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Corrections to 0v33-decay nuclear matrix elements
Muon capture as a probe of 0v35 decay
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@ May happen, when 3-decay is not
allowed / suppressed
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B :n—p+e +0
BB 2n — 2p + 2e (+20)

@ May happen, when 3-decay is not
allowed / suppressed
@ Two modes:
» Standard two-neutrino 33 decay

(2vBp)
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B :n—p+e +0
BB 2n — 2p + 2e (+20)

@ May happen, when 3-decay is not
allowed / suppressed
@ Two modes:
» Standard two-neutrino 33 decay

(2v5P)
» Hypothetical neutrinoless 33 (0v373)

decay
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Neutrinoless double-beta decay
via light neutrino exhange
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Neutrinoless double-beta decay
via light neutrino exhange
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Neutrinoless double-beta decay
via light neutrino exhange
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@ Violates lepton-number conservation

@ Requires that neutrinos are Majorana
particles

@ Runs virtually through all J™ states in
the intermediate nucleus
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What would be
measured

Half-life of 03 Decay
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Current reach of the experiments
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M. Agostini et al., Rev. Mod. Phys. 95, 025002 (2023)
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@ Ab initio methods (IMSRG, NCSM,...)

+ Aim to solve nuclear Schrodinger equation (SE)
starting from interactions between nucleons
— VERY complex problem — computational limitations

@ Nuclear Shell Model (NSM)

Nuclear Many-body Methods
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Nuclear Many-body Methods

@ Ab initio methods (IMSRG, NCSM,...)
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@ Ab initio methods (IMSRG, NCSM,...)
+ Aim to solve nuclear Schrodinger equation (SE)

starting from interactions between nucleons (p. <n.
— VERY complex problem — computational limitations 7
@ Nuclear Shell Model (NSM) N IB“ N
> Solves the SE in valence space D D
+ Less complex — wider reach - -
— Effective Hamiltonian relies on experimental data (“(. +o ’) (“(’ ToL
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@ Ab initio methods (IMSRG, NCSM,...)
+ Aim to solve nuclear Schrodinger equation (SE)
starting from interactions between nucleons
— VERY complex problem — computational limitations
@ Nuclear Shell Model (NSM)

» Solves the SE in valence space
+ Less complex — wider reach
— Effective Hamiltonian relies on experimental data

@ Quasiparticle Random-Phase Approximation (QRPA)
» Describes nuclei as two-quasiparticle excitations
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@ Ab initio methods (IMSRG, NCSM,...)

+ Aim to solve nuclear Schrodinger equation (SE)
starting from interactions between nucleons

— VERY complex problem — computational limitations

@ Nuclear Shell Model (NSM)

» Solves the SE in valence space

+ Less complex — wider reach

— Effective Hamiltonian relies on experimental data
@ Quasiparticle Random-Phase Approximation (QRPA)

» Describes nuclei as two-quasiparticle excitations
+ Large model spaces, wide reach
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» Solves the SE in valence space
+ Less complex — wider reach
— Effective Hamiltonian relies on experimental data

@ Quasiparticle Random-Phase Approximation (QRPA)

» Describes nuclei as two-quasiparticle excitations
+ Large model spaces, wide reach
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Corrections to 0v33-decay nuclear matrix elements
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V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)
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Traditional 0r33-decay operators

@ Traditionally, the nuclear current includes the leading-order (LO) transition operators

T = 7lgv(0)] Lo % ’E {:

J =1[ga(0)o — gp(0)p(p - )]

@ and next-to-next-to-leading-order (N?LO) corrections absorbed into form factors and

induced weak-magnetism terms

J? = rlgv (p?)] N2LO
oXp

J =7 |ga(p®)o —gp(p*)p(p- o) +ign(p?)
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Traditional nuclear matrix elements of
neutrinoless double-beta decay
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212 B, E + E, — 3(E; + Ef) — 3(E1 — E»)

@ Energy of the virtual neutrino typically £, = /m?2 + k? ~ |k| ~ kr ~ 100 MeV

(“soft neutrinos”)

& Discovery,
¢ accelerated



& TRIUMF

Traditional nuclear matrix elements of

neutrinoless double-beta decay

yov_ B / dk ezk(x y) (f1Ju(x) In) (n] J#(y) |d)
2m2 E + E, — 3(E; + Ef) — 3(E1 — E»)

@ Energy of the virtual neutrino typically £, = /m?2 + k? ~ |k| ~ kr ~ 100 MeV

(“soft neutrinos”)
@ Electrons carry away roughly the same amount of energy: E;

— E5 ~ 0 MeV
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Traditional nuclear matrix elements of
neutrinoless double-beta decay

yov_ B / dk ezk(x y) (f1Ju(x) In) (n] J#(y) |d)
2m2 E + E, — 3(E; + Ef) — 3(E1 — E»)

