き TRIUMF

Ab initio calculations of muon capture in light nuclei, and connections to neutrinoless double-beta decay matrix elements

Lotta Jokiniemi

TRIUMF, Theory Department
INT Program 24-1
11/03/2024

き TRIUMF

Outline

Introduction to double-beta decay

Corrections to $0 \nu \beta \beta$-decay nuclear matrix elements

Muon capture as a probe of $0 \nu \beta \beta$ decay

Summary and Outlook

き TRIUMF

Outline

Introduction to double-beta decay

Corrections to $0 \nu \beta \beta$-decay nuclear matrix elements

Muon capture as a probe of $0 \nu \beta \beta$ decay

Summary and Outlook

¿ TRIUMF

Double-Beta Decay

$$
\begin{gathered}
\beta^{-}: \mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}^{-}+\bar{\nu}_{\mathrm{e}} \\
\beta^{-} \beta^{-}: 2 \mathrm{n} \rightarrow 2 \mathrm{p}+2 \mathrm{e}^{-}\left(+2 \bar{\nu}_{\mathrm{e}}\right)
\end{gathered}
$$

- May happen, when β-decay is not allowed / suppressed

¿ TRIUMF

Double-Beta Decay

$$
\begin{gathered}
\beta^{-}: \mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}^{-}+\bar{\nu}_{\mathrm{e}} \\
\beta^{-} \beta^{-}: 2 \mathrm{n} \rightarrow 2 \mathrm{p}+2 \mathrm{e}^{-}\left(+2 \bar{\nu}_{\mathrm{e}}\right)
\end{gathered}
$$

- May happen, when β-decay is not allowed / suppressed
- Two modes:

¿ TRIUMF

Double-Beta Decay

$$
\begin{gathered}
\beta^{-}: \mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}^{-}+\bar{\nu}_{\mathrm{e}} \\
\beta^{-} \beta^{-}: 2 \mathrm{n} \rightarrow 2 \mathrm{p}+2 \mathrm{e}^{-}\left(+2 \bar{\nu}_{\mathrm{e}}\right)
\end{gathered}
$$

- May happen, when β-decay is not allowed / suppressed
- Two modes:
- Standard two-neutrino $\beta \beta$ decay $(2 \nu \beta \beta)$

¿ TRIUMF

Double-Beta Decay

$$
\begin{gathered}
\beta^{-}: \mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}^{-}+\bar{\nu}_{\mathrm{e}} \\
\beta^{-} \beta^{-}: 2 \mathrm{n} \rightarrow 2 \mathrm{p}+2 \mathrm{e}^{-}\left(+2 \bar{\nu}_{\mathrm{e}}\right)
\end{gathered}
$$

- May happen, when β-decay is not allowed / suppressed
- Two modes:
- Standard two-neutrino $\beta \beta$ decay ($2 \nu \beta \beta$)
- Hypothetical neutrinoless $\beta \beta(0 \nu \beta \beta)$ decay

¿ TRIUMF

Neutrinoless double-beta decay via light neutrino exhange

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|\boldsymbol{M}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

- Violates lepton-number conservation

¿ TRIUMF

Neutrinoless double-beta decay via light neutrino exhange

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|\boldsymbol{M}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles

き TRIUMF

Neutrinoless double-beta decay via light neutrino exhange

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|\boldsymbol{M}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles
- Runs virtually through all J^{π} states in the intermediate nucleus

Atomic number

き TRIUMF

Neutrinoless double-beta decay via light neutrino exhange

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|\boldsymbol{M}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles
- Runs virtually through all J^{π} states in the intermediate nucleus
- Momentum transfer $q \sim 100 \mathrm{MeV}$

Atomic number

き TRIUMF

Neutrinoless double-beta decay via light neutrino exhange

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|M^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles
- Runs virtually through all J^{π} states in the intermediate nucleus
- Momentum transfer $q \sim 100 \mathrm{MeV}$

Atomic number

き TRIUMF

Half-life of $0 \nu \beta \beta$ Decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G_{0 \nu}\left|M^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

き TRIUMF

Half-life of $0 \nu \beta \beta$ Decay

き TRIUMF

Half-life of $0 \nu \beta \beta$ Decay

What would be measured

¿ TRIUMF

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$

Half-life of $0 \nu \beta \beta$ Decay

¿ TRIUMF

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$
- Quenched or not?

Half-life of $0 \nu \beta \beta$ Decay

き TRIUMF

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$
- Quenched or not?
- Phase-space factor (physics of the emitted electrons)

Half-life of $0 \nu \beta \beta$ Decay

き TRIUMF

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$
- Quenched or not?
- Phase-space factor (physics of the emitted electrons)
- The most accurately known theory input

Half-life of $0 \nu \beta \beta$ Decay

き TRIUMF

Half-life of $0 \nu \beta \beta$ Decay

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$
- Quenched or not?
- Phase-space factor (physics of the emitted electrons)
- The most accurately known theory input
- Nuclear matrix element (NME)

き TRIUMF

Half-life of $0 \nu \beta \beta$ Decay

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$
- Quenched or not?
- Phase-space factor (physics of the emitted electrons)
- The most accurately known theory input
- Nuclear matrix element (NME)
- Has to be provided from nuclear theory

き TRIUMF

Half-life of $0 \nu \beta \beta$ Decay

- Axial-vector coupling $\left(g_{\mathrm{A}}^{\text {free }} \approx 1.27\right)$
- Quenched or not?
- Phase-space factor (physics of the emitted electrons)
- The most accurately known theory input
- Nuclear matrix element (NME)
- Has to be provided from nuclear theory
- Currently the biggest uncertainty!

き TRIUMF

Half-life of $0 \nu \beta \beta$ Decay

What would be measured $\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G_{0 \nu}\left|M^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2} \begin{gathered}\text { New physics } \\ m_{\beta \beta}=\sum_{k}\left(U_{e k}\right)^{2} m_{k}\end{gathered}$

- Axial-vector coupling ($g_{\mathrm{A}}^{\text {free }} \approx 1.27$)
- Quenched or not?
- Phase-space factor (physics of the emitted electrons)
- The most accurately known theory input
- Nuclear matrix element (NME)
- Has to be provided from nuclear theory
- Currently the biggest uncertainty!

M. Agostini et al., Rev. Mod. Phys. 95, 025002 (2023)

¿ TRIUMF

Current reach of the experiments

M. Agostini et al., Rev. Mod. Phys. 95, 025002 (2023)

き TRIUMF

Next generation experiments

accelerated

き TRIUMF

Nuclear Many-body Methods

- Ab initio methods (IMSRG, NCSM,...)

き TRIUMF

Nuclear Many-body Methods

- Ab initio methods (IMSRG, NCSM,...)
+ Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons

き TRIUMF

Nuclear Many-body Methods

- Ab initio methods (IMSRG, NCSM,...)
+ Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
- VERY complex problem \rightarrow computational limitations

Nuclear Many-body Methods

- Ab initio methods (IMSRG, NCSM,...)
+ Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
- VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)

Nuclear Many-body Methods

- Ab initio methods (IMSRG, NCSM,...)
+ Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
- VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
- Solves the SE in valence space

Nuclear Many-body Methods

- Ab initio methods (IMSRG, NCSM,...)
+ Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
- VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
- Solves the SE in valence space
+ Less complex \rightarrow wider reach

Nuclear Many-body Methods

- Ab initio methods (IMSRG, NCSM,...)
+ Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
- VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
- Solves the SE in valence space
+ Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data

き TRIUMF

Nuclear Many-body Methods

- Ab initio methods (IMSRG, NCSM,...)
+ Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
- VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
- Solves the SE in valence space
+ Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)

Nuclear Many-body Methods

- Ab initio methods (IMSRG, NCSM,...)
+ Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
- VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
- Solves the SE in valence space
+ Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
- Describes nuclei as two-quasiparticle excitations

Nuclear Many-body Methods

- Ab initio methods (IMSRG, NCSM,...)
+ Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
- VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
- Solves the SE in valence space
+ Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
- Describes nuclei as two-quasiparticle excitations
+ Large model spaces, wide reach

Nuclear Many-body Methods

- Ab initio methods (IMSRG, NCSM,...)
+ Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
- VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
- Solves the SE in valence space
+ Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
- Describes nuclei as two-quasiparticle excitations
+ Large model spaces, wide reach
- Missing correlations, adjustable parameters,...

Nuclear Many-body Methods

- Ab initio methods (IMSRG, NCSM,...)
+ Aim to solve nuclear Schrödinger equation (SE) starting from interactions between nucleons
- VERY complex problem \rightarrow computational limitations
- Nuclear Shell Model (NSM)
- Solves the SE in valence space
+ Less complex \rightarrow wider reach
- Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)
- Describes nuclei as two-quasiparticle excitations
+ Large model spaces, wide reach
- Missing correlations, adjustable parameters,...
- ...

