$ ("soft neutrinos")
- Electrons carry away roughly the same amount of energy: $E_1 E_2 \sim 0~{
 m MeV}$

$$\rightarrow \boxed{M^{0\nu} = \frac{R}{g_{\rm A}^2} \int \frac{\mathrm{d}\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}}{|\mathbf{k}|} \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x}) |n\rangle \langle n| J^{\mu}(\mathbf{y}) |i\rangle}{|\mathbf{k}| + E_n - \frac{1}{2}(E_i + E_f)}}$$

Closure approximation

Without closure approximation:

$$M^{0\nu} \propto \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_n - \frac{1}{2}(E_i + E_f)}$$

Closure approximation

Without closure approximation:

$$M^{0\nu} \propto \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_{n} - \frac{1}{2}(E_{i} + E_{f})}$$

• Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies

Closure approximation

Without closure approximation:

$$M^{0\nu} \propto \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_{n} - \frac{1}{2}(E_{i} + E_{f})}$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies
 - Typically used in pnQRPA

Closure approximation

Without closure approximation:

$$M^{0\nu} \propto \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_{n} - \frac{1}{2}(E_{i} + E_{f})}$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies
 - Typically used in pnQRPA

With closure approximation:

• Assuming that $|\mathbf{k}| >> E_n - \frac{1}{2}(E_i + E_f)$: $E_n - \frac{1}{2}(E_i + E_f) \rightarrow \langle E \rangle$

Closure approximation

Without closure approximation:

$$M^{0\nu} \propto \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_{n} - \frac{1}{2}(E_{i} + E_{f})}$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies
 - Typically used in pnQRPA

- Assuming that $|\mathbf{k}| >> E_n \frac{1}{2}(E_i + E_f)$: $E_n - \frac{1}{2}(E_i + E_f) \rightarrow \langle E \rangle$
- Use the relation $\sum_n \ket{n} ra{n} = 1$

Closure approximation

Without closure approximation:

$$M^{0\nu} \propto \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_{n} - \frac{1}{2}(E_{i} + E_{f})}$$

• Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies

Typically used in pnQRPA

- Assuming that $|\mathbf{k}| >> E_n \frac{1}{2}(E_i + E_f)$: $E_n - \frac{1}{2}(E_i + E_f) \rightarrow \langle E \rangle$
- Use the relation $\sum_n \ket{n} ra{n} = 1$

$$\rightarrow M^{0\nu} \propto \frac{\langle f | J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + \langle E \rangle}$$

Closure approximation

Without closure approximation:

$$M^{0\nu} \propto \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_{n} - \frac{1}{2}(E_{i} + E_{f})}$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies
 - Typically used in pnQRPA

With closure approximation:

- Assuming that $|\mathbf{k}| >> E_n \frac{1}{2}(E_i + E_f)$: $E_n - \frac{1}{2}(E_i + E_f) \rightarrow \langle E \rangle$
- ullet Use the relation $\sum_n \ket{n} ra{n} = 1$

$$\rightarrow M^{0\nu} \propto \frac{\langle f | J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + \langle E \rangle}$$

 Typically used with other nuclear methods

Leading-order short-range contribution to $0\nu\beta\beta$ decay

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm usoft}^{0\nu} + M_{\rm N^2LO}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

Leading-order short-range contribution to $0\nu\beta\beta$ decay

$$\boxed{\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm usoft}^{0\nu} + M_{\rm N^2LO}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2}$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Per. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

15/39

Contact Term in pnQRPA and NSM

$$M_{\rm S}^{0\nu} = \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \mathbf{h}_{\rm S}(q^2) \, q^2 \mathrm{d}q | 0_i^+ \rangle$$

with

$$h_{\rm S}(q^2) = 2 {f g}_{
u}^{
m NN} \, e^{-q^2/(2\Lambda^2)}$$

.

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

Contact Term in pnQRPA and NSM

$$M_{\rm S}^{0\nu} = \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) h_{\rm S}(q^2) q^2 dq | 0_i^+ \rangle$$

Not known
with
$$h_{\rm S}(q^2) = 2 g_{\nu}^{\rm NN} e^{-q^2/(2\Lambda^2)} .$$

Discovery, accelerated

16/39

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

Contact Term in pnQRPA and NSM

$$\begin{split} M_{\rm S}^{0\nu} &= \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \boldsymbol{h_{\rm S}}(\boldsymbol{q^2}) \, q^2 \mathrm{d}q | 0_i^+ \rangle \\ & \\ \text{Not known} \\ \text{with} \\ h_{\rm S}(\boldsymbol{q}^2) &= \underbrace{2 \mathbf{g}_{\nu}^{\rm NN}}_{\nu}^{-q^2/(2\Lambda^2)} \, . \end{split}$$

• Fix to lepton-number-violating data

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

Contact Term in pnQRPA and NSM

$$\begin{split} M_{\rm S}^{0\nu} &= \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \boldsymbol{h_{\rm S}}(\boldsymbol{q^2}) \, q^2 \mathrm{d}q | 0_i^+ \rangle \\ & \\ \text{Not known} \\ \text{with} \\ h_{\rm S}(\boldsymbol{q^2}) &= \underbrace{2 \mathbf{g}_{\nu}^{\rm NN}}^{-q^2/(2\Lambda^2)} \, . \end{split}$$

• Fix to lepton-number-violating data

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

Contact Term in pnQRPA and NSM

$$\begin{split} M_{\rm S}^{0\nu} &= \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \boldsymbol{h_{\rm S}}(\boldsymbol{q^2}) \, q^2 \mathrm{d}q | 0_i^+ \rangle \\ & \\ \text{Not known} \\ \text{with} \\ h_{\rm S}(\boldsymbol{q^2}) = \underbrace{2 \mathbf{g}_{\nu}^{\rm NN}}^{-q^2/(2\Lambda^2)} \, . \end{split}$$