@ Energy of the virtual neutrino typically £, = /m?2 + k? ~ |k| ~ kr ~ 100 MeV
(“soft neutrinos”)

@ Electrons carry away roughly the same amount of energy: E1 — E5 ~ 0 MeV

o B / dk e“‘(" Y <f|J( ) [n) {n| J*(y) |7)
2m2 \k|+E — (B + Ey)
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Without closure approximation:
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Closure approximation

With closure approximation:
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Without closure approximation:
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@ Intermediate states |n) with all

spin-parities J™ up to high energies

Closure approximation

With closure approximation:
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Without closure approximation:

S 170 ) (n T () 13)
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@ Intermediate states |n) with all
spin-parities J™ up to high energies
» Typically used in pnQRPA

Closure approximation

With closure approximation:

g Discovery,
¢ accelerated



& TRIUMF

Without closure approximation:

” (f| Ju(x) ) (n| J*(y) |7)
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n

@ Intermediate states |n) with all
spin-parities J™ up to high energies
» Typically used in pnQRPA

Closure approximation

With closure approximation:
@ Assuming that |k| >> E, — 1(E; + Ey):

E, —

5(Ei + Ef) — (E)
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Without closure approximation:
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@ Intermediate states |n) with all
spin-parities J™ up to high energies
» Typically used in pnQRPA

Closure approximation

With closure approximation:

@ Assuming that |k| >> E, — 1(E; + Ey):

E, — 5(Ei + Ef) — (E)
@ Use the relation > |n) (n| =1
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Closure approximation

Without closure approximation: With closure approximation:
T @ Assuming that |k| >> E, — 1(E; + Ey):
3 o 3 U] ) (nl 77(9) 1 E, — L(E; + Ey) — (E)
|kl + En = 5(Ei + By) @ Use the relation > |n) (n| =1

@ Intermediate states |n) with all J,(x)JH(y) |i
spin-parities J™ up to high energies ~ — | M J |’f<(| —l)— <E(>Y) a
» Typically used in pnQRPA
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Without closure approximation:

” (f| Ju(x) ) (n| J*(y) |7)
MY o ]k|j—En—%(Ei+Ef)

n

@ Intermediate states |n) with all
spin-parities J™ up to high energies
» Typically used in pnQRPA

Closure approximation

With closure approximation:

@ Assuming that |k| >> E, — 1(E; + Ey):

E, — 5(Ei + Ef) — (E)
@ Use the relation > |n) (n| =1

(1 Ju(x)J*(y) |2)

— [ MY
k| + (E)

» Typically used with other nuclear
methods
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Leading-order short-range
contribution to 0v3/ decay

2
1 4 ~0 0 2 [ Mpp
= = 9AGY | MPY + MY + Mgl e + Moy o ° | —2
t1/2 Me

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)
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Leading-order short-range
contribution to 0v3/ decay

2
1 4 ~0 0 2 [ Mpp
= = 9AGY | MPY + MY + Mgl e + Moy o ° | —2
t1/2 Me

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. P_.. <. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)
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_ 2R oﬂz /]0 qr)hs(q®) ¢*dq|0}")

with

hs(q?) = 2g, N e /A

v, Cirigliano et al., PRC 100, 055504 (2019)
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2R
= 0*\ Z /]0 gr)hs(g*) ¢°dq(0]")

Not known

hs(a?) =—q2/<2A2> .

with

v, Cirigliano et al., PRC 100, 055504 (2019)
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2R
= 0+\ Z /Jo gr)hs(g*) ¢°dq(0]")

Not known

hs(a?) =—q2/<2A2> .

@ Fix to lepton-number-violating data

with

v, Cirigliano et al., PRC 100, 055504 (2019)

> Discovery,
¢ accelerated
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“« TRIUMF Contact Term in pnQRPA and NSM

2R _ _f.
MY = $<0Jﬂ > T /Jo(qr)hs(ff) ¢*dgl0;)
A m,n

Not known

hs(@?) :—«f/@m |

with

v, Cirigliano et al., PRC 100, 055504 (2019)

> Discovery,
¢ accelerated



AL
“« TRIUMF Contact Term in pnQRPA and NSM

2R _ (.
M = (0> 7 /Jo(qr)hs(ff) ¢°dq|0f)

Not known
with
hs(e?) :—cf/(w) |
-

@ Fix to synthetic few-body data

v, Cirigliano et al., PRC 100, 055504 (2019)

> Discovery,
¢ accelerated
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“« TRIUMF Contact Term in pnQRPA and NSM

2R _ (.
M = (0> 7 /Jo(qr)hs(ff) ¢°dq|0f)

7rgA
Not known
with
hs(a?) :—q2/<2A2> |
-
°

v, Cirigliano et al., PRC 100, 055504 (2019)