き TRIUMF

Outline

Introduction to double-beta decay

Corrections to $0 \nu \beta \beta$-decay nuclear matrix elements

Muon capture as a probe of $0 \nu \beta \beta$ decay

Summary and Outlook

き TRIUMF

Effective field theory corrections to $0 \nu \beta \beta$ decay

$$
\frac{1}{t_{1 / 2}^{\theta_{1 / 2}}}=g_{A}^{4} G^{0 \nu}\left|M_{L}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

き TRIUMF

Effective field theory corrections to $0 \nu \beta \beta$ decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|M_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

き TRIUMF

Effective field theory corrections to $0 \nu \beta \beta$ decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|M_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}+M_{\mathrm{usoft}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

き TRIUMF

Effective field theory corrections to $0 \nu \beta \beta$ decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|M_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}+M_{\mathrm{usoft}}^{0 \nu}+M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

き TRIUMF

Traditional $0 \nu \beta \beta$-decay operators

- Traditionally, the nuclear current includes the leading-order (LO) transition operators

き TRIUMF

Traditional $0 \nu \beta \beta$-decay operators

- Traditionally, the nuclear current includes the leading-order (LO) transition operators

Traditional $0 \nu \beta \beta$-decay operators

- Traditionally, the nuclear current includes the leading-order (LO) transition operators

$$
\begin{aligned}
\mathcal{J}^{0} & =\tau\left[g_{\mathrm{V}}(0)\right] \\
\boldsymbol{J} & =\tau\left[g_{\mathrm{A}}(0) \boldsymbol{\sigma}-g_{\mathrm{P}}(0) \boldsymbol{p}(\boldsymbol{p} \cdot \boldsymbol{\sigma})\right]
\end{aligned}
$$

き TRIUMF

Traditional $0 \nu \beta \beta$-decay operators

- Traditionally, the nuclear current includes the leading-order (LO) transition operators

$$
\begin{aligned}
\mathcal{J}^{0} & =\tau\left[g_{\mathrm{V}}(0)\right] \\
\boldsymbol{J} & =\tau\left[g_{\mathrm{A}}(0) \boldsymbol{\sigma}-g_{\mathrm{P}}(0) \boldsymbol{p}(\boldsymbol{p} \cdot \boldsymbol{\sigma})\right]
\end{aligned}
$$

¿ TRIUMF

Traditional $0 \nu \beta \beta$-decay operators

- Traditionally, the nuclear current includes the leading-order (LO) transition operators

$$
\begin{align*}
\mathcal{J}^{0} & =\tau\left[g_{\mathrm{V}}(0)\right] \tag{LO}\\
\boldsymbol{J} & =\tau\left[g_{\mathrm{A}}(0) \boldsymbol{\sigma}-g_{\mathrm{P}}(0) \boldsymbol{p}(\boldsymbol{p} \cdot \boldsymbol{\sigma})\right]
\end{align*}
$$

- and next-to-next-to-leading-order ($\mathrm{N}^{2} \mathrm{LO}$) corrections absorbed into form factors and induced weak-magnetism terms

¿ TRIUMF

Traditional $0 \nu \beta \beta$-decay operators

- Traditionally, the nuclear current includes the leading-order (LO) transition operators

$$
\begin{align*}
\mathcal{J}^{0} & =\tau\left[g_{\mathrm{V}}(0)\right] \tag{LO}\\
\boldsymbol{J} & =\tau\left[g_{\mathrm{A}}(0) \boldsymbol{\sigma}-g_{\mathrm{P}}(0) \boldsymbol{p}(\boldsymbol{p} \cdot \boldsymbol{\sigma})\right]
\end{align*}
$$

- and next-to-next-to-leading-order ($\mathrm{N}^{2} \mathrm{LO}$) corrections absorbed into form factors and induced weak-magnetism terms

き TRIUMF

Traditional $0 \nu \beta \beta$-decay operators

- Traditionally, the nuclear current includes the leading-order (LO) transition operators

$$
\begin{align*}
\mathcal{J}^{0} & =\tau\left[g_{\mathrm{V}}(0)\right] \tag{LO}\\
\boldsymbol{J} & =\tau\left[g_{\mathrm{A}}(0) \boldsymbol{\sigma}-g_{\mathrm{P}}(0) \boldsymbol{p}(\boldsymbol{p} \cdot \boldsymbol{\sigma})\right]
\end{align*}
$$

- and next-to-next-to-leading-order ($\mathrm{N}^{2} \mathrm{LO}$) corrections absorbed into form factors and induced weak-magnetism terms

$$
\begin{aligned}
\mathcal{J}^{0} & =\tau\left[g_{\mathrm{V}}\left(p^{2}\right)\right] \\
\boldsymbol{J} & =\tau\left[g_{\mathrm{A}}\left(p^{2}\right) \boldsymbol{\sigma}-g_{\mathrm{P}}\left(p^{2}\right) \boldsymbol{p}(\boldsymbol{p} \cdot \boldsymbol{\sigma})+i g_{\mathrm{M}}\left(p^{2}\right) \frac{\sigma \times p}{2 m_{\mathrm{N}}}\right]
\end{aligned}
$$

き TRIUMF

Traditional $0 \nu \beta \beta$-decay operators

- Traditionally, the nuclear current includes the leading-order (LO) transition operators

$$
\begin{align*}
\mathcal{J}^{0} & =\tau\left[g_{\mathrm{V}}(0)\right] \tag{LO}\\
\boldsymbol{J} & =\tau\left[g_{\mathrm{A}}(0) \boldsymbol{\sigma}-g_{\mathrm{P}}(0) \boldsymbol{p}(\boldsymbol{p} \cdot \boldsymbol{\sigma})\right]
\end{align*}
$$

- and next-to-next-to-leading-order ($\mathrm{N}^{2} \mathrm{LO}$) corrections absorbed into form factors and induced weak-magnetism terms

$$
\begin{aligned}
\mathcal{J}^{0} & =\tau\left[g_{\mathrm{V}}\left(p^{2}\right)\right] \\
\boldsymbol{J} & =\tau\left[g_{\mathrm{A}}\left(p^{2}\right) \boldsymbol{\sigma}-g_{\mathrm{P}}\left(p^{2}\right) \boldsymbol{p}(\boldsymbol{p} \cdot \boldsymbol{\sigma})+i g_{\mathrm{M}}\left(p^{2}\right) \frac{\sigma \times p}{2 m_{\mathrm{N}}}\right]
\end{aligned}
$$

¿ TRIUMF

Traditional nuclear matrix elements of neutrinoless double-beta decay

$$
M^{0 \nu}=\frac{R}{g_{\mathrm{A}}^{2}} \int \frac{\mathrm{~d} \mathbf{k}}{2 \pi^{2}} \frac{e^{i \mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{E_{\nu}+E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)-\frac{1}{2}\left(E_{1}-E_{2}\right)}
$$

- Energy of the virtual neutrino typically $E_{\nu}=\sqrt{m_{\nu}^{2}+\mathrm{k}^{2}} \sim|\mathrm{k}| \sim k_{\mathrm{F}} \sim 100 \mathrm{MeV}$ ("soft neutrinos")

¿ TRIUMF

Traditional nuclear matrix elements of neutrinoless double-beta decay

$$
M^{0 \nu}=\frac{R}{g_{\mathrm{A}}^{2}} \int \frac{\mathrm{~d} \mathbf{k}}{2 \pi^{2}} \frac{e^{i \mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{E_{\nu}+E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)-\frac{1}{2}\left(E_{1}-E_{2}\right)}
$$

- Energy of the virtual neutrino typically $E_{\nu}=\sqrt{m_{\nu}^{2}+\mathrm{k}^{2}} \sim|\mathrm{k}| \sim k_{\mathrm{F}} \sim 100 \mathrm{MeV}$ ("soft neutrinos")
- Electrons carry away roughly the same amount of energy: $\boldsymbol{E}_{1}-\boldsymbol{E}_{2} \sim 0 \mathrm{MeV}$

き TRIUMF

Traditional nuclear matrix elements of neutrinoless double-beta decay

$$
M^{0 \nu}=\frac{R}{g_{\mathrm{A}}^{2}} \int \frac{\mathrm{~d} \mathbf{k}}{2 \pi^{2}} \frac{e^{i \mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{E_{\nu}+E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)-\frac{1}{2}\left(E_{1}-E_{2}\right)}
$$

- Energy of the virtual neutrino typically $E_{\nu}=\sqrt{m_{\nu}^{2}+\mathrm{k}^{2}} \sim|\mathrm{k}| \sim k_{\mathrm{F}} \sim 100 \mathrm{MeV}$ ("soft neutrinos")
- Electrons carry away roughly the same amount of energy: $\boldsymbol{E}_{1}-E_{2} \sim 0 \mathrm{MeV}$

$$
\rightarrow M^{0 \nu}=\frac{R}{g_{\mathrm{A}}^{2}} \int \frac{\mathrm{~d} \mathbf{k}}{2 \pi^{2}} \frac{e^{i \mathbf{k}(\mathbf{x}-\mathbf{y})}}{|\mathbf{k}|} \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)}
$$

¿ TRIUMF

Closure approximation

Without closure approximation:
With closure approximation:

$$
M^{0 \nu} \propto \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)}
$$

き TRIUMF

Closure approximation

Without closure approximation:
With closure approximation:

$$
M^{0 \nu} \propto \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)}
$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies

き TRIUMF

Without closure approximation:

$$
M^{0 \nu} \propto \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)}
$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies
- Typically used in pnQRPA

