Neutrinoless double-beta decay and muon capture as a probe

Lotta Jokiniemi TRIUMF, Theory Department INT 23-1b workshop 05/25/2023

2/42

iscover

Outline

Introduction

Corrections to $0\nu\beta\beta$ -decay nuclear matrix elements The contact term Contribution of ultrasoft neutrinos

Muon capture as a probe of $0\nu\beta\beta$ decay VS-IMSRG Study on Muon Capture on ²⁴Mg No-Core Shell-Model Studies on Muon Capture on Light Nuclei Phenomenological study on muon capture on ¹³⁶Ba

Summary and Outlook

∂TRIUMF

Neutrinoless double-beta decay

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\mathrm{A}}^4 G^{0\nu} |\boldsymbol{M}_{\mathbf{L}}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

Violates lepton-number conservation

Neutrinoless double-beta decay

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\mathrm{A}}^4 G^{0\nu} |\boldsymbol{M_{\mathrm{L}}^{0\nu}}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles

Neutrinoless double-beta decay

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\mathrm{A}}^4 G^{0\nu} |\boldsymbol{M}_{\mathbf{L}}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles
- Runs virtually through all J^π states in the intermediate nucleus

Neutrinoless double-beta decay

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\mathrm{A}}^4 G^{0\nu} |\boldsymbol{M}_{\mathbf{L}}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles
- Runs virtually through all J^π states in the intermediate nucleus
- Momentum transfer $q \sim 100 \text{ MeV}$

Nuclear matrix elements of neutrinoless double-beta decay

$$M^{0\nu} = \frac{R}{g_{\rm A}^2} \int \frac{\mathrm{d}\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_n \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{E_{\nu} + E_n - \frac{1}{2}(E_i - E_f) - \frac{1}{2}(E_1 - E_2)}$$

• Energy of the virtual neutrino $E_{\nu} = \sqrt{m_{\nu}^2 + \mathbf{k}^2} \sim |\mathbf{k}| \sim k_{\mathrm{F}} \sim 100 \text{ MeV}$ ("soft neutrinos")

≈TRIUMF

Nuclear matrix elements of neutrinoless double-beta decay

$$M^{0\nu} = \frac{R}{g_{\rm A}^2} \int \frac{\mathrm{d}\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{E_{\nu} + E_{n} - \frac{1}{2}(E_{i} - E_{f}) - \frac{1}{2}(E_{1} - E_{2})}$$

• Energy of the virtual neutrino $E_{\nu} = \sqrt{m_{\nu}^2 + k^2} \sim |\mathbf{k}| \sim k_{\mathrm{F}} \sim 100 \text{ MeV}$ ("soft neutrinos")

≈TRIUMF

• Electrons carry away roughly the same amount of energy: $E_1 - E_2 \sim 0$ MeV

Nuclear matrix elements of neutrinoless double-beta decay

$$M^{0\nu} = \frac{R}{g_{\rm A}^2} \int \frac{\mathrm{d}\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_n \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{E_{\nu} + E_n - \frac{1}{2}(E_i - E_f) - \frac{1}{2}(E_1 - E_2)}$$

• Energy of the virtual neutrino $E_{\nu} = \sqrt{m_{\nu}^2 + k^2} \sim |\mathbf{k}| \sim k_{\mathrm{F}} \sim 100 \text{ MeV}$ ("soft neutrinos")

≈TRIUMF

• Electrons carry away roughly the same amount of energy: $E_1 - E_2 \sim 0$ MeV

$$\rightarrow \boxed{M^{0\nu} = \frac{R}{g_{\rm A}^2} \int \frac{\mathrm{d}\mathbf{k}}{2\pi^2} \frac{e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{y})}}{|\mathbf{k}|} \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x}) |n\rangle \langle n| J^{\mu}(\mathbf{y}) |i\rangle}{|\mathbf{k}| + E_n - \frac{1}{2}(E_i - E_f)}}$$

Closure approximation

Without closure approximation:

$$\sum_{n} \frac{\left\langle f \right| J_{\mu}(\mathbf{x}) \left| n \right\rangle \left\langle n \right| J^{\mu}(\mathbf{y}) \left| i \right\rangle}{\left| \mathbf{k} \right| + E_{n} - \frac{1}{2}(E_{i} - E_{f})}$$

Closure approximation

Without closure approximation:

$$\sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_{n} - \frac{1}{2}(E_{i} - E_{f})}$$

► Intermediate states |n⟩ with all spin-parities J^π up to high energies

Closure approximation

Without closure approximation:

$$\sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_{n} - \frac{1}{2}(E_{i} - E_{f})}$$

- ► Intermediate states |n⟩ with all spin-parities J^π up to high energies
 - Typically used in pnQRPA

Closure approximation

Without closure approximation:

$$\sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_{n} - \frac{1}{2}(E_{i} - E_{f})}$$

- ► Intermediate states |n⟩ with all spin-parities J^π up to high energies
 - Typically used in pnQRPA

With closure approximation:

• Remove the dependence on intermediate states: $E_n \rightarrow \langle E_n \rangle$

Closure approximation

Without closure approximation:

$$\sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_{n} - \frac{1}{2}(E_{i} - E_{f})}$$

- ► Intermediate states |n⟩ with all spin-parities J^π up to high energies
 - Typically used in pnQRPA

With closure approximation:

• Remove the dependence on intermediate states: $E_n \rightarrow \langle E_n \rangle$

• Use the relation
$$\sum_n |n\rangle \langle n| = 1$$

Closure approximation

Without closure approximation:

$$\sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_{n} - \frac{1}{2}(E_{i} - E_{f})}$$

- ► Intermediate states |n⟩ with all spin-parities J^π up to high energies
 - Typically used in pnQRPA

- Remove the dependence on intermediate states: $E_n \rightarrow \langle E_n \rangle$
- Use the relation $\sum_n |n\rangle \langle n| = 1$

$$\rightarrow \frac{\langle f | J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + \langle E_n \rangle - \frac{1}{2} (E_i - E_f)}$$

Closure approximation

Without closure approximation:

$$\sum_{n} \frac{\langle f | J_{\mu}(\mathbf{x}) | n \rangle \langle n | J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + E_{n} - \frac{1}{2}(E_{i} - E_{f})}$$

- ► Intermediate states |n⟩ with all spin-parities J^π up to high energies
 - Typically used in pnQRPA

With closure approximation:

- Remove the dependence on intermediate states: $E_n \rightarrow \langle E_n \rangle$
- Use the relation $\sum_n |n\rangle \langle n| = 1$

$$\rightarrow \frac{\langle f | J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y}) | i \rangle}{|\mathbf{k}| + \langle E_n \rangle - \frac{1}{2} (E_i - E_f)}$$

 Typically used with most nuclear methods

iscovery scelerate

Outline

Introduction

Corrections to $0\nu\beta\beta$ -decay nuclear matrix elements

The contact term Contribution of ultrasoft neutrinos

Muon capture as a probe of $0\nu\beta\beta$ decay VS-IMSRG Study on Muon Capture on ²⁴Mg No-Core Shell-Model Studies on Muon Capture on Light Nuclei Phenomenological study on muon capture on ¹³⁶Ba

Summary and Outlook

Outline

Introduction

Corrections to $0\nu\beta\beta$ -decay nuclear matrix elements The contact term Contribution of ultrasoft neutrinos

Muon capture as a probe of $0\nu\beta\beta$ decay VS-IMSRG Study on Muon Capture on ²⁴Mg No-Core Shell-Model Studies on Muon Capture on Light Nuclei Phenomenological study on muon capture on ¹³⁶Ba

Summary and Outlook

New leading-order short-range nuclear matrix element

$$\boxed{\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2}$$

Previously unacknowledged contact operator was introduced

V. Cirigliano et al., Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

New leading-order short-range nuclear matrix element

$$\boxed{\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2}$$

- Previously unacknowledged contact operator was introduced V. Cirigliano et al., Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)
- ► The operator connects directly the initial and final nuclei

$$\begin{split} M_{\rm S}^{0\nu} &= \frac{2R}{\pi g_{\rm A}^2} (0_f^+ || \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \boldsymbol{h}_{\rm S}(\boldsymbol{q}^2) \, q^2 \mathrm{d}q || 0_i^+), \\ & \boldsymbol{h}_{\rm S}(\boldsymbol{q}^2) = 2g_{\nu}^{\rm NN} e^{-q^2/(2\Lambda^2)} \end{split}$$

New leading-order short-range nuclear matrix element

$$\boxed{\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2}$$

- Previously unacknowledged contact operator was introduced V. Cirigliano et al., Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)
- ► The operator connects directly the initial and final nuclei

$$\begin{split} M_{\rm S}^{0\nu} &= \frac{2R}{\pi g_{\rm A}^2} (0_f^+ || \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \boldsymbol{h}_{\rm S}(\boldsymbol{q}^2) \, \boldsymbol{q}^2 \mathrm{d}\boldsymbol{q} || 0_i^+), \\ & \boldsymbol{h}_{\rm S}(\boldsymbol{q}^2) = 2g_{\nu}^{\rm NN} e^{-q^2/(2\Lambda^2)} \end{split}$$