> Discovery,
¢ accelerated



& TRIUMF

Contact Term in pnQRPA and NSM

Mg = 2ot Z / jolar)hs () ¢*dq|0f)
A

779
Not known
with
hs(a?) =—q2/<2A2> .
o
(-

@ Estimate by Charge-Independence-Breaking
(CIB) term: gi'N ~ 1(C; + Cy)

V. Cirigliano et al., PRC 100, 055504 (2019)

a3 Discovery,
¢ accelerated
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Contact Term in pnQRPA and NSM

MY = 0+\ Z /Jo gr)hs(a®) ¢*dg|0])
A

779
Not known
with
hs(a?) =—q2/<2A2> .
o
(-

@ Estimate by Charge-Independence-Breaking
(CIB) term: g)'N ~ 3(C1 + C2)

v, Cirigliano et al., PRC 100, 055504 (2019)

g Discovery,
¢ accelerated
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Contact Term in pnQRPA and NSM

MO — 0+‘ Z / jo(gqr) hS(qz) q2dq\0+> Couplings (gNN) and scales (A) of the Gaussian
7Tg A regulator .
with NO’[ known Q,I,\IN (fmz) A (MeV)

hs(q?) = \—a°/(2A%) -0.67 450

-1.01 550

-1.44 465

° -0.91 465
) -1.44 349 _g
@ Estimate by Charge-Independence-Breaking -1.03 349 g‘é
(CIB) term: ¢~ ~ 1(C; + Cy) 32
88
V. Cirigliano et al., PRC 100, 055504 (2019) Qs
16/39
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/C’L/S(r)dr = MB7S

In pnQRPA:
Ms/ML ~ 30% — 80%

In NSM:
Mg /My, =~ 15% — 50%

Contact Term in pnQRPA and NSM

; —a
i CS,max
4 — CS,min
2 ]
0
V" pnQrPA NSM
0 5 10 0 5 10
r(fm) r(fm)

LJ, P. Soriano and J. Menéndez, Phys. Lett. B 823, 136720 (2021)

g Discovery,
¢ accelerated
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@ Effective neutrino masses combining
the likelihood functions of GERDA
("5Ge), CUORE (130Te), EXO-200
(136Xe) and KamLAND-Zen (13¢Xe)
S. D. Biller, Phys. Rev. D 104, 012002 (2021)

e Middle bands: 17 %

Lower bands: 17" + 1"
Upper bands: M{OV) — MS(;O”)

Effective Neutrino Masses

100 |

I
101
NORMAL
1)
w

0.1 1 10

mlightest (mev)

mgg (meV)

LJ, P. Soriano and J. Menéndez, Phys. Lett. B 823, 136720 (2021)

g Discovery,
¢ accelerated
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Ultrasoft-neutrino
contribution to 0v35 decay

2
1 4 ~0 0 2 [ Mpp
= = 9AGY | MPY + MY + Mgl e + Moy o ° | —2
t1/2 Me

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

- LT T B %

NLO A\ }g< T
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& TRIUMF

Ultrasoft-neutrino
contribution to 0v35 decay

2
1 4 ~0 0 2 [ Mpp
= = 9AGY | MPY + MY + Mgl e + Moy o ° | —2
t1/2 Me

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

T E E %

NLO A\ }g< T,

g Discovery,
¢ accelerated
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\(J . . .
Contribution of ultrasoft neutrinos
@ Contribution of ultrasoft neutrinos (k| << kg =~ 100 MeV) to O3 decay:

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

o ™R Ak 1 [ (flJuln) (n I ]) (f1Tu|n) {n| J" i)
usoft g2 — (2m)4=L k| [ [k + B2 + E, — E; —in k| + E1 + B, — E; —in)

s Discovery,
¢ accelerated



& TRIUMF
\(J . . .
Contribution of ultrasoft neutrinos
@ Contribution of ultrasoft neutrinos (k| << kg =~ 100 MeV) to O3 decay:

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

o ™R Ak 1 [ (flJuln) (n I ]) (f1Tu|n) {n| J" i)
usoft g2 — (2m)4=L k| [ [k + B2 + E, — E; —in k| + E1 + B, — E; —in)

@ Keeping only k = 0 term in the current:

v R .
Mt () = = 5= > (1Y oard [n) (nl Y- ooy |0
n a b

Hus
B+ E,—E) (1 1
X[( Lt )<n2(E1+En—Ei)+ )

MHS
By + B, —E) (1 1
+ (E2 + )<n2(E2+En—Ei)+)]

|

8 Discovery,
¢ accelerated



& TRIUMF
\(J . . .
Contribution of ultrasoft neutrinos
@ Contribution of ultrasoft neutrinos (k| << kg =~ 100 MeV) to O3 decay:

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

TR~ Ak i{ (1 |n) (nf JH [i) {f1Jpu|n) (] J* |2)

MO
oft T3 L @m) T K| K[+ By + B — B —in |k + By + By — B; —in

u

@ Keeping only k = 0 term in tha.gurrent:

Are we missing a factor of 27 Hus
E\+E,—E;) |l 1
v )<n2(E T BB )
MUS
Ey+E,—E;) (1 1
(B )<n(E2+E E)+)]

|

8 Discovery,
¢ accelerated
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In pnQRPA:

M /MP¥| < 15%
In NSM:
|MOV0ft/MEV| S 5%

us

PRELIMINARY Ultrasoft neutrinos
in pnQRPA and nuclear shell model

3 ov
Running >~ M .