- Fix to lepton-number-violating data
- Fix to synthetic few-body data

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

Contact Term in pnQRPA and NSM

$$\begin{split} M_{\rm S}^{0\nu} &= \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \boldsymbol{h_{\rm S}}(\boldsymbol{q^2}) \, q^2 \mathrm{d}q | 0_i^+ \rangle \\ & \\ \text{Not known} \\ \text{with} \\ h_{\rm S}(\boldsymbol{q^2}) = \underbrace{2 \mathbf{g}_{\nu}^{\rm NN}}^{-q^2/(2\Lambda^2)} \, . \end{split}$$

- Fix to lepton-number-violating data
- Fix to synthetic few-body data

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

Contact Term in pnQRPA and NSM

$$M_{\rm S}^{0\nu} = \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \mathbf{h}_{\rm S}(q^2) q^2 dq | 0_i^+ \rangle$$
Not known
with
$$h_{\rm S}(q^2) = 2 g_{\nu}^{\rm NN} e^{-q^2/(2\Lambda^2)} .$$

- Fix to lepton-number-violating data
- Fix to synthetic few-body data
- Estimate by Charge-Independence-Breaking (CIB) term: $g_{\nu}^{\rm NN} \approx \frac{1}{2}(\mathcal{C}_1 + \mathcal{C}_2)$

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

Contact Term in pnQRPA and NSM

$$\begin{split} M_{\rm S}^{0\nu} &= \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) h_{\rm S}(q^2) \, q^2 \mathrm{d}q | 0_i^+ \rangle \\ & \\ \text{Not known} \\ \text{with} \\ h_{\rm S}(q^2) = \underbrace{2 g_{\nu}^{\rm NN}}_{\nu} e^{-q^2/(2\Lambda^2)} \, . \end{split}$$

- Fix to lepton-number-violating data
- Fix to synthetic few-body data
- Estimate by Charge-Independence-Breaking (CIB) term: $g_{\nu}^{\rm NN} \approx \frac{1}{2}(\mathcal{C}_1 + \mathcal{C}_2)$

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

Contact Term in pnQRPA and NSM

$$\begin{split} M_{\rm S}^{0\nu} &= \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) h_{\rm S}(q^2) \, q^2 {\rm d}q | 0_i^+ \rangle \\ & {\rm Not \ known} \\ \text{with} \\ h_{\rm S}(q^2) &= \underbrace{2 g_{\nu}^{\rm NN}}_{\nu}^{-q^2/(2\Lambda^2)} \, . \\ & \bullet \ {\rm Fix \ to \ lepton-number-violating \ data} \\ & \bullet \ {\rm Fix \ to \ synthetic \ few-body \ data} \end{split}$$

• Estimate by Charge-Independence-Breaking (CIB) term: $g_{\nu}^{\rm NN} \approx \frac{1}{2}(\mathcal{C}_1 + \mathcal{C}_2)$

Couplings $(g_{\nu}^{\rm NN})$ and scales (Λ) of the Gaussian regulator ¹.

$g_{\nu}^{\rm NN} ({\rm fm}^2)$	Λ (MeV)
-0.67	450
-1.01	550
-1.44	465
-0.91	465
-1.44	349
-1.03	349

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

Contact Term in pnQRPA and NSM

$$\int C_{\rm L/S}(r) {\rm d}r = M_{\rm L/S}^{0\nu}$$

In pnQRPA:

 $M_{
m S}/M_{
m L}pprox 30\%-80\%$

In NSM: $M_{
m S}/M_{
m L}pprox 15\%-50\%$

LJ, P. Soriano and J. Menéndez, Phys. Lett. B 823, 136720 (2021)

73
Effective Neutrino Masses

 Effective neutrino masses combining the likelihood functions of GERDA (⁷⁶Ge), CUORE (¹³⁰Te), EXO-200 (¹³⁶Xe) and KamLAND-Zen (¹³⁶Xe)

S. D. Biller, Phys. Rev. D 104, 012002 (2021)

• Middle bands: $M_{\rm L}^{(0\nu)}$ Lower bands: $M_{\rm L}^{(0\nu)} + M_{\rm S}^{(0\nu)}$ Upper bands: $M_{\rm L}^{(0\nu)} - M_{\rm S}^{(0\nu)}$

Ultrasoft-neutrino contribution to $0\nu\beta\beta$ decay

$$\boxed{\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm usoft}^{0\nu} + M_{\rm N^2LO}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2}$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

Ultrasoft-neutrino contribution to $0\nu\beta\beta$ decay

$$\boxed{\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm usoft}^{0\nu} + M_{\rm N^2LO}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2}$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

Contribution of ultrasoft neutrinos

• Contribution of ultrasoft neutrinos ($|\mathbf{k}| \ll k_{\mathbf{F}} \approx 100 \text{ MeV}$) to $0\nu\beta\beta$ decay:

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

$$M_{\rm usoft}^{0\nu} = \frac{\pi R}{g_{\rm A}^2} \sum_{n} \frac{\mathrm{d}^{d-1}k}{(2\pi)^{d-1}} \frac{1}{|\mathbf{k}|} \left[\frac{\langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle}{|\mathbf{k}| + E_2 + E_n - E_i - i\eta} + \frac{\langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle}{|\mathbf{k}| + E_1 + E_n - E_i - i\eta} \right]$$