Closure approximation

With closure approximation:

き TRIUMF

Without closure approximation:

$$
M^{0 \nu} \propto \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)}
$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies
- Typically used in pnQRPA

Closure approximation

With closure approximation:

- Assuming that $|\boldsymbol{k}| \gg E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)$: $E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right) \rightarrow\langle\boldsymbol{E}\rangle$

き TRIUMF

Without closure approximation:

$$
M^{0 \nu} \propto \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)}
$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies
- Typically used in pnQRPA

Closure approximation

With closure approximation:

- Assuming that $|\boldsymbol{k}| \gg E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)$: $\boldsymbol{E}_{n}-\frac{1}{2}\left(\boldsymbol{E}_{i}+\boldsymbol{E}_{f}\right) \rightarrow\langle\boldsymbol{E}\rangle$
- Use the relation $\sum_{n}|n\rangle\langle n|=1$

き TRIUMF

Without closure approximation:

$$
M^{0 \nu} \propto \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)}
$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies
- Typically used in pnQRPA

Closure approximation

With closure approximation:

- Assuming that $|\boldsymbol{k}| \gg E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)$: $\boldsymbol{E}_{n}-\frac{1}{2}\left(\boldsymbol{E}_{i}+\boldsymbol{E}_{f}\right) \rightarrow\langle\boldsymbol{E}\rangle$
- Use the relation $\sum_{n}|n\rangle\langle n|=1$

$$
\rightarrow M^{0 \nu} \propto \frac{\langle f| J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+\langle E\rangle}
$$

き TRIUMF

Without closure approximation:

$$
M^{0 \nu} \propto \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)}
$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies
- Typically used in pnQRPA

Closure approximation

With closure approximation:

- Assuming that $|\boldsymbol{k}| \gg E_{n}-\frac{1}{2}\left(E_{i}+E_{f}\right)$: $\boldsymbol{E}_{n}-\frac{1}{2}\left(\boldsymbol{E}_{i}+\boldsymbol{E}_{f}\right) \rightarrow\langle\boldsymbol{E}\rangle$
- Use the relation $\sum_{n}|n\rangle\langle n|=1$

$$
\rightarrow M^{0 \nu} \propto \frac{\langle f| J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+\langle E\rangle}
$$

- Typically used with other nuclear methods

き TRIUMF

Leading-order short-range contribution to $0 \nu \beta \beta$ decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|M_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}+M_{\mathrm{usoft}}^{0 \nu}+M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

き TRIUMF

Leading-order short-range contribution to $0 \nu \beta \beta$ decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|M_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}+M_{\mathrm{usoft}}^{0 \nu}+M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. P .. Lu... 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

き TRIUMF

Contact Term in pnQRPA and NSM

$$
M_{\mathrm{S}}^{0 \nu}=\frac{2 R}{\pi g_{\mathrm{A}}^{2}}\left\langle 0_{f}^{+}\right| \sum_{m, n} \tau_{m}^{-} \tau_{n}^{-} \int j_{0}(q r) \boldsymbol{h}_{\mathrm{S}}\left(q^{2}\right) q^{2} \mathrm{~d} q\left|0_{i}^{+}\right\rangle
$$

with

$$
h_{\mathrm{S}}\left(q^{2}\right)=2 \mathrm{~g}_{\nu}^{\mathrm{NN}} e^{-q^{2} /\left(2 \Lambda^{2}\right)} .
$$

${ }^{1}$ V. Cirigliano et al., PRC 100, 055504 (2019)

き TRIUMF

Contact Term in pnQRPA and NSM

$$
M_{\mathrm{S}}^{0 \nu}=\frac{2 R}{\pi g_{\mathrm{A}}^{2}}\left\langle 0_{f}^{+}\right| \sum_{m, n} \tau_{m^{-}} \tau_{n}^{-} \int j_{0}(q r) h_{\mathrm{S}}\left(q^{2}\right) q^{2} \mathrm{dq}\left|0_{i}^{+}\right\rangle
$$

Not known
with

$$
h_{\mathrm{S}}\left(q^{2}\right)=2 \mathrm{~g}_{\nu}^{\mathrm{NN}} e^{-q^{2} /\left(2 \Lambda^{2}\right)}
$$

${ }^{1}$ V. Cirigliano et al., PRC 100, 055504 (2019)

¿ TRIUMF

Contact Term in pnQRPA and NSM

$M_{\mathrm{S}}^{0 \nu}=\frac{2 R}{\pi g_{\mathrm{A}}^{2}}\left\langle 0_{f}^{+}\right| \sum_{m, n} \tau_{m^{-}} \tau_{n}^{-} \int j_{0}(q r) h_{\mathrm{S}}\left(q^{2}\right) q^{2} \mathrm{dq}\left|0_{i}^{+}\right\rangle$
Not known
with

$$
h_{\mathrm{S}}\left(q^{2}\right)=2 \mathrm{~g}_{\nu}^{\mathrm{NN}} \epsilon^{-q^{2} /\left(2 \Lambda^{2}\right)}
$$

- Fix to lepton-number-violating data

[^0]
¿ TRIUMF

Contact Term in pnQRPA and NSM

$M_{\mathrm{S}}^{0 \nu}=\frac{2 R}{\pi g_{\mathrm{A}}^{2}}\left\langle 0_{f}^{+}\right| \sum_{m, n} \tau_{m^{-}} \tau_{n}^{-} \int j_{0}(q r) h_{\mathrm{S}}\left(q^{2}\right) q^{2} \mathrm{dq}\left|0_{i}^{+}\right\rangle$
Not known
with

$$
h_{\mathrm{S}}\left(q^{2}\right)=2 \mathrm{~g}_{\nu}^{\mathrm{NN}} \epsilon^{-q^{2} /\left(2 \Lambda^{2}\right)}
$$

- Fix to lepton-number violating data

[^1]
き TRIUMF

Contact Term in pnQRPA and NSM

$M_{\mathrm{S}}^{0 \nu}=\frac{2 R}{\pi g_{\mathrm{A}}^{2}}\left\langle 0_{f}^{+}\right| \sum_{m, n} \tau_{m^{-}} \tau_{n}^{-} \int j_{0}(q r) h_{\mathrm{S}}\left(q^{2}\right) q^{2} \mathrm{dq}\left|0_{i}^{+}\right\rangle$
Not known
with

$$
h_{\mathrm{S}}\left(q^{2}\right)=2 \mathrm{~g}_{\nu}^{\mathrm{NN}} \epsilon^{-q^{2} /\left(2 \Lambda^{2}\right)}
$$

- Fix to lepton-number violating data
- Fix to synthetic few-body data

[^2]
¿ TRIUMF

Contact Term in pnQRPA and NSM

$M_{\mathrm{S}}^{0 \nu}=\frac{2 R}{\pi g_{\mathrm{A}}^{2}}\left\langle 0_{f}^{+}\right| \sum_{m, n} \tau_{m^{-}} \tau_{n}^{-} \int j_{0}(q r) h_{\mathrm{S}}\left(q^{2}\right) q^{2} \mathrm{dq}\left|0_{i}^{+}\right\rangle$
Not known
with

$$
h_{\mathrm{S}}\left(q^{2}\right)=2 \mathrm{~g}_{\nu}^{\mathrm{NN}} \epsilon^{-q^{2} /\left(2 \Lambda^{2}\right)}
$$

- Fix to lepton-number violating data
- Fix to synthetic few-body data

[^3]
き TRIUMF

Contact Term in pnQRPA and NSM

$$
M_{\mathrm{S}}^{0 \nu}=\frac{2 R}{\pi g_{\mathrm{A}}^{2}}\left\langle 0_{f}^{+}\right| \sum_{m, n} \tau_{m}^{-} \tau_{n}^{-} \int j_{0}(q r) \boldsymbol{h}_{\mathbf{S}}\left(\boldsymbol{q}^{2}\right) q^{2} \mathrm{~d} q\left|0_{i}^{+}\right\rangle
$$

Not known
with

$$
h_{\mathrm{S}}\left(q^{2}\right)=2 \mathrm{~g}_{\nu}^{\mathrm{NN}}-q^{2} /\left(2 \Lambda^{2}\right) .
$$

- Fix to lepton-number-violating data
- Fix to synthetic few-body data
- Estimate by Charge-Independence-Breaking
(CIB) term: $g_{\nu}^{\text {NN }} \approx \frac{1}{2}\left(\mathcal{C}_{1}+\mathcal{C}_{2}\right)$

[^4]
き TRIUMF

Contact Term in pnQRPA and NSM

$$
M_{\mathrm{S}}^{0 \nu}=\frac{2 R}{\pi g_{\mathrm{A}}^{2}}\left\langle 0_{f}^{+}\right| \sum_{m, n} \tau_{m}^{-} \tau_{n}^{-} \int j_{0}(q r) \boldsymbol{h}_{\mathrm{S}}\left(\boldsymbol{q}^{2}\right) q^{2} \mathrm{~d} q\left|0_{i}^{+}\right\rangle
$$