[ Ty pnQRPA
o
02l ; P
!
H
I | - .
0 10 20 30 40

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

= Discovery,
¢ accelerated
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Ultrasoft neutrinos as correction of
the closure approximation

1

0
t172

4 ~0 0 m
= gAGY |Mp” + MJ” + MO ¢ + M0l ( nfﬁ)
e

g Discovery,
¢ accelerated



& TRIUMF

Ultrasoft neutrinos as correction of
the closure approximation

1

0
t172

2
m
= gAG™ |MRY + MY + MUl + Mol (—nfﬁ )
€

In EFT:

{1 Ju() () |7)

]k[g” o K

g Discovery,
¢ accelerated



& TRIUMF

Ultrasoft neutrinos as correction of
the closure approximation

1

0v
t172

m
= giGOqMBV + MOV Musoft 2LO|2 ( Wfﬁ)

e

In EFT:

(1 Ju(x)J*(y) |2)

MOIJ
- k|

— MY with < E >=10

g Discovery,
¢ accelerated
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Ultrasoft neutrinos as correction of
the closure approximation

1 v 174 14 m
7501/ = gf\GO |MB + MO Musoft 2LO|2 ( 18/6)
1/2 Me
In EFT:
2100 o S1TCIT )10 Mt o<y (1D oara In) <”|2b:“b7b+ i
|k| n a
x f(En)

— MY with < E >=10

g Discovery,
¢ accelerated



AL
“ TRIUMFPRELIMINARY Ultrasoft neutrinos vs closure

approximation in NSM

i 0 0v2 0 0 0
Nucleus Interaction M"™ M= M — My M2,

Ca KB3G 0.92 0.96 -0.04 -0.01

GXPF1.a42 0.78 0.78 0.00 0.02
5Ge JUN45 3.37 3.61 -0.24 -0.13
82Se JUN45 3.16 3.39 -0.23 -0.11

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

2R. A. Sen’kov, M. Horoi, , PRC 90, 051301(R) (2014)

8 Discovery,
¢ accelerated
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“ TRIUMFPRELIMINARY Ultrasoft neutrinos vs closure

approximation in NSM

Nucleus Interaction A% MQIVZI MY — MY M.
%Ca KB3G 0.92 0.96 -0.04 -0.01
GXPF1.a42 0.78 0.78 0.00 0.02

5Ge JUN45 3.37 3.61 -0.24 -0.13
82Se JUN45 3.16  3.39 -0.23 -0.11

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

2R. A. Sen’kov, M. Horoi, , PRC 90, 051301(R) (2014)

8 Discovery,
¢ accelerated



AL
“ TRIUMFPRELIMINARY Ultrasoft neutrinos vs closure

approximation in pnQRPA

Nucleus M% MY MY - MY MY

usoft

“Ge 4.83 4.68 0.15 0.25
82Se  4.30 4.20 0.10 0.18
%67y 429 4.04 0.25 0.25
10Mo  3.52 2.71 0.81 0.65
H6Cd  4.31 4.47 -0.16 -0.03
124gn  5.12 4.88 0.24 0.29
128Te  3.99 3.76 0.23 0.27
130Te 3,52 3.36 0.16 0.22
136Xe  2.60 2.71 -0.11 0.06

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

¥ Discovery,
© accelerated



AL
“ TRIUMFPRELIMINARY Ultrasoft neutrinos vs closure

approximation in pnQRPA

e —
Nucleus M% MY} MY - MY M.
“Ge 4.83 4.6 0.15 0.25
82Se 430 4.2 0.10 0.18
%67y 429 4.0 0.25 0.25
10Mo 352 2.71 0.81 0.65
H6Cd 431 44 -0.16 -0.03
1245n 512 438 0.24 0.29
128Te 399 37 0.23 0.27
130Te 352 3.3 0.16 0.22
136Xe  2.60 2.71 -0.11 0.06