Contribution of ultrasoft neutrinos

• Contribution of ultrasoft neutrinos ($|\mathbf{k}| \ll k_{\mathbf{F}} \approx 100 \text{ MeV}$) to $0\nu\beta\beta$ decay:

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

$$M_{\rm usoft}^{0\nu} = \frac{\pi R}{g_{\rm A}^2} \sum_{n} \frac{\mathrm{d}^{d-1}k}{(2\pi)^{d-1}} \frac{1}{|\mathbf{k}|} \left[\frac{\langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle}{|\mathbf{k}| + E_2 + E_n - E_i - i\eta} + \frac{\langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle}{|\mathbf{k}| + E_1 + E_n - E_i - i\eta} \right]$$

• Keeping only $\mathbf{k} = \mathbf{0}$ term in the current:

$$M_{\rm usoft}^{0\nu}(\mu_{\rm us}) = -\frac{R}{2\pi} \sum_{n} \langle f | \sum_{a} \boldsymbol{\sigma}_{a} \tau_{a}^{+} | n \rangle \langle n | \sum_{b} \boldsymbol{\sigma}_{b} \tau_{b}^{+} | i \rangle$$
$$\times \left[(E_{1} + E_{n} - E_{i}) \left(\ln \frac{\mu_{\rm us}}{2(E_{1} + E_{n} - E_{i})} + 1 \right) + (E_{2} + E_{n} - E_{i}) \left(\ln \frac{\mu_{\rm us}}{2(E_{2} + E_{n} - E_{i})} + 1 \right) \right]$$

Contribution of ultrasoft neutrinos

• Contribution of ultrasoft neutrinos ($|\mathbf{k}| \ll k_{\mathbf{F}} \approx 100 \text{ MeV}$) to $0\nu\beta\beta$ decay:

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

$$M_{\rm usoft}^{0\nu} = \frac{\pi R}{g_{\rm A}^2} \sum_{n} \frac{\mathrm{d}^{d-1}k}{(2\pi)^{d-1}} \frac{1}{|\mathbf{k}|} \left[\frac{\langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle}{|\mathbf{k}| + E_2 + E_n - E_i - i\eta} + \frac{\langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle}{|\mathbf{k}| + E_1 + E_n - E_i - i\eta} \right]$$

• Keeping only $\mathbf{k} = \mathbf{0}$ term in the current:

$$M_{\rm usoft}^{0\nu}(\mu_{\rm us}) = -\frac{R}{2\pi} \sum_{n} \langle f | \sum_{a} \sigma_{a} \tau_{a}^{+} | n \rangle \langle n | \sum_{b} \sigma_{b} \tau_{b}^{+} | i \rangle$$

g a factor of 2? $(E + E - E) (\ln - \mu_{\rm us} + 1)$

Are we missing a factor of 2? \times $(E_1 + E_n - E_i) \left(\ln \frac{1}{2(E_i)} \right)$

$$\times \left[(E_1 + E_n - E_i) \left(\ln \frac{2(E_1 + E_n - E_i)}{2(E_2 + E_n - E_i)} + 1 \right) + (E_2 + E_n - E_i) \left(\ln \frac{\mu_{\text{us}}}{2(E_2 + E_n - E_i)} + 1 \right) \right]$$

PRELIMINARY Ultrasoft neutrinos in pnQRPA and nuclear shell model

LJ, D. Castillo, P. Soriano, J Menéndez, work in progress

In pnQRPA:

≈TRIUMF

 $|M_{
m usoft}^{0
u}/M_{
m L}^{0
u}| \leq 15\%$

In NSM: $|M_{ m usoft}^{0 u}/M_{ m L}^{0 u}|\leq 5\%$

Discov accele

Ultrasoft neutrinos as correction of the closure approximation

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} | \boldsymbol{M}_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + \boldsymbol{M}_{\rm usoft}^{0\nu} + M_{\rm N2LO}^{0\nu} |^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

22/39

Ultrasoft neutrinos as correction of the closure approximation

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |\boldsymbol{M_{\rm L}^{0\nu}} + M_{\rm S}^{0\nu} + \boldsymbol{M_{\rm usoft}^{0\nu}} + M_{\rm N2LO}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

In EFT:
$$M_{\rm L}^{0\nu} \propto \frac{\langle f|\, J_\mu({\bf x}) J^\mu({\bf y})\, |i\rangle}{|{\bf k}|}$$

Ultrasoft neutrinos as correction of the closure approximation

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |\mathbf{M}_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + \mathbf{M}_{\rm usoft}^{0\nu} + M_{\rm N2LO}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

In EFT: $M_{\rm L}^{0
u} \propto rac{\langle f | J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}|}$ $\rightarrow M_{\rm cl}^{0
u}$ with $\langle E \rangle = 0$

Ultrasoft neutrinos as correction of the closure approximation

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |\mathbf{M}_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + \mathbf{M}_{\rm usoft}^{0\nu} + M_{\rm N2LO}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

In EFT: $M_{\rm L}^{0
u} \propto rac{\langle f | J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y}) | i
angle}{|\mathbf{k}|}$ $\rightarrow M_{\rm cl}^{0
u}$ with $\langle E \rangle = 0$

$$M_{\text{usoft}}^{0
u} \propto \sum_{n} \langle f | \sum_{a} \sigma_{a} \tau_{a}^{+} | n \rangle \langle n | \sum_{b} \sigma_{b} \tau_{b}^{+} | i \rangle \times f(E_{n})$$