Not known
with

$$
h_{\mathrm{S}}\left(q^{2}\right)=2 \mathrm{~g}_{\nu}^{\mathrm{NN}}-q^{2} /\left(2 \Lambda^{2}\right) .
$$

- Fix to lepton-number-violating data
- Fix to synthetic few-body data
- Estimate by Charge-Independence-Breaking (CIB) term: $g_{\nu}^{\text {NN }} \approx \frac{1}{2}\left(\mathcal{C}_{1}+\mathcal{C}_{2}\right)$

[^5]
き TRIUMF

Contact Term in pnQRPA and NSM

$M_{\mathrm{S}}^{0 \nu}=\frac{2 R}{\pi g_{\mathrm{A}}^{2}}\left\langle 0_{f}^{+}\right| \sum_{m, n} \tau_{m}^{-} \tau_{n}^{-} \int j_{0}(q r) \boldsymbol{h}_{\mathrm{S}}\left(\boldsymbol{q}^{2}\right) q^{2} \mathrm{~d} q\left|0_{i}^{+}\right\rangle$
Not known
with

$$
\left.h_{\mathrm{S}}\left(q^{2}\right)=2 \mathrm{~g}_{\nu}^{\mathrm{NN}}\right)^{-q^{2} /\left(2 \Lambda^{2}\right)} .
$$

- Fix to lepton-number-violating data
- Fix to synthetic few-body data
- Estimate by Charge-Independence-Breaking (CIB) term: $g_{\nu}^{\text {NN }} \approx \frac{1}{2}\left(\mathcal{C}_{1}+\mathcal{C}_{2}\right)$

Couplings (g_{ν}^{NN}) and scales (Λ) of the Gaussian regulator ${ }^{1}$.

$g_{\nu}^{\mathrm{NN}}\left(\mathrm{fm}^{2}\right)$	$\Lambda(\mathrm{MeV})$
-0.67	450
-1.01	550
-1.44	465
-0.91	465
-1.44	349
-1.03	349

[^6]
き TRIUMF

Contact Term in pnQRPA and NSM

$$
\int C_{\mathrm{L} / \mathrm{S}}(r) \mathrm{d} r=M_{\mathrm{L} / \mathrm{S}}^{0 \nu}
$$

In pnQRPA:

$M_{\mathrm{S}} / M_{\mathrm{L}} \approx 30 \%-80 \%$

In NSM:

$M_{\mathrm{S}} / M_{\mathrm{L}} \approx 15 \%-50 \%$

LJ, P. Soriano and J. Menéndez, Phys. Lett. B 823, 136720 (2021)

き TRIUMF

Effective Neutrino Masses

- Effective neutrino masses combining the likelihood functions of GERDA (${ }^{76} \mathrm{Ge}$), CUORE $\left({ }^{130} \mathrm{Te}\right)$, EXO-200 (${ }^{136} \mathrm{Xe}$) and KamLAND-Zen (${ }^{136} \mathrm{Xe}$)
S. D. Biller, Phys. Rev. D 104, 012002 (2021)
- Middle bands: $M_{\mathrm{L}}^{(0 \nu)}$

Lower bands: $M_{\mathrm{L}}^{(0 \nu)}+M_{\mathrm{S}}^{(0 \nu)}$
Upper bands: $M_{\mathrm{L}}^{(0 \nu)}-M_{\mathrm{S}}^{(0 \nu)}$

LJ, P. Soriano and J. Menéndez, Phys. Lett. B 823, 136720 (2021)

¿ TRIUMF

Ultrasoft-neutrino contribution to $0 \nu \beta \beta$ decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|M_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}+M_{\mathrm{usoft}}^{0 \nu}+M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

¿ TRIUMF

Ultrasoft-neutrino contribution to $0 \nu \beta \beta$ decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|M_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}+M_{\mathrm{usoft}}^{0 \nu}+M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

¿ TRIUMF

Contribution of ultrasoft neutrinos

- Contribution of ultrasoft neutrinos ($|\mathrm{k}| \ll k_{\mathrm{F}} \approx 100 \mathrm{MeV}$) to $0 \nu \beta \beta$ decay:
V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

$$
M_{\mathrm{usoft}}^{0 \nu}=\frac{\pi R}{g_{\mathrm{A}}^{2}} \sum_{n} \frac{\mathrm{~d}^{d-1} k}{(2 \pi)^{d-1}} \frac{1}{|\mathbf{k}|}\left[\frac{\langle f| J_{\mu}|n\rangle\langle n| J^{\mu}|i\rangle}{|\mathbf{k}|+E_{2}+E_{n}-E_{i}-i \eta}+\frac{\langle f| J_{\mu}|n\rangle\langle n| J^{\mu}|i\rangle}{|\mathbf{k}|+E_{1}+E_{n}-E_{i}-i \eta}\right]
$$

き TRIUMF

Contribution of ultrasoft neutrinos

- Contribution of ultrasoft neutrinos $\left(|\mathrm{k}| \ll k_{\mathrm{F}} \approx 100 \mathrm{MeV}\right)$ to $0 \nu \beta \beta$ decay:
V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

$$
M_{\mathrm{usoft}}^{0 \nu}=\frac{\pi R}{g_{\mathrm{A}}^{2}} \sum_{n} \frac{\mathrm{~d}^{d-1} k}{(2 \pi)^{d-1}} \frac{1}{|\mathbf{k}|}\left[\frac{\langle f| J_{\mu}|n\rangle\langle n| J^{\mu}|i\rangle}{|\mathbf{k}|+E_{2}+E_{n}-E_{i}-i \eta}+\frac{\langle f| J_{\mu}|n\rangle\langle n| J^{\mu}|i\rangle}{|\mathbf{k}|+E_{1}+E_{n}-E_{i}-i \eta}\right]
$$

- Keeping only $\mathrm{k}=0$ term in the current:

$$
\begin{aligned}
M_{\mathrm{usoft}}^{0 \nu}\left(\mu_{\mathrm{us}}\right)= & -\frac{R}{2 \pi} \sum_{n}\langle f| \sum_{a} \boldsymbol{\sigma}_{a} \tau_{a}^{+}|n\rangle\langle n| \sum_{b} \sigma_{b} \tau_{b}^{+}|i\rangle \\
& \times\left[\left(E_{1}+E_{n}-E_{i}\right)\left(\ln \frac{\mu_{\mathrm{us}}}{2\left(E_{1}+E_{n}-E_{i}\right)}+1\right)\right. \\
& \left.+\left(E_{2}+E_{n}-E_{i}\right)\left(\ln \frac{\mu_{\mathrm{us}}}{2\left(E_{2}+E_{n}-E_{i}\right)}+1\right)\right]
\end{aligned}
$$

き TRIUMF

Contribution of ultrasoft neutrinos

- Contribution of ultrasoft neutrinos $\left(|\mathrm{k}| \ll k_{\mathrm{F}} \approx 100 \mathrm{MeV}\right)$ to $0 \nu \beta \beta$ decay:
V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

$$
M_{\text {usoft }}^{0 \nu}=\frac{\pi R}{g_{\mathrm{A}}^{2}} \sum_{n} \frac{\mathrm{~d}^{d-1} k}{(2 \pi)^{d-1}} \frac{1}{|\mathbf{k}|}\left[\frac{\langle f| J_{\mu}|n\rangle\langle n| J^{\mu}|i\rangle}{|\mathbf{k}|+E_{2}+E_{n}-E_{i}-i \eta}+\frac{\langle f| J_{\mu}|n\rangle\langle n| J^{\mu}|i\rangle}{|\mathbf{k}|+E_{1}+E_{n}-E_{i}-i \eta}\right]
$$

- Keeping only $\mathrm{k}=0$ term in the current:

$$
M_{\mathrm{usoft}}^{0 \nu}\left(\mu_{\mathrm{us}}\right)=-\frac{R}{2 \pi} \sum_{\eta}\langle f| \sum_{a} \boldsymbol{\sigma}_{a} \tau_{a}^{+}|n\rangle\langle n| \sum_{b} \boldsymbol{\sigma}_{b} \tau_{b}^{+}|i\rangle
$$

Are we missing a factor of $2 ? \times\left[\left(E_{1}+E_{n}-E_{i}\right)\left(\ln \frac{\mu_{\mathrm{us}}}{2\left(E_{1}+E_{n}-E_{i}\right)}+1\right)\right.$

$$
\left.+\left(E_{2}+E_{n}-E_{i}\right)\left(\ln \frac{\mu_{\mathrm{us}}}{2\left(E_{2}+E_{n}-E_{i}\right)}+1\right)\right]
$$

¿ TRIUMF

PRELIMINARY Ultrasoft neutrinos in pnQRPA and nuclear shell model

In pnQRPA:

$\left|M_{\text {usoft }}^{0 \nu} / M_{\mathrm{L}}^{0 \nu}\right| \leq 15 \%$

In NSM:

$\left|M_{\text {usoft }}^{0 \nu} / M_{\mathrm{L}}^{0 \nu}\right| \leq 5 \%$

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

¿ TRIUMF

Ultrasoft neutrinos as correction of the closure approximation

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|\boldsymbol{M}_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}+\boldsymbol{M}_{\mathrm{usoft}}^{0 \nu}+M_{\mathrm{N} 2 \mathrm{LO}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