Unknown coupling in the contact term

• Axial-vector coupling g_A known from $n \rightarrow p + e^- + \bar{\nu}_e$:

 $g_{\rm A} = 1.2754(11)$

D. Dubbers, B. Märkisch, Annu. Rev. Nucl. Part. Sci. 71, 139 (2021)

Unknown coupling in the contact term

• Axial-vector coupling g_A known from $n \rightarrow p + e^- + \bar{\nu}_e$:

 $g_{\rm A} = 1.2754(11)$

D. Dubbers, B. Märkisch, Annu. Rev. Nucl. Part. Sci. 71, 139 (2021)

• The new coupling $g_{\nu}^{\rm NN}$ should be fitted to $2n \rightarrow 2p + 2e^-$

Unknown coupling in the contact term

• Axial-vector coupling g_A known from $n \rightarrow p + e^- + \bar{\nu}_e$:

 $g_{\rm A} = 1.2754(11)$

D. Dubbers, B. Märkisch, Annu. Rev. Nucl. Part. Sci. 71, 139 (2021)

- The new coupling $g_{\nu}^{\rm NN}$ should be fitted to $2n \rightarrow 2p + 2e^-$
 - No such data

Unknown coupling in the contact term

• Axial-vector coupling g_A known from $n \rightarrow p + e^- + \bar{\nu}_e$:

 $g_{\rm A} = 1.2754(11)$

D. Dubbers, B. Märkisch, Annu. Rev. Nucl. Part. Sci. 71, 139 (2021)

- The new coupling $g_{
 u}^{
 m NN}$ should be fitted to $2n
 ightarrow 2p + 2e^-$
 - No such data

• Alternative ways to find the value of g_{ν}^{NN} :

Unknown coupling in the contact term

• Axial-vector coupling g_A known from $n \rightarrow p + e^- + \bar{\nu}_e$:

 $g_{\rm A} = 1.2754(11)$

D. Dubbers, B. Märkisch, Annu. Rev. Nucl. Part. Sci. 71, 139 (2021)

- The new coupling $g_{
 u}^{
 m NN}$ should be fitted to $2n
 ightarrow 2p + 2e^-$
 - No such data
- Alternative ways to find the value of g_{ν}^{NN} :
 - Solve from lattice QCD

Z. Davoudi and S. V. Kadam, Phys. Rev. Lett. 126, 152003 (2021), Phys. Rev. D 105, 094502 (2022)

Unknown coupling in the contact term

• Axial-vector coupling g_A known from $n \rightarrow p + e^- + \bar{\nu}_e$:

 $g_{\rm A} = 1.2754(11)$

D. Dubbers, B. Märkisch, Annu. Rev. Nucl. Part. Sci. 71, 139 (2021)

- The new coupling $g_{
 u}^{
 m NN}$ should be fitted to $2n
 ightarrow 2p + 2e^-$
 - No such data
- Alternative ways to find the value of g_{ν}^{NN} :
 - Solve from lattice QCD

Z. Davoudi and S. V. Kadam, Phys. Rev. Lett. 126, 152003 (2021), Phys. Rev. D 105, 094502 (2022)

Perturbative QCD calculation

V. Cirigliano et al., Phys. Rev. Lett. 126, 172002 (2021), JHEP 05, 289 (2021)

Unknown coupling in the contact term

• Axial-vector coupling g_A known from $n \rightarrow p + e^- + \bar{\nu}_e$:

 $g_{\rm A} = 1.2754(11)$

D. Dubbers, B. Märkisch, Annu. Rev. Nucl. Part. Sci. 71, 139 (2021)

- The new coupling $g_{
 u}^{
 m NN}$ should be fitted to $2n
 ightarrow 2p + 2e^-$
 - No such data
- Alternative ways to find the value of g_{ν}^{NN} :
 - Solve from lattice QCD

Z. Davoudi and S. V. Kadam, Phys. Rev. Lett. 126, 152003 (2021), Phys. Rev. D 105, 094502 (2022)

Perturbative QCD calculation

V. Cirigliano et al., Phys. Rev. Lett. 126, 172002 (2021), JHEP 05, 289 (2021)

Use charge-independence breaking

V. Cirigliano et al., Phys. Rev. C 100, 055504 (2019)

CRIUMF Phenomenological many-body methods

∂ TRIUMF Phenomenological many-body methods

Nuclear Shell Model (NSM)

Solves the Schrödinger equation in valence space

5

'n

Phenomenological many-body methods

Nuclear Shell Model (NSM)

∂ TRIUMF

- Solves the Schrödinger equation in valence space
- + All correlations within valence space

184 1j_{15/2} 2dava 451/2. 20210 3deva 289/2 126 126 1113/2 301/ 108 100 92 2f1/2 Excluded 1h9/2 82 82 70 68 64 58 1h11/2-351/2 2da/2 1g7/2 50 50 40 38 32 189/2 2n1/ 1 fein 68 Valence-1d3/2 2s1/2 · 1de/2 space 1p1/2-Core 103/2 2

בע

DD

Phenomenological many-body methods

Nuclear Shell Model (NSM)

≈TRIUMF

- Solves the Schrödinger equation in valence space
- + All correlations within valence space
- Restricted to valence space

RiumF Phenomenological many-body methods

- Solves the Schrödinger equation in valence space
- + All correlations within valence space
- Restricted to valence space
- Quasiparticle Random-Phase Approximation (QRPA)

CRIUMF Phenomenological many-body methods

- Solves the Schrödinger equation in valence space
- + All correlations within valence space
- Restricted to valence space
- Quasiparticle Random-Phase Approximation (QRPA)
 - ► States = two-quasiparticle excitations

RiumF Phenomenological many-body methods

- Solves the Schrödinger equation in valence space
- + All correlations within valence space
- Restricted to valence space
- Quasiparticle Random-Phase Approximation (QRPA)
 - ► States = two-quasiparticle excitations
 - + Large model spaces, wide reach

RIUMF Phenomenological many-body methods

- Solves the Schrödinger equation in valence space
- + All correlations within valence space
- Restricted to valence space
- Quasiparticle Random-Phase Approximation (QRPA)
 - ► States = two-quasiparticle excitations
 - + Large model spaces, wide reach
 - Missing correlations, adjustable parameters,...

RIUMF Phenomenological many-body methods

Nuclear Shell Model (NSM)

- Solves the Schrödinger equation in valence space
- + All correlations within valence space
- Restricted to valence space
- Quasiparticle Random-Phase Approximation (QRPA)
 - ► States = two-quasiparticle excitations
 - + Large model spaces, wide reach
 - Missing correlations, adjustable parameters,...

Contact Term in pnQRPA and NSM

$$\int C_{\rm L/S}(r) {\rm d}r = M_{\rm L/S}^{0\nu}$$

In pnQRPA:

 $M_{
m S}/M_{
m L}pprox 30\%-80\%$

In NSM: $M_{
m S}/M_{
m L}pprox 15\%-50\%$

LJ, P. Soriano and J. Menéndez, Phys. Lett. B 823, 136720 (2021)

77

Effective Neutrino Masses

 Effective neutrino masses combining the likelihood functions of GERDA (⁷⁶Ge), CUORE (¹³⁰Te), EXO-200 (¹³⁶Xe) and KamLAND-Zen (¹³⁶Xe)

S. D. Biller, Phys. Rev. D 104, 012002 (2021)

• Middle bands: $M_{\rm L}^{(0\nu)}$ Lower bands: $M_{\rm L}^{(0\nu)} + M_{\rm S}^{(0\nu)}$ Upper bands: $M_{\rm L}^{(0\nu)} - M_{\rm S}^{(0\nu)}$

Outline

Introduction

Corrections to $0\nu\beta\beta$ -decay nuclear matrix elements The contact term

Contribution of ultrasoft neutrinos

Muon capture as a probe of $0\nu\beta\beta$ decay VS-IMSRG Study on Muon Capture on ²⁴Mg No-Core Shell-Model Studies on Muon Capture on Light Nuclei Phenomenological study on muon capture on ¹³⁶Ba

Summary and Outlook

Discovery, accelerated

Contribution of ultrasoft neutrinos

• Contribution of ultrasoft neutrinos ($|\mathbf{k}| \ll \mathbf{k}_{\mathbf{F}}$) to $0\nu\beta\beta$ decay:

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

$$M_{\rm usoft}^{0\nu} = -\frac{\pi R}{g_{\rm A}^2} \sum_{n} \frac{\mathrm{d}^{d-1}k}{(2\pi)^{d-1}} \frac{1}{|\mathbf{k}|} \left[\frac{\langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle}{|\mathbf{k}| + E_2 + E_n - E_i - i\eta} + \frac{\langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle}{|\mathbf{k}| + E_1 + E_n - E_i - i\eta} \right]$$