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

¥ Discovery,
© accelerated



AL
“ TRIUMFPRELIMINARY Ultrasoft neutrinos vs closure

approximation in pnQRPA

J——
Nucleus M% MY} MY — MY MO1"T)— MO¥(1+) MY,
“Ge 4.83 4.6 0.15 0.26 0.25
82Se 430 4.2 0.10 0.18 0.18
%67y 429 4.0 0.25 0.26 0.25
10Mo 352 2.71 0.81 0.75 0.65
H6Cd 431 44 -0.16 -0.06 -0.03
124n 512 438 0.24 0.31 0.29
12%Te 399 37 0.23 0.26 0.27
130Te 352 33 0.16 0.20 0.22
136Xe  2.60 2.71 -0.11 0.02 0.06

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

¥ Discovery,
¢ accelerated
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« TRIUMF Genuine N2LO

corrections to Ov3 decay

2
1 4 ~0 0 2 [ Mpp
= = 9AGY | MPY + MY + Mgl e + Moy o ° | —2
t1/2 Me

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

- LT T B X

N2LO _M_ }< _'_x? g
L~
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AL
« TRIUMF Genuine N2LO

corrections to Ov3 decay

2
1 4 ~0 0 2 [ Mpp
= = 9AGY | MPY + MY + Mgl e + Moy o ° | —2
t1/2 Me

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018), Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

- LT T B X

N2LO _M_ }< _'_x? g
L~

& Discovery,
¢ accelerated



AL
©TRIUMF o e L IMINARY Genuine N’LO Corrections in

pnQRPA

Nucleus M M o [MP% /M|
“Ge  4.83 -0.04-0.53 < 10%
828e 430 0.28-044 6% —10%
%Zr 429 -0.04-0.42 < 10%
1Mo  3.52 -0.05-0.62 < 18%
16Cd  4.31 -0.02-0.29 S T%
1248n 512 -0.04-0.66 S 13%
%Te  3.99 -0.04-0.55 < 14%
0Te  3.52 -0.03-0.52 S 15%
1%Xe  2.60 -0.02-0.07 < 3%

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

8 Discovery,
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AL
©TRIUMF o e L IMINARY Genuine N’LO Corrections in

pnQRPA

Nucleus M M o [MP% /M|
“Ge  4.83 -0.04-0.53 < 10%
828e 430 0.28-044 6% —10%
%Zr 429 -0.04-0.42 < 10%
1Mo  3.52 -0.05-0.62 < 18%
16Cd  4.31 -0.02-0.29 S T%
1248n 512 -0.04-0.66 S 13%
%Te  3.99 -0.04-0.55 < 14%
0Te  3.52 -0.03-0.52 S 15%
1%Xe  2.60 -0.02-0.07 < 3%

Caveats:

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

8 Discovery,
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AL
©TRIUMF o e L IMINARY Genuine N’LO Corrections in

pnQRPA

Nucleus M M o [MP% /M|

©Ge 4.83 -0.04-053 < 10%

82Se 430 0.28-0.44 6% — 10%

96Zr 4.29 -0.04-0.42 < 10%

10Mo 352 -0.05-0.62 < 18% Caveats:

H6Cd  4.31 -0.02-0.29 <™ )

1249 512 -0.04-0.66 ’S 13% @ Unknown parameters

128T¢  3.99 -0.04-0.55 < 14%
130T 352 -0.03-0.52 < 15%
136Xe  2.60 -0.02-0.07 < 3%

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

8 Discovery,
¢ accelerated



AL
©TRIUMF o e L IMINARY Genuine N’LO Corrections in

pnQRPA

Nucleus M M o [MP% /M|

“Ge 4.83 -0.04-0.53 < 10%

82Se  4.30 0.28-0.44 6% — 10%

967r 4.29 -0.04-0.42 < 10%

100Mo  3.52 -0.05-0.62 < 18% Caveats:

H6Cd  4.31 -0.02-0.29 S ™% )

1249 512 -0.04-0.66 ’S 13% @ Unknown parameters

128Te  3.99 -0.04-0.55 < 14% @ Scale dependence

130Te 3,52 -0.03-0.52 < 15%

136Xe  2.60 -0.02-0.07 < 3%

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

8 Discovery,
¢ accelerated



AL
©TRIUMF o e L IMINARY Genuine N’LO Corrections in

pnQRPA

Nucleus MY M35, o |[Mps /MY

©Ge 4.83 -0.04-0.53 <10%

82Ge 430 0.28-0.44 6% — 10%

967y 429 -0.04-0.42 < 10%

100Mo  3.52 -0.05-0.62 < 18% .