¿ TRIUMF

Ultrasoft neutrinos as correction of the closure approximation

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|\boldsymbol{M}_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}+\boldsymbol{M}_{\mathrm{usoft}}^{0 \nu}+M_{\mathrm{N} 2 \mathrm{LO}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

In EFT:

$$
M_{\mathrm{L}}^{0 \nu} \propto \frac{\langle f| J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|}
$$

き TRIUMF

Ultrasoft neutrinos as correction of the closure approximation

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|\boldsymbol{M}_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}+\boldsymbol{M}_{\mathrm{usoft}}^{0 \nu}+M_{\mathrm{N} 2 \mathrm{LO}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

In EFT:

$$
\begin{aligned}
& M_{\mathrm{L}}^{0 \nu} \propto \frac{\langle f| J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|} \\
& \quad \rightarrow M_{\mathrm{cl}}^{0 \nu} \text { with }<E>=0
\end{aligned}
$$

¿ TRIUMF

Ultrasoft neutrinos as correction of the closure approximation

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|\boldsymbol{M}_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}+\boldsymbol{M}_{\mathrm{usoft}}^{0 \nu}+M_{\mathrm{N} 2 \mathrm{LO}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

In EFT:

$$
\begin{aligned}
& M_{\mathrm{L}}^{0 \nu} \propto \frac{\langle f| J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|} \\
& \quad \rightarrow M_{\mathrm{cl}}^{0 \nu} \text { with }<E>=0
\end{aligned}
$$

$$
M_{\mathrm{usoft}}^{0 \nu} \propto \sum_{n}\langle f| \sum_{a} \sigma_{a} \tau_{a}^{+}|n\rangle\langle n| \sum_{b} \sigma_{b} \tau_{b}^{+}|i\rangle
$$

$$
\times f\left(E_{n}\right)
$$

¿ TRIUMF

PRELIMINARY Ultrasoft neutrinos vs closure approximation in NSM

Nucleus	Interaction	$M^{0 \nu}$	$M_{\mathrm{cl}}^{0{ }^{2}}$	$M^{0 \nu}-M_{\mathrm{cl}}^{0 \nu}$	$M_{\text {usoft }}^{0 \nu}$
${ }^{48} \mathrm{Ca}$	KB3G	0.92	0.96	-0.04	-0.01
	GXPF1.a42	0.78	0.78	0.00	0.02
${ }^{76} \mathrm{Ge}$	JUN45	3.37	3.61	-0.24	-0.13
${ }^{82} \mathrm{Se}$	JUN45	3.16	3.39	-0.23	-0.11

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

[^7]
き TRIUMF

PRELIMINARY Ultrasoft neutrinos vs closure approximation in NSM

Nucleus	Interaction	$M^{0 \nu}$	$M_{\mathrm{cl}}^{0 \nu^{2}}$	$M^{0 \nu}-M_{\mathrm{cl}}^{0 \nu}$	$M_{\text {usoft }}^{0 \nu}$
${ }^{48} \mathrm{Ca}$	KB3G	0.92	0.96	-0.04	-0.01
	GXPF1.a42	0.78	0.78	0.00	0.02
${ }^{76} \mathrm{Ge}$	JUN45	3.37	3.61	-0.24	-0.13
${ }^{82} \mathrm{Se}$	JUN45	3.16	3.39	-0.23	-0.11

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

[^8]PRELIMINARY Ultrasoft neutrinos vs closure approximation in pnQRPA

Nucleus	$M^{0 \nu}$	$M_{\mathrm{cl}}^{0 \nu}$	$M^{0 \nu}-M_{\mathrm{cl}}^{0 \nu}$	$M_{\text {usoft }}^{0 \nu}$
${ }^{76} \mathrm{Ge}$	4.83	4.68	0.15	0.25
${ }^{82} \mathrm{Se}$	4.30	4.20	0.10	0.18
${ }^{96} \mathrm{Zr}$	4.29	4.04	0.25	0.25
${ }^{100} \mathrm{Mo}$	3.52	2.71	0.81	0.65
${ }^{116} \mathrm{Cd}$	4.31	4.47	-0.16	-0.03
${ }^{124} \mathrm{Sn}$	5.12	4.88	0.24	0.29
${ }^{128} \mathrm{Te}$	3.99	3.76	0.23	0.27
${ }^{130} \mathrm{Te}$	3.52	3.36	0.16	0.22
${ }^{136} \mathrm{Xe}$	2.60	2.71	-0.11	0.06

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

PRELIMINARY Ultrasoft neutrinos vs closure approximation in pnQRPA

Nucleus	$M^{0 \nu}$	$M_{\mathrm{cl}}^{0 \nu}$	$M^{0 \nu}-M_{\mathrm{cl}}^{0 \nu}$	$M_{\text {usoft }}^{0 \nu}$
${ }^{76} \mathrm{Ge}$	4.83	4.68	0.15	0.25
${ }^{82} \mathrm{Se}$	4.30	4.20	0.10	0.18
${ }^{96} \mathrm{Zr}$	4.29	4.04	0.25	0.25
${ }^{100} \mathrm{Mo}$	3.52	2.71	0.81	0.65
${ }^{116} \mathrm{Cd}$	4.31	4.47	-0.16	-0.03
${ }^{124} \mathrm{Sn}$	5.12	4.88	0.24	0.29
${ }^{128} \mathrm{Te}$	3.99	3.76	0.23	0.27
${ }^{130} \mathrm{Te}$	3.52	3.36	0.16	0.22
${ }^{136} \mathrm{Xe}$	2.60	2.71	-0.11	0.06

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

迅 TRIUMF

PRELIMINARY Ultrasoft neutrinos vs closure approximation in pnQRPA

Nucleus	$M^{0 \nu}$	$M_{\mathrm{cl}}^{0 \nu}$	$M^{0 \nu}-M_{\mathrm{cl}}^{0 \nu}$	$M^{0 \nu}\left(1^{+}\right)-M_{\mathrm{cl}}^{0 \nu}\left(1^{+}\right)$	$M_{\text {usoft }}^{0 \nu}$
${ }^{76} \mathrm{Ge}$	4.83	4.68	0.15	0.26	0.25
${ }^{82} \mathrm{Se}$	4.30	4.20	0.10	0.18	0.18
${ }^{96} \mathrm{Zr}$	4.29	4.04	0.25	0.26	0.25
${ }^{100} \mathrm{Mo}$	3.52	2.71	0.81	0.75	0.65
${ }^{116} \mathrm{Cd}$	4.31	4.47	-0.16	-0.06	-0.03
${ }^{124} \mathrm{Sn}$	5.12	4.88	0.24	0.31	0.29
${ }^{128} \mathrm{Te}$	3.99	3.76	0.23	0.26	0.27
${ }^{130} \mathrm{Te}$	3.52	3.36	0.16	0.20	0.22
${ }^{136} \mathrm{Xe}$	2.60	2.71	-0.11	0.02	0.06

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

き TRIUMF

Genuine \mathbf{N}^{2} LO

corrections to $0 \nu \beta \beta$ decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|M_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}+M_{\mathrm{usoft}}^{0 \nu}+M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

き TRIUMF

Genuine \mathbf{N}^{2} LO

corrections to $0 \nu \beta \beta$ decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|M_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}+M_{\mathrm{usoft}}^{0 \nu}+M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

き TRIUMF

PRELIMINARY Genuine \mathbf{N}^{2} LO Corrections in
pnQRPA

Nucleus	$M_{\mathrm{L}}^{0 \nu}$	$M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu}$	$\left\|M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu} / M_{\mathrm{L}}^{0 \nu}\right\|$
${ }^{76} \mathrm{Ge}$	4.83	$-0.04-0.53$	$\lesssim 10 \%$
${ }^{82} \mathrm{Se}$	4.30	$0.28-0.44$	$6 \%-10 \%$
${ }^{96} \mathrm{Zr}$	4.29	$-0.04-0.42$	$\lesssim 10 \%$
${ }^{100} \mathrm{Mo}$	3.52	$-0.05-0.62$	$\lesssim 18 \%$
${ }^{116} \mathrm{Cd}$	4.31	$-0.02-0.29$	$\lesssim 7 \%$
${ }^{124} \mathrm{Sn}$	5.12	$-0.04-0.66$	$\lesssim 13 \%$
${ }^{128} \mathrm{Te}$	3.99	$-0.04-0.55$	$\lesssim 14 \%$
${ }^{130} \mathrm{Te}$	3.52	$-0.03-0.52$	$\lesssim 15 \%$
${ }^{136} \mathrm{Xe}$	2.60	$-0.02-0.07$	$\lesssim 3 \%$