Contribution of ultrasoft neutrinos

• Contribution of ultrasoft neutrinos ($|\mathbf{k}| \ll \mathbf{k}_{\mathbf{F}}$) to $0\nu\beta\beta$ decay:

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

$$M_{\rm usoft}^{0\nu} = -\frac{\pi R}{g_{\rm A}^2} \sum_{n} \frac{\mathrm{d}^{d-1}k}{(2\pi)^{d-1}} \frac{1}{|\mathbf{k}|} \left[\frac{\langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle}{|\mathbf{k}| + E_2 + E_n - E_i - i\eta} + \frac{\langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle}{|\mathbf{k}| + E_1 + E_n - E_i - i\eta} \right]$$

• Keeping only $\mathbf{k} = 0$ term in the current and assuming $E_1 = E_2 = Q_{\beta\beta}/2 + m_e$:

$$M_{\rm usoft}^{0\nu}(\mu_{\rm us}) = \frac{R}{2\pi} \sum_{n} \langle f | \sum_{a} \boldsymbol{\sigma}_{a} \tau_{a}^{+} | n \rangle \langle n | \sum_{b} \boldsymbol{\sigma}_{b} \tau_{b}^{+} | i \rangle \\ \times 2(\frac{Q_{\beta\beta}}{2} + m_{e} + E_{n} - E_{i}) \left(\ln \frac{\mu_{\rm us}}{2(\frac{Q_{\beta\beta}}{2} + m_{e} + E_{n} - E_{i})} + 1 \right)$$

≈TRIUMF

Contribution of ultrasoft neutrinos

• Contribution of ultrasoft neutrinos ($|\mathbf{k}| \ll \mathbf{k}_{\mathbf{F}}$) to $0\nu\beta\beta$ decay:

V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

$$M_{\rm usoft}^{0\nu} = -\frac{\pi R}{g_{\rm A}^2} \sum_{n} \frac{\mathrm{d}^{d-1}k}{(2\pi)^{d-1}} \frac{1}{|\mathbf{k}|} \left[\frac{\langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle}{|\mathbf{k}| + E_2 + E_n - E_i - i\eta} + \frac{\langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle}{|\mathbf{k}| + E_1 + E_n - E_i - i\eta} \right]$$

• Keeping only $\mathbf{k} = 0$ term in the current and assuming $E_1 = E_2 = Q_{\beta\beta}/2 + m_e$:

$$\begin{split} M_{\rm usoft}^{0\nu}(\mu_{\rm us}) = & \frac{R}{2\pi} \sum_{n} \langle f | \sum_{a} \boldsymbol{\sigma}_{a} \tau_{a}^{+} | n \rangle \langle n | \sum_{b} \boldsymbol{\sigma}_{b} \tau_{b}^{+} | i \rangle \\ & \times 2(\frac{Q_{\beta\beta}}{2} + m_{e} + E_{n} - E_{i}) \left(\ln \frac{\mu_{\rm us}}{2(\frac{Q_{\beta\beta}}{2} + m_{e} + E_{n} - E_{i})} + 1 \right) \end{split}$$

$$\begin{aligned} & \text{ke } \mu_{\rm us} = m_{\pi} \sim k_{\rm F} \sim 100 \text{ MeV} \end{aligned}$$

• We take $\mu_{\rm us} = m_{\pi} \sim k_{\rm F} \sim 100 \text{ MeV}$

≈TRIUMF

In pnQRPA:

In NSM:

Ultrasoft neutrinos in pnQRPA and nuclear shell model

LJ. P. Soriano, J Menéndez, work in progress

iscov accele

Ultrasoft neutrinos as correction of the closure approximation

• In nuclear shell model, using closure approximation typically decreases $M_{\rm L}^{0
u}$ by $\sim 10\%$

R. A. Sen'kov, M. Horoi, Phys. Rev. C 88, 064312 (2013), Phys. Rev. C 93, 044334 (2016), Phys.Rev.C 89, 054304 (2014)

Ultrasoft neutrinos as correction of the closure approximation

In nuclear shell model, using closure approximation typically decreases M_L^{0ν} by ∼ 10%

R. A. Sen'kov, M. Horoi, Phys. Rev. C 88, 064312 (2013), Phys. Rev. C 93, 044334 (2016), Phys. Rev. C 89, 054304 (2014)

 Difference comes mostly from low-excitation-energy 1⁺ states (⁴⁸Ca)

Ultrasoft neutrinos as correction of the closure approximation

In nuclear shell model, using closure approximation typically decreases M_L^{0ν} by ∼ 10%

R. A. Sen'kov, M. Horoi, Phys. Rev. C 88, 064312 (2013), Phys. Rev. C 93, 044334 (2016), Phys.Rev.C 89, 054304 (2014)

- Difference comes mostly from low-excitation-energy 1⁺ states (⁴⁸Ca)
- ► M^{0ν}_{usoft} may be considered as closure correction

Ultrasoft neutrinos as correction of the closure approximation

In nuclear shell model, using closure approximation typically decreases M_L^{0ν} by ∼ 10%

R. A. Sen'kov, M. Horoi, Phys. Rev. C 88, 064312 (2013), Phys. Rev. C 93, 044334 (2016), Phys. Rev. C 89, 054304 (2014)

- Difference comes mostly from low-excitation-energy 1⁺ states (⁴⁸Ca)
- ► M^{0ν}_{usoft} may be considered as closure correction
- $\rightarrow~$ TODO: compare $M_{\rm L}^{0\nu}-M_{\rm L,cl}^{0\nu}$ with $M_{\rm usoft}^{0\nu}$ in pnQRPA

17/42

iscover

∂TRIUMF

Introduction

Corrections to $0\nu\beta\beta$ -decay nuclear matrix elements The contact term Contribution of ultrasoft neutrinos

Muon capture as a probe of $0\nu\beta\beta$ decay

VS-IMSRG Study on Muon Capture on ²⁴Mg No-Core Shell-Model Studies on Muon Capture on Light Nuclei Phenomenological study on muon capture on ¹³⁶Ba

Summary and Outlook

Ordinary Muon Capture (OMC)

$$\mu^- +^A_Z \mathcal{X}(J_i^{\pi_i}) \to \nu_\mu +^A_{Z-1} \mathcal{Y}(J_f^{\pi_f})$$

A muon can replace an electron in an atom, forming a *muonic atom*

Discovery, accelerated

Ordinary Muon Capture (OMC)

$$\mu^- +^A_Z \mathcal{X}(J_i^{\pi_i}) \to \nu_\mu +^A_{Z-1} \mathcal{Y}(J_f^{\pi_f})$$

- A muon can replace an electron in an atom, forming a *muonic atom*
 - Eventually bound on the $1s_{1/2}$ orbit

Discovery, accelerated

Ordinary Muon Capture (OMC)

$$\mu^- +^A_Z \mathcal{X}(J_i^{\pi_i}) \to \nu_\mu +^A_{Z-1} \mathcal{Y}(J_f^{\pi_f})$$

- A muon can replace an electron in an atom, forming a *muonic atom*
 - Eventually bound on the $1s_{1/2}$ orbit
- The muon can then be captured by the positively charged nucleus

Ordinary Muon Capture (OMC)

$$\mu^- +^A_Z \mathcal{X}(J_i^{\pi_i}) \to \nu_\mu +^A_{Z-1} \mathcal{Y}(J_f^{\pi_f})$$

- A muon can replace an electron in an atom, forming a *muonic atom*
 - Eventually bound on the $1s_{1/2}$ orbit
- The muon can then be captured by the positively charged nucleus
- Ordinary = non-radiative

 $\begin{pmatrix} \text{Radiative muon capture (RMC):} \\ \mu^{-} +_{Z}^{A} \operatorname{X}(J_{i}^{\pi_{i}}) \to \nu_{\mu} +_{Z-1}^{A} \operatorname{Y}(J_{f}^{\pi_{f}}) + \boldsymbol{\gamma} \end{pmatrix}$

∂TRIUMF

• Weak interaction process with momentum transfer $q \approx 100 \text{ MeV}/c^2$

≈ TRIUMF

Discovery, accelerated

- Weak interaction process with momentum transfer $q \approx 100 \text{ MeV}/c^2$
- Large m_{μ} allows transitions to all J^{π} states up to high energies

≈TRIUMF

- Weak interaction process with momentum transfer $q \approx 100 \text{ MeV}/c^2$
- Large m_{μ} allows transitions to all J^{π} states up to high energies

*** TRIUMF**

• Both the axial vector coupling g_A and the pseudoscalar coupling g_P involved δ_{Q}

- Weak interaction process with momentum transfer $q \approx 100 \text{ MeV}/c^2$
- Large m_{μ} allows transitions to all J^{π} states up to high energies
- Both the axial vector coupling g_A and the pseudoscalar coupling g_P involved
 - \rightarrow Similar to $0\nu\beta\beta$ decay!