Disco

TRIUMF PRELIMINARY Ultrasoft neutrinos vs closure approximation in NSM

Nucleus	Interaction	$M^{0\nu}$	$M_{ m cl}^{0 u}$ 2	$M^{0\nu} - M^{0\nu}_{\rm cl}$	$M_{\rm usoft}^{0\nu}$
48 Ca	KB3G	0.92	0.96	-0.04	-0.01
	GXPF1.a42	0.78	0.78	0.00	0.02
⁷⁶ Ge	JUN45	3.37	3.61	-0.24	-0.13
82 Se	JUN45	3.16	3.39	-0.23	-0.11

LJ, D. Castillo, P. Soriano, J Menéndez, work in progress

²R. A. Sen'kov, M. Horoi, , PRC **90**, 051301(R) (2014)

RELIMINARY Ultrasoft neutrinos vs closure approximation in NSM

Nucleus	Interaction	$M^{0\nu}$	$M_{\rm cl}^{0\nu 2}$	$M^{0\nu} - M^{0\nu}_{\rm cl}$	$M_{\rm usoft}^{0\nu}$
48 Ca	KB3G	0.92	0.96	-0.04	-0.01
	GXPF1.a42	0.78	0.78	0.00	0.02
⁷⁶ Ge	JUN45	3.37	3.61	-0.24	-0.13
⁸² Se	JUN45	3.16	3.39	-0.23	-0.11

LJ, D. Castillo, P. Soriano, J Menéndez, work in progress

²R. A. Sen'kov, M. Horoi, , PRC **90**, 051301(R) (2014)

CREATER OF CONTROL OF

Nucleus	$M^{0\nu}$	$M_{\rm cl}^{0\nu}$	$M^{0\nu} - M^{0\nu}_{\rm cl}$	$M_{\rm usoft}^{0\nu}$
⁷⁶ Ge	4.83	4.68	0.15	0.25
82 Se	4.30	4.20	0.10	0.18
96 Zr	4.29	4.04	0.25	0.25
100 Mo	3.52	2.71	0.81	0.65
116 Cd	4.31	4.47	-0.16	-0.03
124 Sn	5.12	4.88	0.24	0.29
128 Te	3.99	3.76	0.23	0.27
130 Te	3.52	3.36	0.16	0.22
136 Xe	2.60	2.71	-0.11	0.06

RELIMINARY Ultrasoft neutrinos vs closure approximation in pnQRPA

Nucleus	$M^{0\nu}$	$M_{\rm cl}^{0\nu}$	$M^{0\nu} - M^{0\nu}_{\rm cl}$	$M_{\rm usoft}^{0\nu}$
⁷⁶ Ge	4.83	4.68	0.15	0.25
82 Se	4.30	4.20	0.10	0.18
96 Zr	4.29	4.04	0.25	0.25
^{100}Mo	3.52	2.71	0.81	0.65
116 Cd	4.31	4.47	-0.16	-0.03
124 Sn	5.12	4.88	0.24	0.29
128 Te	3.99	3.76	0.23	0.27
130 Te	3.52	3.36	0.16	0.22
136 Xe	2.60	2.71	-0.11	0.06

CRIUMF PRELIMINARY Ultrasoft neutrinos vs closure approximation in pnQRPA

Nucleus	$M^{0\nu}$	$M_{\rm cl}^{0\nu}$	$M^{0\nu} - M^{0\nu}_{\rm cl}$	$M^{0 u}(1^+) - M^{0 u}_{ m cl}(1^+)$	$M_{\rm usoft}^{0\nu}$
⁷⁶ Ge	4.83	4.68	0.15	0.26	0.25
82 Se	4.30	4.20	0.10	0.18	0.18
96 Zr	4.29	4.04	0.25	0.26	0.25
^{100}Mo	3.52	2.71	0.81	0.75	0.65
116 Cd	4.31	4.47	-0.16	-0.06	-0.03
124 Sn	5.12	4.88	0.24	0.31	0.29
128 Te	3.99	3.76	0.23	0.26	0.27
130 Te	3.52	3.36	0.16	0.20	0.22
136 Xe	2.60	2.71	-0.11	0.02	0.06

Genuine N²**LO corrections to** $0\nu\beta\beta$ **decay**

$$\boxed{\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm usoft}^{0\nu} + M_{\rm N^2LO}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2}$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

Genuine N²**LO corrections to** $0\nu\beta\beta$ **decay**

$$\boxed{\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm usoft}^{0\nu} + M_{\rm N^2LO}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2}$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

25/39

Nucleus	$M_{\rm L}^{0\nu}$	$M_{\rm N^2LO}^{0\nu}$	$ M_{\rm N^2LO}^{0\nu}/M_{\rm L}^{0\nu} $
⁷⁶ Ge	4.83	-0.04–0.53	$\lesssim 10\%$
82 Se	4.30	0.28-0.44	6%-10%
96 Zr	4.29	-0.04-0.42	$\lesssim 10\%$
100 Mo	3.52	-0.05–0.62	$\lesssim 18\%$
116 Cd	4.31	-0.02–0.29	$\lesssim 7\%$
124 Sn	5.12	-0.04–0.66	$\lesssim 13\%$
128 Te	3.99	-0.04–0.55	$\lesssim 14\%$
130 Te	3.52	-0.03–0.52	$\lesssim 15\%$
136 Xe	2.60	-0.02–0.07	$\lesssim 3\%$