16Cd 431 -0.02-0.29 < 7% Caveats:

1249 512 -0.04-0.66 < 13% @ Unknown parameters

128Te  3.99 -0.04-0.55 < 14% @ Scale dependence

%Te  3.52 -0.03-0.52 < 15% @ Regulator dependence

136Xe  2.60 -0.02-0.07 < 3%

LJ, D. Castillo,P. Soriano, J Menéndez, work in progress

8 Discovery,
¢ accelerated



& TRIUMF

Similar effects found in ab initio studies

a  Standard mechanism of exchange light Majorana neutrinos
Long-range (LR) Short-range (SR)
@ In "5Ge:
| L £ P
@ @
M /ME” ~ 40% , R
9
ov 07 2
M N2L / ~/ 5 A) @) ®) )
© 5 - -
b 76Ge — 76Se LO,LR(123)+N2LO(4)
A. Belley et al. arXiv:2308.15634 (2023) 4 F LO.SR(6) E
& 3F N2LO(5) E
=2 E
1 F E
0 Il 1
6 8 10 extrap

€Max

A. Belley et al. arXiv:2308.15634 (2023)
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& TRIUMF

@ In "%Ge:
M /ME” ~ 40% ,
M4 o/MpY ~ 5%

A. Belley et al. arXiv:2308.15634 (2023)

@ In 139Te and 136Xe:
M3¥ /MPY ~ 20% — 120%

A. Belley et al. arXiv:2307.15156 (2023)

MOv

S = N W kA W

Lo

N2LO

Similar effects found in ab initio studies

a  Standard mechanism of exchange light Majorana neutrinos

Long-range (LR)

I =

@ @)

correction to current _ one-loop dlagnms

Short-range (SR)

A. Belley et al. arXiv:2308.15634 (2023)

extrap

@ ) (6)

T T

P b 76Ge — 76Se LO, LR(1234N2LO() ]

LOSR(6)

E N2LO(5) ,
I I

6 8 10

€Max

¥ Discovery,
¢ accelerated
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Muon capture as a probe of 0v35 decay

Outline

& Discovery,
¢ accelerated
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@ A muon can replace an electron in an
atom, forming a muonic atom
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@ A muon can replace an electron in an
atom, forming a muonic atom

» Eventually bound on the 1s, /, orbit
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AL
« TRIUMF Ordinary Muon Capture (OMC)

@ A muon can replace an electron in an
atom, forming a muonic atom

» Eventually bound on the 1s, /, orbit
@ The muon can then be captured by the
nucleus

po S XIT) = v+ 4 YT
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AL
« TRIUMF Ordinary Muon Capture (OMC)

@ A muon can replace an electron in an
atom, forming a muonic atom

» Eventually bound on the 1s, /, orbit

@ The muon can then be captured by the p{# _ in
nucleus
po G X = v+, Y(J}rf) W+
w Yn
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AL
« TRIUMF Ordinary Muon Capture (OMC)

@ A muon can replace an electron in an
atom, forming a muonic atom

» Eventually bound on the 1s, /, orbit

@ The muon can then be captured by the p{# _ in
nucleus
po oy XU = v 42, Y(J}rf) W+
Ordinary = non-radiative
w Vi

Radiative muon capture (RMC):
po A XU = v+ 22 YU ) + oy

8 Discovery,
¢ accelerated
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Ov53 Decay vs. Muon Capture

p{i = in
w+

_ vy

n

IX(JIT) = 5 68X (Tf) + 267

p A X = vt YY)

& Discovery,
¢ accelerated



AL
<~ TRIUMF Ov33 Decay vs. Muon Capture

n{f v ip p{¢ \\:\/v\// in
\V‘;( -
U= 1,/% w+
//I/Vli\ -
d //\\ u _ v
n{4 =  —=up W z
AX(IT) = 2 8X(I7) + 2 WAL XU = v Y ()

Both involve hadronic current:

qs i

. — ‘ . o
(p|3°TIp) = ¥ | gv(g®)V* — ga(d®)V*ys — 90 (07)q%vs + ign (%) o
P

& Discovery,
¢ accelerated



)Y
« TRIUMF 0033

e
d //\\
nfj=__ =

itp

IX(T) = 2 AXI(TFT) + 2

@ g~ 1/|r; — r3| = 100 — 200 MeV

Decay vs. Muon Capture
p{ﬁv%nf

W+

— vy,

m

po A5 XIT) = v 24 YT

Both involve hadronic current:

. — ‘ . o
(p|3°TIp) = ¥ | gv(g®)V* — ga(d®)V*ys — 90 (07)q%vs + ign (%) o

qs i

P

g Discovery,
¢ accelerated



AL
<~ TRIUMF Ov33 Decay vs. Muon Capture

ni{4 \v/ itp p{f v in
I
17:1/}% w+
e
d//\\1t —
n§=_ =i I Y
AX(J™) =, AX(TT) 4 2e” po A5 XIT) = v 24 YT
z8\Jg Z+2 f € 4 i wTZ-1 f
® g = 1/|r1 —r2| = 100 — 200 MeV @ g~myu+M;—My—m.—FEx ~ 100