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

き TRIUMF

PRELIMINARY Genuine \mathbf{N}^{2} LO Corrections in

Nucleus	$M_{\mathrm{L}}^{0 \nu}$	$M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu}$	$\left\|M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu} / M_{\mathrm{L}}^{0 \nu}\right\|$
${ }^{76} \mathrm{Ge}$	4.83	$-0.04-0.53$	$\lesssim 10 \%$
${ }^{82} \mathrm{Se}$	4.30	$0.28-0.44$	$6 \%-10 \%$
${ }^{96} \mathrm{Zr}$	4.29	$-0.04-0.42$	$\lesssim 10 \%$
${ }^{100} \mathrm{Mo}$	3.52	$-0.05-0.62$	$\lesssim 18 \%$
${ }^{116} \mathrm{Cd}$	4.31	$-0.02-0.29$	$\lesssim 7 \%$
${ }^{124} \mathrm{Sn}$	5.12	$-0.04-0.66$	$\lesssim 13 \%$
${ }^{128} \mathrm{Te}$	3.99	$-0.04-0.55$	$\lesssim 14 \%$
${ }^{130} \mathrm{Te}$	3.52	$-0.03-0.52$	$\lesssim 15 \%$
${ }^{136} \mathrm{Xe}$	2.60	$-0.02-0.07$	$\lesssim 3 \%$

Caveats:

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

き TRIUMF

PRELIMINARY Genuine \mathbf{N}^{2} LO Corrections in pnQRPA

Nucleus	$M_{\mathrm{L}}^{0 \nu}$	$M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu}$	$\left\|M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu} / M_{\mathrm{L}}^{0 \nu}\right\|$
${ }^{76} \mathrm{Ge}$	4.83	$-0.04-0.53$	$\lesssim 10 \%$
${ }^{82} \mathrm{Se}$	4.30	$0.28-0.44$	$6 \%-10 \%$
${ }^{96} \mathrm{Zr}$	4.29	$-0.04-0.42$	$\lesssim 10 \%$
${ }^{100} \mathrm{Mo}$	3.52	$-0.05-0.62$	$\lesssim 18 \%$
${ }^{116} \mathrm{Cd}$	4.31	$-0.02-0.29$	$\lesssim 7 \%$
${ }^{124} \mathrm{Sn}$	5.12	$-0.04-0.66$	$\lesssim 13 \%$
${ }^{128} \mathrm{Te}$	3.99	$-0.04-0.55$	$\lesssim 14 \%$
${ }^{130} \mathrm{Te}$	3.52	$-0.03-0.52$	$\lesssim 15 \%$
${ }^{136} \mathrm{Xe}$	2.60	$-0.02-0.07$	$\lesssim 3 \%$

Caveats:

- Unknown parameters

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

き TRIUMF

PRELIMINARY Genuine N²LO Corrections in pnQRPA

Nucleus	$M_{\mathrm{L}}^{0 \nu}$	$M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu}$	$\left\|M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu} / M_{\mathrm{L}}^{0 \nu}\right\|$
${ }^{76} \mathrm{Ge}$	4.83	$-0.04-0.53$	$\lesssim 10 \%$
${ }^{82} \mathrm{Se}$	4.30	$0.28-0.44$	$6 \%-10 \%$
${ }^{96} \mathrm{Zr}$	4.29	$-0.04-0.42$	$\lesssim 10 \%$
${ }^{100} \mathrm{Mo}$	3.52	$-0.05-0.62$	$\lesssim 18 \%$
${ }^{116} \mathrm{Cd}$	4.31	$-0.02-0.29$	$\lesssim 7 \%$
${ }^{124} \mathrm{Sn}$	5.12	$-0.04-0.66$	$\lesssim 13 \%$
${ }^{128} \mathrm{Te}$	3.99	$-0.04-0.55$	$\lesssim 14 \%$
${ }^{130} \mathrm{Te}$	3.52	$-0.03-0.52$	$\lesssim 15 \%$
${ }^{136} \mathrm{Xe}$	2.60	$-0.02-0.07$	$\lesssim 3 \%$

Caveats:

- Unknown parameters
- Scale dependence

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

き TRIUMF

PRELIMINARY Genuine \mathbf{N}^{2} LO Corrections in
pnQRPA

Nucleus	$M_{\mathrm{L}}^{0 \nu}$	$M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu}$	$\left\|M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu} / M_{\mathrm{L}}^{0 \nu}\right\|$
${ }^{76} \mathrm{Ge}$	4.83	$-0.04-0.53$	$\lesssim 10 \%$
${ }^{82} \mathrm{Se}$	4.30	$0.28-0.44$	$6 \%-10 \%$
${ }^{96} \mathrm{Zr}$	4.29	$-0.04-0.42$	$\lesssim 10 \%$
${ }^{100} \mathrm{Mo}$	3.52	$-0.05-0.62$	$\lesssim 18 \%$
${ }^{116} \mathrm{Cd}$	4.31	$-0.02-0.29$	$\lesssim 7 \%$
${ }^{124} \mathrm{Sn}$	5.12	$-0.04-0.66$	$\lesssim 13 \%$
${ }^{128} \mathrm{Te}$	3.99	$-0.04-0.55$	$\lesssim 14 \%$
${ }^{130} \mathrm{Te}$	3.52	$-0.03-0.52$	$\lesssim 15 \%$
${ }^{136} \mathrm{Xe}$	2.60	$-0.02-0.07$	$\lesssim 3 \%$

Caveats:

- Unknown parameters
- Scale dependence
- Regulator dependence

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

き TRIUMF

Similar effects found in ab initio studies

- In ${ }^{76} \mathrm{Ge}$:

$$
\begin{aligned}
& M_{\mathrm{S}}^{0 \nu} / M_{\mathrm{L}}^{0 \nu} \sim 40 \% \\
& M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu} / M_{\mathrm{L}}^{0 \nu} \sim 5 \%
\end{aligned}
$$

A. Belley et al. arXiv:2308.15634 (2023)

A. Belley et al. arXiv:2308.15634 (2023)

き TRIUMF

Similar effects found in ab initio studies

- $\ln { }^{76} \mathrm{Ge}:$

$$
\begin{aligned}
& M_{\mathrm{S}}^{0 \nu} / M_{\mathrm{L}}^{0 \nu} \sim 40 \% \\
& M_{\mathrm{N}^{2} \mathrm{LO}}^{0 \nu} / M_{\mathrm{L}}^{0 \nu} \sim 5 \%
\end{aligned}
$$

A. Belley et al. arXiv:2308.15634 (2023)

- In ${ }^{130} \mathrm{Te}$ and ${ }^{136} \mathrm{Xe}$:

$$
M_{\mathrm{S}}^{0 \nu} / M_{\mathrm{L}}^{0 \nu} \sim 20 \%-120 \%
$$

A. Belley et al. arXiv:2307.15156(2023)

A. Belley et al. arXiv:2308.15634 (2023)

き TRIUMF

Outline

Introduction to double-beta decay

Corrections to $0 \nu \beta \beta$-decay nuclear matrix elements

Muon capture as a probe of $0 \nu \beta \beta$ decay

Summary and Outlook

き TRIUMF

Ordinary Muon Capture (OMC)

- A muon can replace an electron in an atom, forming a muonic atom

き TRIUMF

Ordinary Muon Capture (OMC)

- A muon can replace an electron in an atom, forming a muonic atom

き TRIUMF

Ordinary Muon Capture (OMC)

- A muon can replace an electron in an atom, forming a muonic atom
- Eventually bound on the $1 s_{1 / 2}$ orbit

き TRIUMF

Ordinary Muon Capture (OMC)

- A muon can replace an electron in an atom, forming a muonic atom
- Eventually bound on the $1 s_{1 / 2}$ orbit
- The muon can then be captured by the nucleus

$$
\mu^{-}+{ }_{Z}^{A} \mathbf{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathbf{Y}\left(J_{f}^{\pi_{f}}\right)
$$

き TRIUMF

Ordinary Muon Capture (OMC)

- A muon can replace an electron in an atom, forming a muonic atom
- Eventually bound on the $1 s_{1 / 2}$ orbit
- The muon can then be captured by the nucleus

$$
\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)
$$

き TRIUMF

Ordinary Muon Capture (OMC)

- A muon can replace an electron in an atom, forming a muonic atom
- Eventually bound on the $1 s_{1 / 2}$ orbit
- The muon can then be captured by the nucleus

$$
\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)
$$

Ordinary = non-radiative

$$
\binom{\text { Radiative muon capture (RMC): }}{\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)+\gamma}
$$

忍TRIUMF

$0 \nu \beta \beta$ Decay vs. Muon Capture

zo
0.
0.
0
0
0

き TRIUMF

$0 \nu \beta \beta$ Decay vs. Muon Capture

$$
{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \underset{Z+2}{{ }_{2} \mathrm{X}^{\prime}\left(J_{f}^{\pi_{f}}\right)+2 e^{-} .}
$$

$$
\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)
$$

Both involve hadronic current:

$$
\langle\boldsymbol{p}| j^{\alpha \dagger}|\boldsymbol{p}\rangle=\bar{\Psi}\left[g_{\mathrm{V}}\left(q^{2}\right) \gamma^{\alpha}-g_{\mathrm{A}}\left(q^{2}\right) \gamma^{\alpha} \gamma_{5}-g_{\mathrm{P}}\left(q^{2}\right) q^{\alpha} \gamma_{5}+i g_{\mathrm{M}}\left(q^{2}\right) \frac{\sigma^{\alpha \beta}}{2 m_{p}} q_{\beta}\right] \tau^{ \pm} \Psi
$$