_

LJ, D. Castillo, P. Soriano, J Menéndez, work in progress

Nucleus	$M_{\rm L}^{0\nu}$	$M_{\rm N^2LO}^{0\nu}$	$ M_{\rm N^2LO}^{0\nu}/M_{\rm L}^{0\nu} $	
⁷⁶ Ge	4.83	-0.04-0.53	$\lesssim 10\%$	
82 Se	4.30	0.28-0.44	6%-10%	
96 Zr	4.29	-0.04–0.42	$\lesssim 10\%$	
100 Mo	3.52	-0.05–0.62	$\lesssim 18\%$	C
116 Cd	4.31	-0.02–0.29	$\lesssim 7\%$	C
124 Sn	5.12	-0.04–0.66	$\lesssim 13\%$	
128 Te	3.99	-0.04–0.55	$\lesssim 14\%$	
130 Te	3.52	-0.03–0.52	$\lesssim 15\%$	
136 Xe	2.60	-0.02–0.07	$\lesssim 3\%$	

LJ, D. Castillo, P. Soriano, J Menéndez, work in progress

Caveats:

Nucleus	$M_{ m L}^{0 u}$	$M_{\rm N^2LO}^{0\nu}$	$ M_{\rm N^2LO}^{0 u}/M_{\rm L}^{0 u} $
⁷⁶ Ge	4.83	-0.04–0.53	$\lesssim 10\%$
82 Se	4.30	0.28–0.44	6%-10%
96 Zr	4.29	-0.04-0.42	$\lesssim 10\%$
100 Mo	3.52	-0.05–0.62	$\lesssim 18\%$
116 Cd	4.31	-0.02–0.29	$\lesssim 7\%$
124 Sn	5.12	-0.04–0.66	$\lesssim 13\%$
128 Te	3.99	-0.04–0.55	$\lesssim 14\%$
130 Te	3.52	-0.03–0.52	$\lesssim 15\%$
136 Xe	2.60	-0.02–0.07	$\lesssim 3\%$

=

Caveats:

• Unknown parameters

Nucleus	$M_{\rm L}^{0 u}$	$M_{\rm N^2LO}^{0\nu}$	$ M_{\rm N^2LO}^{0\nu}/M_{\rm L}^{0\nu} $
⁷⁶ Ge	4.83	-0.04–0.53	$\lesssim 10\%$
82 Se	4.30	0.28-0.44	6%-10%
96 Zr	4.29	-0.04-0.42	$\lesssim 10\%$
100 Mo	3.52	-0.05–0.62	$\lesssim 18\%$
^{116}Cd	4.31	-0.02–0.29	$\lesssim 7\%$
124 Sn	5.12	-0.04–0.66	$\lesssim 13\%$
128 Te	3.99	-0.04–0.55	$\lesssim 14\%$
130 Te	3.52	-0.03–0.52	$\lesssim 15\%$
136 Xe	2.60	-0.02-0.07	$\lesssim 3\%$

Caveats:

- Unknown parameters
- Scale dependence

Nucleus	$M_{ m L}^{0 u}$	$M_{\rm N^2LO}^{0\nu}$	$ M_{\rm N^2LO}^{0\nu}/M_{\rm L}^{0\nu} $
⁷⁶ Ge	4.83	-0.04–0.53	$\lesssim 10\%$
82 Se	4.30	0.28-0.44	6%-10%
96 Zr	4.29	-0.04-0.42	$\lesssim 10\%$
100 Mo	3.52	-0.05–0.62	$\lesssim 18\%$
116 Cd	4.31	-0.02–0.29	$\lesssim 7\%$
124 Sn	5.12	-0.04–0.66	$\lesssim 13\%$
128 Te	3.99	-0.04–0.55	$\lesssim 14\%$
130 Te	3.52	-0.03–0.52	$\lesssim 15\%$
136 Xe	2.60	-0.02–0.07	$\lesssim 3\%$

Caveats:

- Unknown parameters
- Scale dependence
- Regulator dependence

TRIUMF Similar effects found in *ab initio* studies

• In ⁷⁶Ge:

 $M_{
m S}^{0
u}/M_{
m L}^{0
u}\sim 40\%\,,$ $M_{
m N^2LO}^{0
u}/M_{
m L}^{0
u}\sim 5\%$

A. Belley et al. arXiv:2308.15634 (2023)

0 0

TRIUMF Similar effects found in *ab initio* studies

• In ⁷⁶Ge:

 $M_{
m S}^{0
u}/M_{
m L}^{0
u}\sim 40\%\,,$ $M_{
m N^2LO}^{0
u}/M_{
m L}^{0
u}\sim 5\%$

A. Belley et al. arXiv:2308.15634 (2023)

• In 130 Te and 136 Xe:

 $M_{
m S}^{0
u}/M_{
m L}^{0
u}\sim 20\%-120\%$

A. Belley et al. arXiv:2307.15156 (2023)

Outline

Introduction to double-beta decay

Corrections to 0
uetaeta-decay nuclear matrix elements

Muon capture as a probe of $0\nu\beta\beta$ decay

Summary and Outlook

Ordinary Muon Capture (OMC)

• A muon can replace an electron in an atom, forming a *muonic atom*

Ordinary Muon Capture (OMC)

• A muon can replace an electron in an atom, forming a *muonic atom*

Ordinary Muon Capture (OMC)

- A muon can replace an electron in an atom, forming a *muonic atom*
 - Eventually bound on the $1s_{1/2}$ orbit

Ordinary Muon Capture (OMC)

- A muon can replace an electron in an atom, forming a *muonic atom*
 - Eventually bound on the $1s_{1/2}$ orbit
- The *muon can then be captured* by the nucleus

$$\mu^- + rac{A}{Z} \operatorname{X}(J_i^{\pi_i}) o
u_\mu + rac{A}{Z-1} \operatorname{Y}(J_f^{\pi_f})$$

Ordinary Muon Capture (OMC)