Both involve hadronic current:

accelerat&d

qs i

& Discovery%

. T p . N
(p|3°TIp) = ¥ | gv(g®)V* — ga(d®)V*ys — 90 (07)q%vs + ign (%) o
P



AL
<~ TRIUMF Ov33 Decay vs. Muon Capture

n{f \v/ ip p{¢ v in
\V‘;( -
U= 1/}% w+
e
d //\\ u — v
nf{=" = 1p © n
AX(IT) = 2 8X(I7) + 2 WAL XU = v Y ()
® g = 1/|r1 —r2| = 100 — 200 MeV @ g~myu+M;—My—m.—FEx ~ 100
@ Yet hypothetical

Both involve hadronic current:

accelerat&d

qs i

& Discovery%

. T p . N
(p|3°TIp) = ¥ | gv(g®)V* — ga(d®)V*ys — 90 (07)q%vs + ign (%) o
P



AL
<~ TRIUMF Ov33 Decay vs. Muon Capture

n{f \v/ ip p{¢ v in
\V‘;( -
U= 1/}% wt
/W,gi °
d //\\ u — v
n{4 =  —=up W z
AX(IT) = 2 8X(I7) + 2 WAL XU = v Y ()
@ g~ 1/|r1 —r2| = 100 — 200 MeV @ q~myu+M;—M;—m,—Ex ~ 100
@ Yet hypothetical @ Has been measured!

Both involve hadronic current:

accelerat&d

qs i

& Discovery%

. T p . N
(p|3°TIp) = ¥ | gv(g®)V* — ga(d®)V*ys — 90 (07)q%vs + ign (%) o
P



AL
«~ TRIUMF Ab initio No-Core Shell Model (NCSM)

@ Solve nuclear many-body problem

H(A)W(A)(rlyr% ) I'A) = E(A)W(A)(rlar% ...,I‘A)

-
N
|

N
o

E=(Qn+1+3pQ

Figure courtesy of P. Navratil

¢ Discovery,
¢ accelerated



AL
«~ TRIUMF Ab initio No-Core Shell Model (NCSM)

@ Solve nuclear many-body problem
HAYA (p 1y, . r0) = EADTA (2 19, ... 1)

@ Two- (NN) and three-nucleon (3N) forces from
xEFT

A
HO =3B S VMG S VY
=1

i<j=1 i<j<k=1

E=(Qn+1+3pQ

Figure courtesy of P. Navratil

-
N
|

N
o

¢ Discovery,
¢ accelerated



AL
«~ TRIUMF Ab initio No-Core Shell Model (NCSM)

@ Solve nuclear many-body problem
HAYA (p 1y, . r0) = EADTA (2 19, ... 1)

@ Two- (NN) and three-nucleon (3N) forces from
xEFT

HW = sz + Z VNN (r, —r;) + Z Vi

i<j=1 i<j<k=1

-
N
|

N
o

@ A-nucleon wave functions expanded in harmonic
oscillator (HO) basis =0
N E=(Qn+1+3pQ
s pA) — Z Z CNj @NJ (r1,12,...,T4) Figure courtesy of P. Navrétil
\ N=0 j

2 Discovery,

accelerated
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Dependency on
the Harmonic-Oscillator Frequency

Nm‘}x

s \I[(A) = Z ZCN](I)NJ (rlarQa X A)

N=0 j

@ The expansion depends on the HO
frequency because of the N,.«
truncation

g Discovery,
¢ accelerated



& TRIUMF

Dependency on

the Harmonic-Oscillator Frequency

Nmax

s y(A) — Z ZCNJ-(I)%?(I‘LI'Q,...,I'A)

N=0 j

@ The expansion depends on the HO
frequency because of the N,.«
truncation

» Increasing N,,.x leads towards
convergenced results

Eye (MeV)

Ground-state energy of °Li

—10| | === Exp.

—15| | =M= Nmax =4

_ool E.__ |
0 —8— Npax =12

Rl ——_ m----14
B Nmax =14
sl RN Extrap.
,30 [ -
.. i%‘;lgzrz—l 8
1314 16 18 20 2 ;E
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Harmonic-Oscillator Frequency
Dependence of Muon Capture

SLi(1f) + p~ — ®He(0F) + v,
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« TRIUMF Harmonic-Oscillator Frequency

Dependence of Muon Capture
PC(0g) + 1~ = PB(1L) + vy

SLi(1) + p~ — ®He(0F) + v,
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@ NCSM slightly underestimating
experiment

Rate(103/s)

Muon Capture on °Li
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@ NCSM slightly underestimating
experiment

@ The results are consistent with the
variational (VMC) and Green’s
function Monte-Carlo (GFMC)
calculations
King et al., Phys. Rev. C 105, L042501 (2022)
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Muon Capture on °Li
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@ NCSM slightly underestimating
experiment

@ The results are consistent with the
variational (VMC) and Green’s
function Monte-Carlo (GFMC)
calculations
King et al., Phys. Rev. C 105, L042501 (2022)

@ Slow convergence due to
cluster-structure?