き TRIUMF

$0 \nu \beta \beta$ Decay vs. Muon Capture

$$
{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow{ }_{Z+2}^{A} \mathrm{X}^{\prime}\left(J_{f}^{\pi_{f}}\right)+2 e^{-}
$$

$$
\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)
$$

- $q \approx 1 /\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right| \approx 100-200 \mathrm{MeV}$

Both involve hadronic current:

$$
\langle\boldsymbol{p}| j^{\alpha \dagger}|\boldsymbol{p}\rangle=\bar{\Psi}\left[g_{\mathrm{V}}\left(q^{2}\right) \gamma^{\alpha}-g_{\mathrm{A}}\left(q^{2}\right) \gamma^{\alpha} \gamma_{5}-g_{\mathrm{P}}\left(q^{2}\right) q^{\alpha} \gamma_{5}+i g_{\mathrm{M}}\left(q^{2}\right) \frac{\sigma^{\alpha \beta}}{2 m_{p}} q_{\beta}\right] \tau^{ \pm} \Psi
$$

き TRIUMF

$0 \nu \beta \beta$ Decay vs. Muon Capture

$$
{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \underset{Z+2}{{ }_{2} \mathrm{X}^{\prime}\left(J_{f}^{\pi_{f}}\right)+2 e^{-} .}
$$

$$
\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)
$$

- $q \approx 1 /\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right| \approx 100-200 \mathrm{MeV}$

Both involve hadronic current:

$$
\langle\boldsymbol{p}| j^{\alpha \dagger}|\boldsymbol{p}\rangle=\bar{\Psi}\left[g_{\mathrm{V}}\left(q^{2}\right) \gamma^{\alpha}-g_{\mathrm{A}}\left(q^{2}\right) \gamma^{\alpha} \gamma_{5}-g_{\mathrm{P}}\left(q^{2}\right) q^{\alpha} \gamma_{5}+i g_{\mathrm{M}}\left(q^{2}\right) \frac{\sigma^{\alpha \beta}}{2 m_{p}} q_{\beta}\right] \tau^{ \pm} \Psi
$$

- $\boldsymbol{q} \approx m_{\mu}+M_{i}-M_{f}-m_{e}-E_{X} \approx 100 \mathrm{Me}$

き TRIUMF

$0 \nu \beta \beta$ Decay vs. Muon Capture

$$
{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow{ }_{Z+2}^{{ }_{2}} \mathrm{X}^{\prime}\left(J_{f}^{\pi_{f}}\right)+2 e^{-}
$$

$$
\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)
$$

- $q \approx 1 /\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right| \approx 100-200 \mathrm{MeV}$
- Yet hypothetical

$$
\begin{gathered}
\text { Both involve hadronic current: } \\
\langle\boldsymbol{p}| j^{\alpha \dagger}|\boldsymbol{p}\rangle=\bar{\Psi}\left[g_{\mathrm{V}}\left(q^{2}\right) \gamma^{\alpha}-g_{\mathrm{A}}\left(q^{2}\right) \gamma^{\alpha} \gamma_{5}-g_{\mathrm{P}}\left(q^{2}\right) q^{\alpha} \gamma_{5}+i g_{\mathrm{M}}\left(q^{2}\right) \frac{\sigma^{\alpha \beta}}{2 m_{p}} q_{\beta}\right] \tau^{ \pm} \Psi
\end{gathered}
$$

- $\boldsymbol{q} \approx m_{\mu}+M_{i}-M_{f}-m_{e}-E_{X} \approx 100 \mathbf{M e} \overline{\mathbf{R}_{0}}$

き TRIUMF

$0 \nu \beta \beta$ Decay vs. Muon Capture

$$
{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow{ }_{Z+2}^{{ }_{2}} \mathrm{X}^{\prime}\left(J_{f}^{\pi_{f}}\right)+2 e^{-}
$$

$$
\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)
$$

- $q \approx 1 /\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right| \approx 100-200 \mathrm{MeV}$
- Yet hypothetical
- $\boldsymbol{q} \approx m_{\mu}+M_{i}-M_{f}-m_{e}-E_{X} \approx 100 \mathrm{Me}$
- Has been measured!

Both involve hadronic current:

$$
\langle\boldsymbol{p}| j^{\alpha \dagger}|\boldsymbol{p}\rangle=\bar{\Psi}\left[g_{\mathrm{V}}\left(q^{2}\right) \gamma^{\alpha}-g_{\mathrm{A}}\left(q^{2}\right) \gamma^{\alpha} \gamma_{5}-g_{\mathrm{P}}\left(q^{2}\right) q^{\alpha} \gamma_{5}+i g_{\mathrm{M}}\left(q^{2}\right) \frac{\sigma^{\alpha \beta}}{2 m_{p}} q_{\beta}\right] \tau^{ \pm} \Psi
$$

き TRIUMF

Ab initio No-Core Shell Model (NCSM)

- Solve nuclear many-body problem

$$
H^{(A)} \Psi^{(A)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{A}\right)=E^{(A)} \Psi^{(A)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{A}\right)
$$

$$
\begin{gathered}
N=2 n+I \\
I=1,3 \\
I=0,2 \\
I=1 \\
\quad I=0
\end{gathered}
$$

$$
\left.E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{}\right) \Omega
$$

Figure courtesy of P. Navrátil

き TRIUMF

Ab initio No-Core Shell Model (NCSM)

- Solve nuclear many-body problem

$$
H^{(A)} \Psi^{(A)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{A}\right)=E^{(A)} \Psi^{(A)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{A}\right)
$$

- Two- (NN) and three-nucleon (3N) forces from χ EFT

$$
H^{(A)}=\sum_{i=1}^{A} \frac{p_{i}^{2}}{2 m}+\sum_{i<j=1}^{A} V^{N N}\left(\mathrm{r}_{i}-\mathrm{r}_{j}\right)+\sum_{i<j<k=1}^{A} V_{i j k}^{3 N}
$$

$$
\begin{gathered}
N=2 n+I \\
I=1,3 \\
I=0,2
\end{gathered}
$$

$$
I=0
$$

Figure courtesy of P. Navrátil

$$
I=1
$$

Ab initio No-Core Shell Model (NCSM)

- Solve nuclear many-body problem

$$
H^{(A)} \Psi^{(A)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{A}\right)=E^{(A)} \Psi^{(A)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{A}\right)
$$

- Two- (NN) and three-nucleon (3N) forces from χ EFT

$$
H^{(A)}=\sum_{i=1}^{A} \frac{p_{i}^{2}}{2 m}+\sum_{i<j=1}^{A} V^{N N}\left(\mathrm{r}_{i}-\mathrm{r}_{j}\right)+\sum_{i<j<k=1}^{A} V_{i j k}^{3 N}
$$

- A-nucleon wave functions expanded in harmonic oscillator (HO) basis

$$
\begin{gathered}
N=2 n+I \\
I=1,3 \\
I=0,2 \\
I=1 \\
\quad I=0
\end{gathered}
$$

$$
\Psi^{(A)}=\sum_{N=0}^{N_{\max }} \sum_{j} c_{N j} \Phi_{N j}^{\mathrm{HO}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{A}\right)
$$

$$
E=\left(2 n+l+\frac{3}{2}\right) \emptyset \Omega
$$

Figure courtesy of P. Navrátil

き TRIUMF

Dependency on the Harmonic-Oscillator Frequency

$\Psi^{(A)}=\sum_{N=0}^{N_{\max }} \sum_{j} c_{N j} \Phi_{N j}^{\mathrm{HO}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{A}\right)$

- The expansion depends on the HO frequency because of the $N_{\text {max }}$ truncation

¿ TRIUMF

Dependency on the Harmonic-Oscillator Frequency

$\Psi^{(A)}=\sum_{N=0}^{N_{\max }} \sum_{j} c_{N j} \Phi_{N j}^{\mathrm{HO}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{A}\right)$

- The expansion depends on the HO frequency because of the $N_{\max }$ truncation
- Increasing $N_{\max }$ leads towards convergenced results

Ground-state energy of ${ }^{6} \mathrm{Li}$

¿ TRIUMF

Harmonic-Oscillator Frequency Dependence of Muon Capture

${ }^{6} \mathrm{Li}\left(1_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{6} \mathrm{He}\left(0_{\mathrm{gs}}^{+}\right)+\nu_{\mu}$

LJ, Navrátil, Kotila and Kravvaris, arXiv:2403.XXXX

き TRIUMF

Harmonic-Oscillator Frequency Dependence of Muon Capture

$$
{ }^{6} \mathrm{Li}\left(1_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{6} \mathrm{He}\left(0_{\mathrm{gs}}^{+}\right)+\nu_{\mu}
$$

$$
{ }^{12} \mathrm{C}\left(0_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{12} \mathrm{~B}\left(1_{\mathrm{gs}}^{+}\right)+\nu_{\mu}
$$

LJ, Navrátil, Kotila and Kravvaris, arXiv:2403.XXXX

き TRIUMF

Muon Capture on ${ }^{6}$ Li

- NCSM slightly underestimating experiment

$$
{ }^{6} \mathrm{Li}\left(1_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{6} \mathrm{He}\left(0_{\mathrm{gs}}^{+}\right)+\nu_{\mu}
$$

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

き TRIUMF

- NCSM slightly underestimating experiment
- The results are consistent with the variational (VMC) and Green's function Monte-Carlo (GFMC) calculations

King et al., Phys. Rev. C 105, L042501 (2022)

Muon Capture on ${ }^{6}$ Li

${ }^{6} \mathrm{Li}\left(1_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{6} \mathrm{He}\left(0_{\mathrm{gs}}^{+}\right)+\nu_{\mu}$

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

き TRIUMF

Muon Capture on ${ }^{6}$ Li

- NCSM slightly underestimating experiment
- The results are consistent with the variational (VMC) and Green's function Monte-Carlo (GFMC) calculations

King et al., Phys. Rev. C 105, L042501 (2022)

- Slow convergence due to cluster-structure?