*** TRIUMF**

Gysbers et al., Nature Phys. 15, 428 (2019)

20/42

20/4

CRIUMF *g*_A Quenching at High Momentum Exchange?

 Recently, first *ab initio* solution to g_A quenching puzzle was proposed for β-decay

P. Gysbers et al., Nature Phys. 15, 428 (2019)

Discovery, accelerated

\mathcal{R} TRIUMF g_A Quenching at High Momentum Exchange?

 Recently, first *ab initio* solution to g_A quenching puzzle was proposed for β-decay

P. Gysbers et al., Nature Phys. 15, 428 (2019)

 Solution: adding two-body currents and missing correlations

Gysbers et al., Nature Phys. 15, 428 (2019)

Discovery, accelerate

RIUMF *g*_A Quenching at High Momentum Exchange?

 Recently, first *ab initio* solution to g_A quenching puzzle was proposed for β-decay

P. Gysbers et al., Nature Phys. 15, 428 (2019)

- Solution: adding two-body currents and missing correlations
- How about g_A quenching at high momentum transfer ≈ 100 MeV?

Gysbers et al., Nature Phys. 15, 428 (2019)

Discovery, accelerated

CRIUMF *g*_A Quenching at High Momentum Exchange?

 Recently, first ab initio solution to g_A quenching puzzle was proposed for β-decay

P. Gysbers et al., Nature Phys. 15, 428 (2019)

- Solution: adding two-body currents and missing correlations
- How about g_A quenching at high momentum transfer ≈ 100 MeV?
 - OMC could provide a hint!

Gysbers et al., Nature Phys. 15, 428 (2019)

CRIUMF *g*_A Quenching at High Momentum Exchange?

 Recently, first *ab initio* solution to g_A quenching puzzle was proposed for β-decay

P. Gysbers et al., Nature Phys. 15, 428 (2019)

- Solution: adding two-body currents and missing correlations
- How about g_A quenching at high momentum transfer ≈ 100 MeV?
 - OMC could provide a hint!
- ► In principle, one could also access the pseudoscalar coupling *g*_P

Muon-Capture Theory

• Interaction Hamiltonian \rightarrow capture rate:

$$W(J_i \to J_f) = \frac{2J_f + 1}{2J_i + 1} \left(1 - \frac{q}{m_\mu + AM} \right) q^2 \sum_{\kappa u} |\mathbf{g}_{\mathbf{V}} \mathbf{M}_{\mathbf{V}}(\kappa, u) + \mathbf{g}_{\mathbf{M}} \mathbf{M}_{\mathbf{M}}(...) + \mathbf{g}_{\mathbf{A}} \mathbf{M}_{\mathbf{A}}(...) + \mathbf{g}_{\mathbf{P}} \mathbf{M}_{\mathbf{P}}(...)|^2$$

PHYSICAL REVIEW

VOLUME 118, NUMBER 2

APRIL 15, 1960

Theory of Allowed and Forbidden Transitions in Muon Capture Reactions*

MASATO MORITA Columbia University, New York, New York

AND

AKIHIKO FUJII† Brookhaven National Laboratory, Upton, Long Island, New York (Received November 9, 1959)

iscov

Delle

≈TRIUMF

Muon-Capture Theory

• Interaction Hamiltonian \rightarrow capture rate:

$$W(J_i \to J_f) = \frac{2J_f + 1}{2J_i + 1} \left(1 - \frac{q}{m_\mu + AM} \right) q^2 \sum_{\kappa u} |\mathbf{g}_{\mathbf{V}} \mathbf{M}_{\mathbf{V}}(\kappa, u) + \mathbf{g}_{\mathbf{M}} \mathbf{M}_{\mathbf{M}}(\dots) + \mathbf{g}_{\mathbf{P}} \mathbf{M}_{\mathbf{P}}(\dots)|^2$$

PHYSICAL REVIEW VOLUME 118, NUMBER 2 APRIL 15, 1960 Theory of Allowed and Forbidden Transitions in Muon Capture Reactions* MASATO MORITA Columbia University, New York, New York AND Акцико Fujut Delle Brookhaven National Laboratory, Upton, Long Island, New York (Received November 9, 1959) ISCOV

Use realistic bound-muon wave functions

21/42

Muon-Capture Theory

• Interaction Hamiltonian \rightarrow capture rate:

$$W(J_i \to J_f) = \frac{2J_f + 1}{2J_i + 1} \left(1 - \frac{q}{m_\mu + AM} \right) q^2 \sum_{\kappa u} |\mathbf{g}_{\mathbf{V}} \mathbf{M}_{\mathbf{V}}(\kappa, u) + \mathbf{g}_{\mathbf{M}} \mathbf{M}_{\mathbf{M}}(\dots) + \mathbf{g}_{\mathbf{P}} \mathbf{M}_{\mathbf{P}}(\dots)|^2$$

PHYSICAL REVIEW VOLUME 118, NUMBER 2 APRIL 15, 1960 Theory of Allowed and Forbidden Transitions in Muon Capture Reactions* MASATO MORITA Columbia University, New York, New York AND AKIHIKO FUJIJ Brookhaven National Laboratory, Upton, Long Island, New York (Received November 9, 1959)

- Use realistic bound-muon wave functions
- Add the effect of two-body currents

ISCOV

Bound-Muon Wave Functions

 Expand the muon wave function in terms of spherical spinors

$$\psi_{\mu}(\kappa,\mu;\mathbf{r}) = \psi_{\kappa\mu}^{(\mu)} = \begin{bmatrix} -iF_{\kappa}(r)\chi_{-\kappa\mu} \\ G_{\kappa}(r)\chi_{\kappa\mu} \end{bmatrix}$$
here $\kappa = -i(i+1) + l(l+1) - \frac{1}{2}$

where $\kappa = -j(j+1) + l(l+1) - \frac{1}{4}$ ($\kappa = -1$ for the $1s_{1/2}$ orbit)

$\textbf{B-S} = \text{Bethe-Salpeter:} \ G_{-1} = 2(\alpha Z m_{\mu}')^{\frac{3}{2}} e^{-\alpha Z m_{\mu}' r}$
pl = pointlike
fs = finite size nucleus

Bound-Muon Wave Functions

 Expand the muon wave function in terms of spherical spinors

$$\psi_{\mu}(\kappa,\mu;\mathbf{r}) = \psi_{\kappa\mu}^{(\mu)} = \begin{bmatrix} -iF_{\kappa}(r)\chi_{-\kappa\mu} \\ G_{\kappa}(r)\chi_{\kappa\mu} \end{bmatrix} ,$$

where $\kappa = -j(j+1) + l(l+1) - \frac{1}{4}$ ($\kappa = -1$ for the $1s_{1/2}$ orbit)

Solve the Dirac equations in the Coulomb potential V(r):

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}r}G_{-1} + \frac{1}{r}G_{-1} = \frac{1}{\hbar c}(mc^2 - E + V(r))F_{-1}\\ \frac{\mathrm{d}}{\mathrm{d}r}F_{-1} - \frac{1}{r}F_{-1} = \frac{1}{\hbar c}(mc^2 + E - V(r))G_{-1}\end{cases}$$

B-S = Bethe-Salpeter:
$$G_{-1} = 2(\alpha Z m'_{\mu})^{\frac{3}{2}} e^{-\alpha Z m'_{\mu} r}$$

pl = pointlike
fs = finite size nucleus

Axial-Vector Two-Body Currents (2BCs)

One-body currents

$$\mathbf{J}_{i,1\mathrm{b}}^3 = rac{ au_i^3}{2} \left(g_\mathrm{A} oldsymbol{\sigma}_i - rac{g_\mathrm{P}}{2m_\mathrm{N}} \mathbf{q} \cdot oldsymbol{\sigma}_i
ight)$$

+ two-body currents

$$\mathbf{J}_{i,\text{2b}}^{\text{eff}} = g_{\text{A}} \frac{\tau_i^3}{2} \Big[\delta a(\mathbf{q}^2) \boldsymbol{\sigma}_i + \frac{\delta a^P(\mathbf{q}^2)}{\mathbf{q}^2} (\mathbf{q} \cdot \boldsymbol{\sigma}_i) \mathbf{q} \Big]$$

Hoferichter, Klos, Schwenk Phys. Lett. B 746, 410 (2015)

Discovery, accelerated

RIUMF Axial-Vector Two-Body Currents (2BCs)

One-body currents

014327 (2023)

scover scelera

Capture Studies at PSI, Switzerland

 Most muon-capture experiments date back to ~ 1960s - 1990s

Capture Studies at PSI, Switzerland

- Most muon-capture experiments date back to ~ 1960s - 1990s
- MONUMENT (OMC4DBD) collaboration now aiming to measure:

Capture Studies at PSI, Switzerland

- Most muon-capture experiments date back to ~ 1960s - 1990s
- MONUMENT (OMC4DBD) collaboration now aiming to measure:
 - Partial muon-capture rates for OMC on ²⁴Mg, ³²S and ⁵⁶Fe

Capture Studies at PSI, Switzerland

- Most muon-capture experiments date back to ~ 1960s - 1990s
- MONUMENT (OMC4DBD) collaboration now aiming to measure:
 - Partial muon-capture rates for OMC on ²⁴Mg, ³²S and ⁵⁶Fe
 - Muon-capture in ββ-decay triplets, e.g.
 ¹³⁶Ba, ⁴⁸Ti

TRIUMF Muon-Capture Studies at PSI, Switzerland

- Most muon-capture experiments date back to ~ 1960s - 1990s
- MONUMENT (OMC4DBD) collaboration now aiming to measure:
 - Partial muon-capture rates for OMC on ²⁴Mg, ³²S and ⁵⁶Fe
 - Muon-capture in ββ-decay triplets, e.g.
 ¹³⁶Ba, ⁴⁸Ti
 - Potentially partial capture rates for ¹²C, ¹³C

25/42

∂TRIUMF

Introduction

Corrections to $0\nu\beta\beta$ -decay nuclear matrix elements The contact term Contribution of ultrasoft neutrinos

Muon capture as a probe of $0 u\beta\beta$ decay

VS-IMSRG Study on Muon Capture on 24 Mg

No-Core Shell-Model Studies on Muon Capture on Light Nuclei Phenomenological study on muon capture on ¹³⁶Ba

Summary and Outlook

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

 We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled with a unitary transformation

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled with a unitary transformation
 - Operators can be made consistent with the Hamiltonian!

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled with a unitary transformation
 - Operators can be made consistent with the Hamiltonian!
- The nuclear many-body problem can then be solved with a shell-model code

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled with a unitary transformation
 - Operators can be made consistent with the Hamiltonian!
- The nuclear many-body problem can then be solved with a shell-model code
 - Can be applied to medium-heavy to heavy nuclei

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled with a unitary transformation
 - Operators can be made consistent with the Hamiltonian!
- The nuclear many-body problem can then be solved with a shell-model code
 - Can be applied to medium-heavy to heavy nuclei
- $\rightarrow\,$ First case: OMC on $^{24}{\rm Mg}$

Capture Rates to Low-Lying States in ²⁴Na

J_i^{π}	E_{exp} (MeV)	Rate (10^3 1/s)				
		Exp. ¹	NSM		VS-IMSRG	
			1bc	1bc+2bc	1bc	1bc+2bc
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9
$Sum(1^+)$		38.5 ± 8.9	36.7	24.5	30.0	20.0
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3
22^+	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9
$Sum(2^+)$		20.9 ± 2.6	4.1	3.2	1.5	1.2

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

¹Gorringe *et al.*, *Phys. Rev. C* **60**, 055501 (1999)

Capture Rates to Low-Lying States in ²⁴Na

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

▶ Rate to the lowest two 1⁺ states agrees with experiment

¹Gorringe *et al.*, *Phys. Rev. C* **60**, 055501 (1999)

Capture Rates to Low-Lying States in ²⁴Na

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

- ▶ Rate to the lowest two 1⁺ states agrees with experiment
 - The effect of two-body currents may be overestimated

Gorringe et al., Phys. Rev. C 60, 055501 (1999)

Capture Rates to Low-Lying States in ²⁴Na

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

- ▶ Rate to the lowest two 1⁺ states agrees with experiment
 - The effect of two-body currents may be overestimated
- ► 1⁺ states mixed

Discovery, accelerate

Capture Rates to Low-Lying States in ²⁴Na

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

- ▶ Rate to the lowest two 1⁺ states agrees with experiment
 - The effect of two-body currents may be overestimated
- ▶ 1⁺ states mixed
- ► Both NSM and VS-IMSRG notably underestimate the rates to 2⁺ states

¹Gorringe *et al.*, *Phys. Rev. C* **60**, 055501 (1999)

Bates are sensitive to the interaction

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

Interaction Dependence

õ Ē

SC

- Rates are sensitive to the interaction
- It does not explain the poor agreement with the measured rates to the 2⁺ states (on the right)

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

28/42

Ē

29/42

iscover

℀TRIUMF

Introduction

Corrections to $0\nu\beta\beta$ -decay nuclear matrix elements The contact term Contribution of ultrasoft neutrinos

Muon capture as a probe of $0\nu\beta\beta$ decay

VS-IMSRG Study on Muon Capture on ²⁴Mg No-Core Shell-Model Studies on Muon Capture on Light Nuclei Phenomenological study on muon capture on ¹³⁶Ba

Summary and Outlook

Outline

No-Core Shell Model (NCSM)

 OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
 - HO basis truncated with $N_{\rm max}$

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
 - HO basis truncated with $N_{\rm max}$
- Hamiltonian based on the chiral EFT with different interactions:

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
 - HO basis truncated with N_{\max}
- Hamiltonian based on the chiral EFT with different interactions:
 - NN(N⁴LO)+3N(N²LO,InI) Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN)

Gysbers et al., Nature Phys. 15, 428 (2019) (3N)

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
 - HO basis truncated with N_{\max}
- Hamiltonian based on the chiral EFT with different interactions:
 - NN(N⁴LO)+3N(N²LO,InI) Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN)

Gysbers et al., Nature Phys. 15, 428 (2019) (3N)

► NN(N⁴LO)+3N(N²LO,InI,E7)

Girlanda, Kievsky, Viviani, Phys. Rev. C 84, 014001 (2011) (E7)

*** TRIUMF**

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
 - ▶ HO basis truncated with N_{max}
- Hamiltonian based on the chiral EFT with different interactions:
 - \blacktriangleright NN(N⁴LO)+3N(N²LO,InI) Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN)

Gysbers et al., Nature Phys. 15, 428 (2019) (3N)

NN(N⁴LO)+3N(N²LO,InI,E7)

Girlanda, Kievsky, Viviani, Phys. Rev. C 84, 014001 (2011) (E7)

NN(N³LO)+3N(N²LO.Inl) Entem, Machleidt, Phys. Rev. C 68, 041001 (2003) (NN)

Somà et al., Phys. Rev. C 101, 014318 (2020) (3N)

*** TRIUMF**

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
 - ▶ HO basis truncated with N_{max}
- Hamiltonian based on the chiral EFT with different interactions:
 - \blacktriangleright NN(N⁴LO)+3N(N²LO,InI) Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN)

Gysbers et al., Nature Phys. 15, 428 (2019) (3N)

NN(N⁴LO)+3N(N²LO,InI.E7)

Girlanda, Kievsky, Viviani, Phys. Rev. C 84, 014001 (2011) (E7)

 $NN(N^{3}LO)+3N(N^{2}LO.InI)$ Entem, Machleidt, Phys. Rev. C 68, 041001 (2003) (NN)

Somà et al., Phys. Rev. C 101, 014318 (2020) (3N)

 \rightarrow OMC on ⁶Li. ¹²C and ¹⁶O

30/42

Capture Rates to the Ground State of ⁶He

NCSM in keeping with experiment

31/42

iscove

<u>Sec</u>

S

Capture Rates to the Ground State of ⁶He

- NCSM in keeping with experiment
- The rates can be compared with the variational (VMC) and Green's function Monte-Carlo (GFMC) calculations

King et al., Phys. Rev. C 105, L042501 (2022)

Capture Rates to the Ground State of ¹²B

Interaction dependence

work in progress

Capture Rates to the Ground State of ¹²B

- Interaction dependence
- Adding the E₇ spin-orbit term improves agreement with experiment

work in progress

Capture Rates to the Ground State of ¹²B

- Interaction dependence
- Adding the E₇ spin-orbit term improves agreement with experiment
- Converge slow (clustering effects?)