- A muon can replace an electron in an atom, forming a *muonic atom*
 - Eventually bound on the $1s_{1/2}$ orbit
- The *muon can then be captured* by the nucleus

$$\mu^- + rac{A}{Z} \operatorname{X}(J_i^{\pi_i}) o
u_\mu + rac{A}{Z-1} \operatorname{Y}(J_f^{\pi_f})$$

Ordinary Muon Capture (OMC)

- A muon can replace an electron in an atom, forming a *muonic atom*
 - Eventually bound on the $1s_{1/2}$ orbit
- The *muon can then be captured* by the nucleus

$$\mu^- + rac{A}{Z} \operatorname{X}(J_i^{\pi_i}) o
u_\mu + rac{A}{Z-1} \operatorname{Y}(J_f^{\pi_f})$$

Ordinary = non-radiative

$$\begin{pmatrix} \text{Radiative muon capture (RMC):} \\ \mu^{-} +^{A}_{Z} \operatorname{X}(J_{i}^{\pi_{i}}) \to \nu_{\mu} +^{A}_{Z-1} \operatorname{Y}(J_{f}^{\pi_{f}}) + \boldsymbol{\gamma} \end{pmatrix}$$

$0 u\beta\beta$ Decay vs. Muon Capture

$$\mu^- + {}^A_{\underline{Z}} \operatorname{X}(J_i^{\pi_i}) \to \nu_\mu + {}^A_{\underline{Z}-1} \operatorname{Y}(J_f^{\pi_f})$$

$0\nu\beta\beta$ Decay vs. Muon Capture

$$\mu^- + {}^A_Z \operatorname{X}(J_i^{\pi_i}) \to \nu_\mu + {}^A_{Z-1} \operatorname{Y}(J_f^{\pi_f})$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ Both involve hadronic current: \end{array} \end{array} \\ \langle \boldsymbol{p} | \, j^{\alpha \dagger} \, | \boldsymbol{p} \rangle = \bar{\Psi} \left[g_{\mathrm{V}}(q^2) \gamma^{\alpha} - g_{\mathrm{A}}(q^2) \gamma^{\alpha} \gamma_5 - g_{\mathrm{P}}(q^2) q^{\alpha} \gamma_5 + i g_{\mathrm{M}}(q^2) \frac{\sigma^{\alpha \beta}}{2m_p} q_{\beta} \right] \tau^{\pm} \Psi \end{array}$$

30/39

accele

$0\nu\beta\beta$ Decay vs. Muon Capture

$0\nu\beta\beta$ Decay vs. Muon Capture

$0\nu\beta\beta$ Decay vs. Muon Capture

• $q \approx 1/|\mathbf{r}_1 - \mathbf{r}_2| \approx 100 -$ • Yet hypothetical

$$\mu^- + {}^A_Z \operatorname{X}(J_i^{\pi_i}) \to \nu_\mu + {}^A_{Z-1} \operatorname{Y}(J_f^{\pi_f})$$

•
$$\boldsymbol{q} \approx m_{\mu} + M_i - M_f - m_e - E_X \approx 100$$
 MeV

Both involve hadronic current:

$$\langle \boldsymbol{p} | j^{\alpha \dagger} | \boldsymbol{p} \rangle = \bar{\Psi} \left[g_{\mathrm{V}}(q^2) \gamma^{\alpha} - g_{\mathrm{A}}(q^2) \gamma^{\alpha} \gamma_5 - g_{\mathrm{P}}(q^2) q^{\alpha} \gamma_5 + i g_{\mathrm{M}}(q^2) \frac{\sigma^{\alpha\beta}}{2m_p} q_{\beta} \right] \tau^{\pm} \Psi \qquad \stackrel{[\Phi]}{\underset{\mathbf{30/39}}{\overset{\mathbf{30/39}}{\overset{\mathbf{30}$$

RIUMF

$0\nu\beta\beta$ Decay vs. Muon Capture

$${}^{A}_{Z}\mathcal{X}(J^{\pi_{i}}_{i}) \rightarrow {}^{A}_{Z+2}\mathcal{X}'(J^{\pi_{f}}_{f}) + 2e^{-}$$

• $q pprox 1/|\mathbf{r_1}-\mathbf{r_2}| pprox 100-200$ MeV

• Yet hypothetical

$$\mu^- + {}^A_{\mathbf{Z}} \operatorname{X}(J_i^{\pi_i}) \to \nu_{\mu} + {}^A_{\mathbf{Z}-1} \operatorname{Y}(J_f^{\pi_f})$$

$$\approx 1/|\mathbf{r}_{1} - \mathbf{r}_{2}| \approx 100 - 200 \text{ MeV}$$

$$\Rightarrow q \approx m_{\mu} + M_{i} - M_{f} - m_{e} - E_{X} \approx 100 \text{ MeV}$$

$$\Rightarrow Has been measured!$$

$$Both involve hadronic current:$$

$$\langle \boldsymbol{p} | j^{\alpha \dagger} | \boldsymbol{p} \rangle = \bar{\Psi} \left[g_{V}(q^{2})\gamma^{\alpha} - g_{A}(q^{2})\gamma^{\alpha}\gamma_{5} - g_{P}(q^{2})q^{\alpha}\gamma_{5} + ig_{M}(q^{2})\frac{\sigma^{\alpha\beta}}{2m_{p}}q_{\beta} \right] \tau^{\pm} \Psi$$

30/39

Ab initio No-Core Shell Model (NCSM)

• Solve nuclear many-body problem

$$H^{(A)}\Psi^{(A)}(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_A) = E^{(A)}\Psi^{(A)}(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_A)$$

 $E = (2n + l + \frac{3}{2})\mathfrak{h}\Omega$

Figure courtesy of P. Navrátil

Disco

.