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

き TRIUMF

Muon Capture on ${ }^{6}$ Li

- NCSM slightly underestimating experiment
- The results are consistent with the variational (VMC) and Green's function Monte-Carlo (GFMC) calculations

King et al., Phys. Rev. C 105, L042501 (2022)

- Slow convergence due to cluster-structure?
- NCSM with continuum (NCSMC) might give better results?

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

き TRIUMF

- The $\mathrm{NN}-\mathrm{N}^{4} \mathrm{LO}+3 \mathrm{~N}_{\text {lnl }}^{*}$ interaction with the additional spin-orbit 3N-force term most consistent with experiment

Muon capture on ${ }^{12} \mathbf{C}$

$$
{ }^{12} \mathrm{C}\left(0_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{12} \mathrm{~B}\left(1_{\mathrm{gs}}^{+}\right)+\nu_{\mu}
$$

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

き TRIUMF

- The $\mathrm{NN}-\mathrm{N}^{4} \mathrm{LO}+3 \mathrm{~N}_{\text {lnl }}^{*}$ interaction with the additional spin-orbit 3N-force term most consistent with experiment
- Capture rates to excited states in ${ }^{12} \mathrm{~B}$
also well reproduced
Muon capture on ${ }^{12} \mathbf{C}$

$$
{ }^{12} \mathrm{C}\left(0_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{12} \mathrm{~B}\left(1_{\mathrm{gs}}^{+}\right)+\nu_{\mu}
$$

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

Muon capture on ${ }^{12} \mathrm{C}$

$$
{ }^{12} \mathrm{C}\left(0_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{12} \mathrm{~B}\left(1_{\mathrm{gs}}^{+}\right)+\nu_{\mu}
$$

- The $\mathrm{NN}-\mathrm{N}^{4} \mathrm{LO}+3 \mathrm{~N}_{\text {Inl }}^{*}$ interaction with the additional spin-orbit 3N-force term most consistent with experiment
- Capture rates to excited states in ${ }^{12} \mathrm{~B}$ also well reproduced
- Rates comparable with earlier NCSM results

Hayes et al., Phys. Rev. Lett. 91, 012502 (2003)

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

- The $\mathrm{NN}-\mathrm{N}^{4} \mathrm{LO}+3 \mathrm{~N}_{\ln 1}^{*}$ interaction with the additional spin-orbit 3N-force term most consistent with experiment
- Capture rates to excited states in ${ }^{12} \mathrm{~B}$ also well reproduced
- Rates comparable with earlier NCSM results

Hayes et al., Phys. Rev. Lett. 91, 012502 (2003)

- 3N-forces essential to reproduce the measured rate

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

¿ TRIUMF

Muon capture on ${ }^{16} \mathrm{O}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$

色TRIUMF

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
- Less sensitive to the interaction than ${ }^{12} \mathrm{C}\left(\mu^{-}, \nu_{\mu}\right)^{12} \mathrm{~B}$

Muon capture on ${ }^{16} \mathrm{O}$

き TRIUMF

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
- Less sensitive to the interaction than ${ }^{12} \mathrm{C}\left(\mu^{-}, \nu_{\mu}\right){ }^{12} \mathrm{~B}$
- Captures to excited states in ${ }^{16} \mathrm{~N}$ also well reproduced

Muon capture on ${ }^{16} \mathbf{O}$

Total Muon-Capture Rates

- Rates obtained summing over ~ 50 final states of each parity

$$
\mu^{-}+{ }^{12} \mathrm{C}\left(0_{\mathrm{gs}}^{+}\right) \rightarrow \nu_{\mu}+{ }^{12} \mathrm{~B}\left(J_{k}^{\pi}\right)
$$

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

Total Muon-Capture Rates

- Rates obtained summing over ~ 50 final states of each parity
- Summing up the rates, we capture $\sim 85 \%$ of the total rate in both ${ }^{12} \mathrm{~B}$ and ${ }^{16} \mathrm{~N}$

$$
\mu^{-}+{ }^{12} \mathrm{C}\left(0_{\mathrm{gs}}^{+}\right) \rightarrow \nu_{\mu}+{ }^{12} \mathrm{~B}\left(J_{k}^{\pi}\right)
$$

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

Total Muon-Capture Rates

- Rates obtained summing over ~ 50 final states of each parity
- Summing up the rates, we capture $\sim 85 \%$ of the total rate in both ${ }^{12} \mathrm{~B}$ and ${ }^{16} \mathrm{~N}$
- Better estimation with the Lanczos strength function method underway

$$
\mu^{-}+{ }^{12} \mathrm{C}\left(0_{\mathrm{gs}}^{+}\right) \rightarrow \nu_{\mu}+{ }^{12} \mathrm{~B}\left(J_{k}^{\pi}\right)
$$

LJ, Navrátil, Kotila, Kravvaris, arXiv:2403.XXXX

き TRIUMF

Outline

Introduction to double-beta decay

Corrections to $0 \nu \beta \beta$-decay nuclear matrix elements

Muon capture as a probe of $0 \nu \beta \beta$ decay

Summary and Outlook

き TRIUMF

Summary

- Newly introduced contact term significantly enhances the $0 \nu \beta \beta$-decay NMEs

Summary

- Newly introduced contact term significantly enhances the $0 \nu \beta \beta$-decay NMEs
- Studying the contribution from ultrasoft neutrinos may help us estimate the closure correction to the $0 \nu \beta \beta$-decay NMEs

Summary

- Newly introduced contact term significantly enhances the $0 \nu \beta \beta$-decay NMEs
- Studying the contribution from ultrasoft neutrinos may help us estimate the closure correction to the $0 \nu \beta \beta$-decay NMEs
- Ab initio muon-capture studies could shed light on g_{A} quenching at finite momentum exchange regime relevant for $0 \nu \beta \beta$ decay

Outlook

- Study the effect of vector two-body currents (one-pion-exchange \& pion-in-flight) on OMC rates

き TRIUMF

Outlook

- Study the effect of vector two-body currents (one-pion-exchange \& pion-in-flight) on OMC rates
- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG

Outlook

- Study the effect of vector two-body currents (one-pion-exchange \& pion-in-flight) on OMC rates
- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead (ongoing)

き TRIUMF

Outlook

- Study the effect of vector two-body currents (one-pion-exchange \& pion-in-flight) on OMC rates
- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead (ongoing)
- Study the effect of exact two-body currents and/or continuum on the OMC rates

Outlook

- Study the effect of vector two-body currents (one-pion-exchange \& pion-in-flight) on OMC rates
- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead (ongoing)
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes

Outlook

- Study the effect of vector two-body currents (one-pion-exchange \& pion-in-flight) on OMC rates
- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead (ongoing)
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes
- ${ }^{16} \mathrm{~N}$ potential candidate for forbidden β-decay studies (ongoing)

Outlook

- Study the effect of vector two-body currents (one-pion-exchange \& pion-in-flight) on OMC rates
- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead (ongoing)
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes
- ${ }^{16} \mathrm{~N}$ potential candidate for forbidden β-decay studies (ongoing)
- ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ are both of interest in neutrino-scattering experiments

$$
\left(\nu_{\mu}+{ }^{12} \mathrm{C} \rightarrow \mu^{-}+{ }^{12} \mathrm{~N}\right)
$$

きTRIUMF

Thank you Merci

[^0]: ${ }^{1}$ V. Cirigliano et al., PRC 100, 055504 (2019)

[^1]: ${ }^{1}$ V. Cirigliano et al., PRC 100, 055504 (2019)

[^2]: ${ }^{1}$ V. Cirigliano et al., PRC 100, 055504 (2019)

[^3]: ${ }^{1}$ V. Cirigliano et al., PRC 100, 055504 (2019)

[^4]: ${ }^{1}$ V. Cirigliano et al., PRC 100, 055504 (2019)

[^5]: ${ }^{1}$ V. Cirigliano et al., PRC 100, 055504 (2019)

[^6]: ${ }^{1}$ V. Cirigliano et al., PRC 100, 055504 (2019)

[^7]: ${ }^{2}$ R. A. Sen'kov, M. Horoi, , PRC 90, 051301(R) (2014)

[^8]: ${ }^{2}$ R. A. Sen'kov, M. Horoi, , PRC 90, 051301 (R) (2014)