& TRIUMF Capture Rates to the Ground State of ¹²B

- Interaction dependence
- Adding the E₇ spin-orbit term improves agreement with experiment
- Converge slow (clustering effects?)
- The results can be compared against earlier NCSM ones

Hayes et al., Phys. Rev. Lett. 91, 012502 (2003)

& TRIUMF Capture Rates to the Ground State of ¹²B

- Interaction dependence
- Adding the E₇ spin-orbit term improves agreement with experiment
- Converge slow (clustering effects?)
- The results can be compared against earlier NCSM ones

Hayes et al., Phys. Rev. Lett. 91, 012502 (2003)

 3-body forces essential to reproduce the measured rate

LJ, Navrátil, Kotila, Kravvaris,

work in progress

Capture Rates to the ground state of ¹⁶N

 NCSM describes well the complex systems ¹⁶O and ¹⁶N

 ${}^{16}O(0^+_{\sigma s}) + \mu^- \rightarrow {}^{16}N(2^-_{\sigma s}) + \nu_{\mu}$ - 1b 201b + 2b15 $Rate(10^3/s)$ 10 5NN-N⁴LO+3N₁ Early exps. NN-N⁴LO+3N^{*}_{1n1} Kane 1973 - NN-N³LO^{*}+3N_{1n1} 12 ∞ 9 6 8 10 $N_{\rm max}$

LJ, Navrátil, Kotila, Kravvaris,

work in progress

$\ref{eq: Capture Rates to the ground state of ^{16}N}$

- NCSM describes well the complex systems ¹⁶O and ¹⁶N
- ► Less sensitive to the interaction than ${}^{12}C(\mu^-,\nu_\mu){}^{12}B$

Discoveration

$\ref{eq: Capture Rates to the ground state of ^{16}N}$

- NCSM describes well the complex systems ¹⁶O and ¹⁶N
- ► Less sensitive to the interaction than ${}^{12}\mathrm{C}(\mu^-,\nu_\mu){}^{12}\mathrm{B}$
- → Forbidden β decay ${}^{16}N(2_{gs}^{-}) \rightarrow {}^{16}O(0_{gs}^{+}) + e^{-} + \bar{\nu}_{e}$ for beyond-standard model studies

iscov cceler

$\ref{eq: Capture Rates to the ground state of ^{16}N}$

- NCSM describes well the complex systems ¹⁶O and ¹⁶N
- ► Less sensitive to the interaction than ${}^{12}\mathrm{C}(\mu^-,\nu_\mu){}^{12}\mathrm{B}$
- → Forbidden β decay ¹⁶N(2⁻_{gs}) → ¹⁶O(0⁺_{gs}) + $e^- + \bar{\nu}_e$ for beyond-standard model studies
 - Ongoing experiment at SARAF, Israel

iscov
Capture Rates to the ground state of ¹⁶N

- NCSM describes well the complex systems ¹⁶O and ¹⁶N
- ► Less sensitive to the interaction than ${}^{12}\mathrm{C}(\mu^-,\nu_\mu){}^{12}\mathrm{B}$
- → Forbidden β decay ¹⁶N(2⁻_{gs}) → ¹⁶O(0⁺_{gs}) + $e^- + \bar{\nu}_e$ for beyond-standard model studies
 - Ongoing experiment at SARAF, Israel
 - $\rightarrow~$ Theory estimates based on NCSM

$$\begin{array}{c} 20 \\ & & & \\ & &$$

 ${}^{16}O(0^+_{os}) + \mu^- \rightarrow {}^{16}N(2^-_{os}) + \nu_{\mu}$

work in progress

Triumf Total Muon-Capture Rates in ¹²B and ¹⁶N

 Color gradient: increasing N_{max} (3,5,7 for ¹²C and 2,4,6 for ¹⁶O)

LJ, Navrátil, Kotila, Kravvaris, work in progress

≈TRIUMF Total Muon-Capture Rates in ¹²B and ¹⁶N

- \blacktriangleright Color gradient: increasing $N_{\rm max}$ (3,5,7 for ¹²C and 2.4.6 for ¹⁶O)
- \blacktriangleright Rates obtained summing over ~ 50 final states of each parity

LJ. Navrátil. Kotila. Kravvaris. work in progress

iscov

40

Trium Total Muon-Capture Rates in ¹²B and ¹⁶N

- Color gradient: increasing N_{max} (3,5,7 for ¹²C and 2,4,6 for ¹⁶O)
- \blacktriangleright Rates obtained summing over ~ 50 final states of each parity
- Summing up the rates up to ~ 20 MeV, we capture ~ 85% of the total rate in both ¹²B and ¹⁶N

 $\mu^- \ + \ ^{12}{\rm C}(0^+_{\rm gs}) \ \rightarrow \ \nu_\mu \ + \ ^{12}{\rm B}(J^\pi_k)$

LJ, Navrátil, Kotila, Kravvaris, work in progress

Calculation:

Total Muon-Capture Rates

Experiment:

$$\mu^- + {}^{100} \text{ Mo} \to \nu_\mu + {}^{100} \text{ Nb}$$

Hashim et al., Phys. Rev. C 97, 014617 (2018)

 $\mu^{-} + {}^{12}C(0^+_{\sigma_8}) \rightarrow \nu_{\mu} + {}^{12}B(J^{\pi}_k)$ 4 3 $\operatorname{Rate}(10^4/\mathrm{s})$ Pos. Neg. Both par. Exp. total rate 0 30 10 2040 0 E(MeV)

Missing potentially important contribution from high energies

Total Muon-Capture Rates

Experiment:

$$\mu^- + {}^{100} \text{ Mo} \to \nu_\mu + {}^{100} \text{ Nb}$$

36/42

iscover

∂TRIUMF

Introduction

Corrections to $0\nu\beta\beta$ -decay nuclear matrix elements The contact term Contribution of ultrasoft neutrinos

Muon capture as a probe of $0\nu\beta\beta$ decay

VS-IMSRG Study on Muon Capture on ²⁴Mg No-Core Shell-Model Studies on Muon Capture on Light Nuclei Phenomenological study on muon capture on ¹³⁶Ba

Summary and Outlook

Muon capture on ¹³⁶Ba

 OMC on ¹³⁶Ba one of the candidates to be measured by the MONUMENT collaboration

Atomic number

Muon capture on $^{136}\mbox{Ba}$

- OMC on ¹³⁶Ba one of the candidates to be measured by the MONUMENT collaboration
- ► Calls for phenomenology:

Muon capture on ¹³⁶Ba

- OMC on ¹³⁶Ba one of the candidates to be measured by the MONUMENT collaboration
- ► Calls for phenomenology:
 - Far too heavy for NCSM (A >> 20)

Muon capture on ¹³⁶Ba

- OMC on ¹³⁶Ba one of the candidates to be measured by the MONUMENT collaboration
- ► Calls for phenomenology:
 - Far too heavy for NCSM (A >> 20)
 - ► Need both positive and negative-parity states → difficult for VS-IMSRG

Muon capture on $^{136}\mathrm{Ba}$

- OMC on ¹³⁶Ba one of the candidates to be measured by the MONUMENT collaboration
- ► Calls for phenomenology:
 - Far too heavy for NCSM (A >> 20)
 - ► Need both positive and negative-parity states → difficult for VS-IMSRG
- Solution: (phenomenological) nuclear shell model and proton-neutron QRPA

Excitation energies in 136 Cs ($J \le 5$)

 The shell-model and pnQRPA energies are surprisingly similar

∂ TRIUMF

Excitation energies in 136 Cs ($J \le 5$)

 The shell-model and pnQRPA energies are surprisingly similar

≈TRIUMF

 Agreement with experiment gets much better with the new measurement

B. M. Rebeiro et al., arXiv:2301.11371 (2023)

đ1

Muon capture rates to low-lying states in ¹³⁶Cs

• Summing up the rates to states with $E_X < 1$ MeV:

P. Gimeno, LJ, J. Kotila, M. Ramalho, J. Suhonen, 10.20944/preprints202304.0899.v1 (submitted to Universe)

	Rate (1b)($10^{3}1/s$)	Rate (1b+2b)($10^{3}1/s$)	Rate (1b+2b) / Total rate
NSM	248	150 - 174	1.4 - 1.5%
pnQRPA	1103	592 - 807	5-7%

Muon capture rates to low-lying states in $^{136}\mbox{Cs}$

• Summing up the rates to states with $E_X < 1$ MeV:

P. Gimeno, LJ, J. Kotila, M. Ramalho, J. Suhonen, 10.20944/preprints202304.0899.v1 (submitted to Universe)

	Rate (1b)($10^{3}1/s$)	Rate (1b+2b)($10^{3}1/s$)	Rate (1b+2b) / Total rate
NSM	248	150 - 174	1.4 - 1.5%
pnQRPA	1103	592 - 807	5-7%

• pnQRPA gives \approx 4 times larger rates than NSM

Muon capture rates to low-lying states in ¹³⁶Cs

• Summing up the rates to states with $E_X < 1$ MeV:

P. Gimeno, LJ, J. Kotila, M. Ramalho, J. Suhonen, 10.20944/preprints202304.0899.v1 (submitted to Universe)

	Rate (1b)($10^{3}1/s$)	Rate (1b+2b)($10^{3}1/s$)	Rate (1b+2b) / Total rate
NSM	248	150 - 174	1.4 - 1.5%
pnQRPA	1103	592 - 807	5-7%

- ▶ pnQRPA gives ≈4 times larger rates than NSM
 - ► With experimental data, we will know which one is (more) correct

Muon capture rates to low-lying states in ¹³⁶Cs

• Summing up the rates to states with $E_X < 1$ MeV:

P. Gimeno, LJ, J. Kotila, M. Ramalho, J. Suhonen, 10.20944/preprints202304.0899.v1 (submitted to Universe)

	Rate (1b)($10^{3}1/s$)	Rate (1b+2b)($10^{3}1/s$)	Rate (1b+2b) / Total rate
NSM	248	150 - 174	1.4 - 1.5%
pnQRPA	1103	592 - 807	5-7%

- pnQRPA gives \approx 4 times larger rates than NSM
 - With experimental data, we will know which one is (more) correct
 - May hint which model is more reliable for the $0\nu\beta\beta$ decay of ¹³⁶Xe!