Ab initio No-Core Shell Model (NCSM)

• Solve nuclear many-body problem

$$H^{(A)}\Psi^{(A)}(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_A) = E^{(A)}\Psi^{(A)}(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_A)$$

• Two- (NN) and three-nucleon (3N) forces from $\chi {\rm EFT}$

$$H^{(A)} = \sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i< j=1}^{A} V^{NN}(\mathbf{r}_i - \mathbf{r}_j) + \sum_{i< j< k=1}^{A} V^{3N}_{ijk}$$

Ab initio No-Core Shell Model (NCSM)

• Solve nuclear many-body problem

$$H^{(A)}\Psi^{(A)}(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_A) = E^{(A)}\Psi^{(A)}(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_A)$$

• Two- (NN) and three-nucleon (3N) forces from $\chi {\rm EFT}$

$$H^{(A)} = \sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i< j=1}^{A} V^{NN}(\mathbf{r}_i - \mathbf{r}_j) + \sum_{i< j< k=1}^{A} V_{ijk}^{3N}$$

• A-nucleon wave functions expanded in harmonic oscillator (HO) basis

$$\Psi^{(A)} = \sum_{N=0}^{N_{\text{max}}} \sum_{j} c_{Nj} \Phi_{Nj}^{\text{HO}}(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_A)$$

Dependency on the Harmonic-Oscillator Frequency

$$\Psi^{(A)} = \sum_{N=0}^{N_{\text{max}}} \sum_{j} c_{Nj} \Phi^{\text{HO}}_{Nj}(\mathbf{r}_{1}, \mathbf{r}_{2}, ..., \mathbf{r}_{A})$$

• The expansion depends on the HO frequency because of the *N*_{max} truncation

Discovery, accelerated

*** TRIUMF**

Dependency on the Harmonic-Oscillator Frequency

- The expansion depends on the HO frequency because of the $N_{\rm max}$ truncation
 - \blacktriangleright Increasing $N_{\rm max}$ leads towards convergenced results

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

ö

Harmonic-Oscillator Frequency Dependence of Muon Capture

 ${}^{6}\mathrm{Li}(1_{\mathrm{gs}}^{+}) + \mu^{-} \rightarrow {}^{6}\mathrm{He}(0_{\mathrm{gs}}^{+}) + \nu_{\mu}$ 2.5 $\mathbf{2}$ $Rate(10^3/s)$ 1.5NN-N⁴LO+3N^{*}_{lp1} Deutsch1968 \cdots \cdots $N_{\text{max}} = 0$ - - $N_{max} = 2$ - - $N_{max} = 4$ 0.5 $N_{\text{max}} = 6$ $N_{\text{max}} = 8$ - $N_{max} = 10$ - $N_{max} = 12$ $- N_{max} = 14$ 0 1214 18 202216 $\hbar\Omega$ (MeV)

LJ, Navrátil, Kotila and Kravvaris, arXiv:2403.XXXX

Discovery, accelerated

Harmonic-Oscillator Frequency Dependence of Muon Capture

LJ, Navrátil, Kotila and Kravvaris, arXiv:2403.XXXX

Ö

Muon Capture on ⁶Li

• NCSM slightly underestimating experiment

$${}^{6}\mathrm{Li}(1_{\mathrm{gs}}^{+}) + \mu^{-} \rightarrow {}^{6}\mathrm{He}(0_{\mathrm{gs}}^{+}) + \nu_{\mu}$$

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

Discovery, accelerated

- NCSM slightly underestimating experiment
- The results are consistent with the variational (VMC) and Green's function Monte-Carlo (GFMC) calculations

King et al., Phys. Rev. C 105, L042501 (2022)

Muon Capture on ⁶Li

 ${}^{6}\text{Li}(1_{\text{gs}}^{+}) + \mu^{-} \rightarrow {}^{6}\text{He}(0_{\text{gs}}^{+}) + \nu_{\mu}$

OCC

- NCSM slightly underestimating experiment
- The results are consistent with the variational (VMC) and Green's function Monte-Carlo (GFMC) calculations

King et al., Phys. Rev. C 105, L042501 (2022)

• Slow convergence due to cluster-structure?

Muon Capture on ⁶Li

 ${}^{6}\text{Li}(1_{\text{gs}}^{+}) + \mu^{-} \rightarrow {}^{6}\text{He}(0_{\text{gs}}^{+}) + \nu_{\mu}$

- NCSM slightly underestimating experiment
- The results are consistent with the variational (VMC) and Green's function Monte-Carlo (GFMC) calculations

King et al., Phys. Rev. C 105, L042501 (2022)

- Slow convergence due to cluster-structure?
 - NCSM with continuum (NCSMC) might give better results?

Muon Capture on ⁶Li

 ${}^{6}\text{Li}(1_{\text{gs}}^{+}) + \mu^{-} \rightarrow {}^{6}\text{He}(0_{\text{gs}}^{+}) + \nu_{\mu}$

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

 The NN-N⁴LO+3N^{*}_{In1} interaction with the additional spin-orbit 3N-force term most consistent with experiment

Muon capture on ${}^{12}C$ ${}^{12}C(0^+_{gs}) + \mu^- \rightarrow {}^{12}B(1^+_{gs}) + \nu_{\mu}$

- The NN-N⁴LO+3N^{*}_{In1} interaction with the additional spin-orbit 3N-force term most consistent with experiment
- Capture rates to excited states in ¹²B also well reproduced

Muon capture on ${}^{12}C$ ${}^{12}C(0^+_{gs}) + \mu^- \rightarrow {}^{12}B(1^+_{gs}) + \nu_{\mu}$