Rate(103/s)

Muon Capture on °Li
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@ NCSM slightly underestimating
experiment

@ The results are consistent with the
variational (VMC) and Green’s
function Monte-Carlo (GFMC)
calculations
King et al., Phys. Rev. C 105, L042501 (2022)

@ Slow convergence due to
cluster-structure?

» NCSM with continuum (NCSMC)
might give better results?

Rate(103/s)

Muon Capture on °Li

6Li(lg‘s) +u = 6He(()g's) +u,
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@ The NN-N*LO+3N;  interaction with
the additional spin-orbit 3N-force term
most consistent with experiment

Muon capture on !*C
2C(04) +u~ — B(L) + v

" T T T
—— 1b

-A- 1b+2b
8 B
6 N
4 B
2 —B— NN-N*LO+3N},, Measday 2001 | |

—#— NN-N*LO+3Nj,, Abe 2016
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@ The NN-N*LO+3N;  interaction with
the additional spin-orbit 3N-force term
most consistent with experiment

@ Capture rates to excited states in 2B
also well reproduced

Muon capture on !*C
2C(04) + 1~ — B(1L) + v

—— 1b
-4A- 1b + 2b
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Muon capture on !*C
2C(0L) + 1~ = PB(1L) + v

T T T
@ The NN-N?LO+3N; | interaction with 8 8
the additional spin-orbit 3N-force term
most consistent with experiment @ 6
@ Capture rates to excited states in 2B ”:2/
also well reproduced < 4
. . A~
@ Rates comparable with earlier NCSM
results 2 . ¢
Hayes et al., Phys. Rev. Lett, 91, 012502 (2003) _— Hayes ot at ::(:Uin)
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@ The NN-N?LO+3N; | interaction with
the additional spin-orbit 3N-force term
most consistent with experiment

@ Capture rates to excited states in 2B
also well reproduced

@ Rates comparable with earlier NCSM
results
Hayes et al., Phys. Rev. Lett. 91, 012502 (2003)

@ 3N-forces essential to reproduce the
measured rate

Muon capture on !*C
PC0L) + 1 = PB(AL) + v

*

NN(CD-Bonn)
Hayes et al.
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@ NCSM describes well the complex
systems 60 and 1N
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Muon capture on O
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@ NCSM describes well the complex
systems 60 and 1N

@ Less sensitive to the interaction than
120(#—’ 1/“)12]3

@ Captures to excited states in 5N also
well reproduced
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@ Rates obtained summing over ~ 50
final states of each parity

Total Muon-Capture Rates

T+ 2C(0%) — v + B(Jf)

Z WOMc(104/S)

Nmax:
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—7

= Both par.
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« Total Muon-Capture Rates

T+ 2C(0%) — v + B(Jf)

Nmax:
3|

—5

—7

Exp.

@ Rates obtained summing over ~ 50
final states of each parity

@ Summing up the rates, we capture
~ 85% of the total rate in both 2B
and 16N 1E

Pos.
Neg.
= Both par.
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Total Muon-Capture Rates

T+ 2C(0%) — v + B(Jf)

af ‘ ]
Nmax:
@ Rates obtained summing over ~ 50 & 3| 3
final states of each parity 3 — 7
@ Summing up the rates, we capture z2f P
~ 85% of the total rate in both 12B i — Both par.
and 16N 1E i
@ Better estimation with the Lanczos
strength function method underway 0 : : :
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Summary

@ Newly introduced contact term significantly enhances the 0v33-decay NMEs

@ Studying the contribution from ultrasoft neutrinos may help us estimate the closure
correction to the Ov53-decay NMEs

@ Ab initio muon-capture studies could shed light on g4 quenching at finite momentum
exchange regime relevant for Ov 33 decay
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@ The “brute force” method cannot reach the total muon-capture rates
— use the Lanczos strength-function method, instead (ongoing)

@ Study the effect of exact two-body currents and/or continuum on the OMC rates
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@ Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight)
on OMC rates
@ Study potential OMC candidates “*Ti, “°Ca, “°Ti in VS-IMSRG

@ The “brute force” method cannot reach the total muon-capture rates
— use the Lanczos strength-function method, instead (ongoing)
@ Study the effect of exact two-body currents and/or continuum on the OMC rates

@ Extend the NCSM studies to other processes

> 16N potential candidate for forbidden 3-decay studies (ongoing)
» 12C and 160 are both of interest in neutrino-scattering experiments

(v, + 12C - u= + 2N)

& Discovery,
¢ accelerated



« TRIUMF

Thank you
Merci

Discovery,

accelerated



	Introduction to double-beta decay
	Corrections to 0-decay nuclear matrix elements
	Muon capture as a probe of 0 decay
	Summary and Outlook