ISCOVE

Muon capture rates to low-lying states in ¹³⁶Cs

• Summing up the rates to states with $E_X < 1$ MeV:

P. Gimeno, LJ, J. Kotila, M. Ramalho, J. Suhonen, 10.20944/preprints202304.0899.v1 (submitted to Universe)

	Rate (1b)($10^{3}1/s$)	Rate (1b+2b)($10^{3}1/s$)	Rate (1b+2b) / Total rate
NSM	248	150 - 174	1.4 - 1.5%
pnQRPA	1103	592 - 807	5-7%

- pnQRPA gives \approx 4 times larger rates than NSM
 - With experimental data, we will know which one is (more) correct
 - May hint which model is more reliable for the $0\nu\beta\beta$ decay of ¹³⁶Xe!
- Similar study ongoing for OMC on 128,130 Xe

40/42

iscover

∂TRIUMF

Introduction

Corrections to $0\nu\beta\beta$ -decay nuclear matrix elements The contact term Contribution of ultrasoft neutrinos

Muon capture as a probe of $0\nu\beta\beta$ decay VS-IMSRG Study on Muon Capture on ²⁴Mg No-Core Shell-Model Studies on Muon Capture on Light Nuclei Phenomenological study on muon capture on ¹³⁶Ba

Summary and Outlook

• Newly introduced contact term significantly enhances the $0\nu\beta\beta$ -decay NMEs

- Newly introduced contact term significantly enhances the $0\nu\beta\beta$ -decay NMEs
- Studying the contribution from ultrasoft neutrinos may help us estimate the closure correction to the 0νββ-decay NMEs

- Newly introduced contact term significantly enhances the $0\nu\beta\beta$ -decay NMEs
- Studying the contribution from ultrasoft neutrinos may help us estimate the closure correction to the 0νββ-decay NMEs
- Ab initio muon-capture studies could shed light on g_A quenching at finite momentum exchange regime relevant for $0\nu\beta\beta$ decay

- Newly introduced contact term significantly enhances the $0\nu\beta\beta$ -decay NMEs
- Studying the contribution from ultrasoft neutrinos may help us estimate the closure correction to the 0νββ-decay NMEs
- Ab initio muon-capture studies could shed light on g_A quenching at finite momentum exchange regime relevant for $0\nu\beta\beta$ decay
- Phenomenological methods still needed for heavy/difficult systems

Outlook

Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight) on OMC rates

- Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight) on OMC rates
- ► Study potential OMC candidates ⁴⁸Ti, ⁴⁰Ca, ⁴⁰Ti in VS-IMSRG

- Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight) on OMC rates
- ► Study potential OMC candidates ⁴⁸Ti, ⁴⁰Ca, ⁴⁰Ti in VS-IMSRG
- ► The "brute force" method cannot reach the total muon-capture rates → use the Lanczos strength-function method, instead

- Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight) on OMC rates
- ► Study potential OMC candidates ⁴⁸Ti, ⁴⁰Ca, ⁴⁰Ti in VS-IMSRG
- ► The "brute force" method cannot reach the total muon-capture rates → use the Lanczos strength-function method, instead
- Study the effect of exact two-body currents and/or continuum on the OMC rates

- Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight) on OMC rates
- ► Study potential OMC candidates ⁴⁸Ti, ⁴⁰Ca, ⁴⁰Ti in VS-IMSRG
- ► The "brute force" method cannot reach the total muon-capture rates → use the Lanczos strength-function method, instead
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes

- Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight) on OMC rates
- ► Study potential OMC candidates ⁴⁸Ti, ⁴⁰Ca, ⁴⁰Ti in VS-IMSRG
- ► The "brute force" method cannot reach the total muon-capture rates → use the Lanczos strength-function method, instead
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes
 - ¹⁶N potential candidate for forbidden β-decay studies (ongoing)

- Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight) on OMC rates
- ► Study potential OMC candidates ⁴⁸Ti, ⁴⁰Ca, ⁴⁰Ti in VS-IMSRG
- ► The "brute force" method cannot reach the total muon-capture rates → use the Lanczos strength-function method, instead
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes
 - ¹⁶N potential candidate for forbidden β-decay studies (ongoing)
 - ► ¹²C and ¹⁶O are both of interest in neutrino-scattering experiments

$$(\nu_{\mu} + {}^{12}C \rightarrow \mu^{-} + {}^{12}N)$$

Thank you Merci

OMC operators

Rates written in terms of reduced one-body matrix elements:

$$(\Psi_f || \sum_{s=1}^{A} \hat{O}_{kwux}(\mathbf{r}_s, \mathbf{p}_s) || \Psi_i) = \frac{1}{\sqrt{2u+1}} \sum_{pn} (n || \hat{O}_{kwux}(\mathbf{r}_s, \mathbf{p}_s) || p) (\Psi_f || [a_n^{\dagger} \tilde{a}_p]_u || \Psi_i)$$

OMC operators

Rates written in terms of reduced one-body matrix elements:

$$(\Psi_f || \sum_{s=1}^{A} \hat{O}_{kwux}(\mathbf{r}_s, \mathbf{p}_s) || \Psi_i) = \frac{1}{\sqrt{2u+1}} \sum_{pn} (n || \hat{O}_{kwux}(\mathbf{r}_s, \mathbf{p}_s) || p) (\Psi_f || [a_n^{\dagger} \tilde{a}_p]_u || \Psi_i)$$

Axial-Vector Two-Body Currents (2BCs)

One-body (1b) axial-vector currents given by

$$\mathbf{J}_{i,\mathrm{1b}}^3 = rac{ au_i^3}{2} \left(g_\mathrm{A} oldsymbol{\sigma}_i - rac{g_\mathrm{P}}{2m_\mathrm{N}} \mathbf{q} \cdot oldsymbol{\sigma}_i
ight) \, ,$$

where $g_{\rm P} = (2m_{\rm N}q/(q^2+m_{\pi}^2))g_{\rm A}$

Axial-Vector Two-Body Currents (2BCs)

One-body (1b) axial-vector currents given by

$$\mathbf{J}_{i,\mathrm{1b}}^3 = rac{ au_i^3}{2} \left(g_\mathrm{A} oldsymbol{\sigma}_i - rac{g_\mathrm{P}}{2m_\mathrm{N}} \mathbf{q} \cdot oldsymbol{\sigma}_i
ight) \,,$$

where $g_{\rm P} = (2m_{\rm N}q/(q^2+m_{\pi}^2))g_{\rm A}$

Additional pion-exchange, pion-pole, and contact two-body (2b) currents Hoferichter, Klos, Schwenk Phys. Lett. B 746, 410 (2015)

$$\begin{aligned} \mathbf{J}_{12}^{3} &= -\frac{g_{\mathrm{A}}}{2F_{\pi}^{2}} [\tau_{1} \times \tau_{2}]^{3} \Big[c_{4} \left(1 - \frac{\mathbf{q}}{\mathbf{q}^{2} + M_{\pi}} \mathbf{q} \cdot \right) (\boldsymbol{\sigma}_{1} \times \mathbf{k}_{2}) + \frac{c_{6}}{4} (\boldsymbol{\sigma}_{1} \times \mathbf{q}) + i \frac{\mathbf{p}_{1} + \mathbf{p}_{1}'}{4m_{\mathrm{N}}} \Big] \frac{\boldsymbol{\sigma}_{2} \cdot \mathbf{k}_{2}}{M_{\pi}^{2} + k_{2}^{2}} \\ &- \frac{g_{\mathrm{A}}}{F_{\pi}^{2}} \tau_{2}^{3} \Big[c_{3} \left(1 - \frac{\mathbf{q}}{\mathbf{q}^{2} + M_{\pi}} \mathbf{q} \cdot \right) \mathbf{k}_{2} + 2c_{1}M_{\pi}^{2} \frac{\mathbf{q}}{\mathbf{q}^{2} + M_{\pi}^{2}} \Big] \frac{\boldsymbol{\sigma}_{2} \cdot \mathbf{k}_{2}}{M_{\pi}^{2} + k_{2}^{2}} \\ &- d_{1}\tau_{1}^{3} \left(1 - \frac{\mathbf{q}}{\mathbf{q}^{2} + M_{\pi}^{2}} \mathbf{q} \cdot \right) \boldsymbol{\sigma}_{1} + (1 \leftrightarrow 2) - d_{2}(\tau_{1} \times \tau_{2})^{3} (\boldsymbol{\sigma}_{1} \times \boldsymbol{\sigma}_{2}) \left(1 - \cdot \mathbf{q} \frac{\mathbf{q}}{\mathbf{q}^{2} + M_{\pi}^{2}} \right) \end{aligned}$$

where $\mathbf{k}_i = \mathbf{p}_i' - \mathbf{p}_i$ and $\mathbf{q} = -\mathbf{k_1} - \mathbf{k_2}$
Axial-Vector Two-Body Currents (2BCs)