- The NN-N⁴LO+3N^{*}_{In1} interaction with the additional spin-orbit 3N-force term most consistent with experiment
- Capture rates to excited states in ¹²B also well reproduced
- Rates comparable with earlier NCSM results

Hayes et al., Phys. Rev. Lett. 91, 012502 (2003)

$\begin{array}{c} \text{Muon capture on } {}^{12}\text{C} \\ {}^{^{12}}\text{C}(0^+_{\text{gs}}) + \mu^- \to {}^{^{12}}\text{B}(1^+_{\text{gs}}) + \nu_{\mu} \end{array}$

- The NN-N⁴LO+3N^{*}_{In1} interaction with the additional spin-orbit 3N-force term most consistent with experiment
- Capture rates to excited states in ¹²B also well reproduced
- Rates comparable with earlier NCSM results

Hayes et al., Phys. Rev. Lett. 91, 012502 (2003)

• 3N-forces essential to reproduce the measured rate

Muon capture on ¹²C $^{12}C(0^+_{gs}) + \mu^- \rightarrow ^{12}B(1^+_{gs}) + \nu_{\mu}$

 NCSM describes well the complex systems ¹⁶O and ¹⁶N

Muon capture on $^{16}\mathrm{O}$

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

Discovery, accelerated

- NCSM describes well the complex systems ¹⁶O and ¹⁶N
- Less sensitive to the interaction than ${\rm ^{12}C}(\mu^-,\nu_\mu){\rm ^{12}B}$

Muon capture on $^{16}\mathrm{O}$

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

Discovery, accelerated

- NCSM describes well the complex systems ¹⁶O and ¹⁶N
- $\bullet\,$ Less sensitive to the interaction than $^{12}{\rm C}(\mu^-,\nu_\mu)^{12}{\rm B}$
- Captures to excited states in ¹⁶N also well reproduced

Muon capture on ¹⁶O ¹⁶O(0⁺_{gs}) + $\mu^- \rightarrow$ ¹⁶N(2⁻_{gs}) + ν_{μ} ²⁰ ¹⁵ ¹⁶O(0⁺_{gs}) + $\mu^- \rightarrow$ ¹⁶N(2⁻_{gs}) + ν_{μ}

 $Rate(10^3/s)$

36/39

0 0

Total Muon-Capture Rates

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

• Rates obtained summing over ~ 50 final states of each parity

Discove

Total Muon-Capture Rates

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

- $\bullet\,$ Rates obtained summing over $\sim 50\,$ final states of each parity
- Summing up the rates, we capture $\sim 85\%$ of the total rate in both $^{12}{\rm B}$ and $^{16}{\rm N}$

)iscove cceler

Total Muon-Capture Rates

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

- $\bullet\,$ Rates obtained summing over $\sim 50\,$ final states of each parity
- Summing up the rates, we capture $\sim 85\%$ of the total rate in both $^{12}{\rm B}$ and $^{16}{\rm N}$
- Better estimation with the Lanczos strength function method underway

Outline

Introduction to double-beta decay

Corrections to 0
uetaeta-decay nuclear matrix elements

Muon capture as a probe of $0
u\beta\beta$ decay

Summary and Outlook

Discovery, accelerated

• Newly introduced contact term significantly enhances the $0\nu\beta\beta$ -decay NMEs

∂TRIUMF

- Newly introduced contact term significantly enhances the $0\nu\beta\beta$ -decay NMEs
- Studying the contribution from ultrasoft neutrinos may help us estimate the closure correction to the 0νββ-decay NMEs

- Newly introduced contact term significantly enhances the $0\nu\beta\beta$ -decay NMEs
- Studying the contribution from ultrasoft neutrinos may help us estimate the closure correction to the 0νββ-decay NMEs
- Ab initio muon-capture studies could shed light on g_A quenching at finite momentum exchange regime relevant for 0νββ decay

Outlook

 Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight) on OMC rates

- Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight) on OMC rates
- Study potential OMC candidates ⁴⁸Ti, ⁴⁰Ca, ⁴⁰Ti in VS-IMSRG

- Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight) on OMC rates
- Study potential OMC candidates ⁴⁸Ti, ⁴⁰Ca, ⁴⁰Ti in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates → use the Lanczos strength-function method, instead (ongoing)

- Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight) on OMC rates
- Study potential OMC candidates ⁴⁸Ti, ⁴⁰Ca, ⁴⁰Ti in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates → use the Lanczos strength-function method, instead (ongoing)
- Study the effect of exact two-body currents and/or continuum on the OMC rates

- Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight) on OMC rates
- Study potential OMC candidates ⁴⁸Ti, ⁴⁰Ca, ⁴⁰Ti in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates → use the Lanczos strength-function method, instead (ongoing)
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes

- Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight) on OMC rates
- Study potential OMC candidates ⁴⁸Ti, ⁴⁰Ca, ⁴⁰Ti in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates → use the Lanczos strength-function method, instead (ongoing)
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes
 - ¹⁶N potential candidate for forbidden β-decay studies (ongoing)

- Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight) on OMC rates
- Study potential OMC candidates ⁴⁸Ti, ⁴⁰Ca, ⁴⁰Ti in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates → use the Lanczos strength-function method, instead (ongoing)
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes
 - ¹⁶N potential candidate for forbidden β-decay studies (ongoing)
 - ► ¹²C and ¹⁶O are both of interest in neutrino-scattering experiments

$$(\nu_{\mu} + {}^{12}C \rightarrow \mu^{-} + {}^{12}N)$$

Thank you Merci