Approximate 2BCs by normal-ordering w.r.t. spin-isospin–symmetric reference state with ρ = 2k_F³/(3π²):

Hoferichter, Menéndez, Schwenk, Phys. Rev. D 102,074018 (2020)

$$\mathbf{J}_{i,2\mathrm{b}}^{\mathrm{eff}} = \sum_{j} (1 - P_{ij}) \mathbf{J}_{ij}^{3}$$

Axial-Vector Two-Body Currents (2BCs)

Approximate 2BCs by normal-ordering w.r.t. spin-isospin–symmetric reference state with ρ = 2k_F³/(3π²):

Hoferichter, Menéndez, Schwenk, Phys. Rev. D 102,074018 (2020)

$$\mathbf{J}_{i,2\mathrm{b}}^{\mathrm{eff}} = \sum_{j} (1 - P_{ij}) \mathbf{J}_{ij}^{3}$$

$$\rightarrow \mathbf{J}_{i,2\mathrm{b}}^{\mathrm{eff}} = g_{\mathrm{A}} \frac{\tau_i^3}{2} \Big[\delta a(\mathbf{q}^2) \boldsymbol{\sigma}_i + \frac{\delta a^P(\mathbf{q}^2)}{\mathbf{q}^2} (\mathbf{q} \cdot \boldsymbol{\sigma}_i) \mathbf{q} \Big] \,,$$

where

$$\begin{split} \delta_{a}(\mathbf{q}^{2}) &= -\frac{\rho}{F_{\pi}^{2}} \left[\frac{c_{4}}{3} [3I_{2}^{\sigma}(\rho,\mathbf{q}) - I_{1}^{\sigma}(\rho,|\mathbf{q}|)] - \frac{1}{3} \left(c_{3} - \frac{1}{4m_{N}} \right) I_{1}^{\sigma}(\rho,|\mathbf{q}|) - \frac{c_{6}}{12} I_{c6}(\rho,|\mathbf{q}|) - \frac{c_{D}}{4g_{A}\Lambda_{\chi}} \right], \\ \delta_{a}^{P}(\mathbf{q}^{2}) &= \frac{\rho}{F_{\pi}^{2}} \left[-2(c_{3} - 2c_{1}) \frac{m_{\pi}^{2} \mathbf{q}^{2}}{(m_{\pi}^{2} + \mathbf{q}^{2})^{2}} + \frac{1}{3} \left(c_{3} + c_{4} - \frac{1}{4m_{N}} \right) I^{P}(\rho,|\mathbf{q}|) - \left(\frac{c_{6}}{12} - \frac{2}{3} \frac{c_{1}m_{\pi}^{2}}{m_{\pi}^{2} + \mathbf{q}^{2}} \right) I_{c6}(\rho,|\mathbf{q}|) \\ &- \frac{\mathbf{q}^{2}}{m_{\pi}^{2} + \mathbf{q}^{2}} \left(\frac{c_{3}}{3} [I_{1}^{\sigma}(\rho,|\mathbf{q}|) + I^{P}(\rho,|\mathbf{q}|)] + \frac{c_{4}}{3} [I_{1}^{\sigma}(\rho,|\mathbf{q}|) + I^{P}(\rho,|\mathbf{q}|) - 3I_{2}^{\sigma}(\rho,|\mathbf{q}|)] \right) - \frac{c_{D}}{4g_{A}\Lambda_{\chi}} \frac{\mathbf{q}^{2} \rho}{m_{\pi}^{2} + \mathbf{q}^{2}} \right] \end{split}$$

Translationally invariant wave function

We are not interested in the motion of the center of mass (CM) of the HO potential but only the intrinsic motion

Translationally invariant wave function

- We are not interested in the motion of the center of mass (CM) of the HO potential but only the intrinsic motion
- ► Translationally invariant wave functions can be achieved in two ways:

Translationally invariant wave function

- We are not interested in the motion of the center of mass (CM) of the HO potential but only the intrinsic motion
- ► Translationally invariant wave functions can be achieved in two ways:
 - Working with A 1 Jacobi coordinates $\boldsymbol{\xi}_s = -\sqrt{A/(A-1)}(\mathbf{r}_s \mathbf{R}_{CM})$:

$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi^{\text{HO}}_{Ni}(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, ..., \boldsymbol{\xi}_{A-1})$$

Translationally invariant wave function

- We are not interested in the motion of the center of mass (CM) of the HO potential but only the intrinsic motion
- ► Translationally invariant wave functions can be achieved in two ways:
 - Working with A 1 Jacobi coordinates $\boldsymbol{\xi}_s = -\sqrt{A/(A-1)}(\mathbf{r}_s \mathbf{R}_{CM})$:

$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi_{Ni}^{\text{HO}}(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, ..., \boldsymbol{\xi}_{A-1})$$

► Working with *A* single-particle coordinates and separating the center-of-mass motion:

$$\Psi_{\mathrm{SD}}^{A} = \sum_{N=0}^{N_{\mathrm{max}}} \sum_{i} c_{Nj}^{\mathrm{SD}} \Phi_{\mathrm{SD}\ Nj}^{\mathrm{HO}}(\mathbf{r}_{1}, \mathbf{r}_{2}, ..., \mathbf{r}_{A}) = \Psi^{A} \Psi_{\mathrm{CM}}(\mathbf{R}_{\mathrm{CM}})$$

OMC operators depend on single-particle coordinates r_s and p_s w. r. t. the center of mass

- OMC operators depend on single-particle coordinates r_s and p_s w. r. t. the center of mass
- ► The CM contamination can be removed as: Navrátil, Phys. Rev. C 104, 064322 (2021)

$$\begin{split} (\Psi_{f}||\sum_{s=1}^{A} \hat{O}_{s}(\mathbf{r}_{s} - \mathbf{R}_{\mathrm{CM}}, \mathbf{p}_{s} - \mathbf{P})||\Psi_{i}) \\ = & \frac{1}{\sqrt{2u+1}} \times \sum_{pnp'n'} (n'||\hat{O}_{s}\left(-\sqrt{\frac{A-1}{A}}\boldsymbol{\xi}_{s}, -\sqrt{\frac{A-1}{A}}\boldsymbol{\pi}_{s}\right)||p') \\ & \times (M^{u})_{n'p',np}^{-1}(\Psi_{f}||[a_{n}^{\dagger}\tilde{a}_{p}]_{u}||\Psi_{i}) , \end{split}$$

where

$$\begin{aligned} \boldsymbol{\xi}_s &= -\sqrt{A/(A-1)}(\mathbf{r}_s - \mathbf{R}_{\mathrm{CM}}) \\ \boldsymbol{\pi}_s &= -\sqrt{A/(A-1)}(\mathbf{p}_s - \mathbf{P}) \end{aligned}$$

- OMC operators depend on single-particle coordinates r_s and p_s w. r. t. the center of mass
- ► The CM contamination can be removed as: Navrátil, Phys. Rev. C 104, 064322 (2021)

$$\begin{split} (\Psi_{f}||\sum_{s=1}^{A} \hat{O}_{s}(\mathbf{r}_{s} - \mathbf{R}_{\mathrm{CM}}, \mathbf{p}_{s} - \mathbf{P})||\Psi_{i}) \\ = & \frac{1}{\sqrt{2u+1}} \times \sum_{pnp'n'} (n'||\hat{O}_{s}\left(-\sqrt{\frac{A-1}{A}}\boldsymbol{\xi}_{s}, -\sqrt{\frac{A-1}{A}}\boldsymbol{\pi}_{s}\right)||p') \\ & \times (M^{u})_{n'p',np}^{-1}(\Psi_{f}||[a_{n}^{\dagger}\tilde{a}_{p}]_{u}||\Psi_{i}) , \end{split}$$

where

$$\begin{aligned} \boldsymbol{\xi}_s &= -\sqrt{A/(A-1)} (\mathbf{r}_s - \mathbf{R}_{\rm CM}) \\ \boldsymbol{\pi}_s &= -\sqrt{A/(A-1)} (\mathbf{p}_s - \mathbf{P}) \end{aligned}$$

- OMC operators depend on single-particle coordinates r_s and p_s w. r. t. the center of mass
- ► The CM contamination can be removed as: Navrátil, Phys. Rev. C 104, 064322 (2021)

$$\begin{split} & (\Psi_f || \sum_{s=1}^{A} \hat{O}_s(\mathbf{r}_s - \mathbf{R}_{\rm CM}, \mathbf{p}_s - \mathbf{P}) || \Psi_i) \\ = & \frac{1}{\sqrt{2u+1}} \times \sum_{pnp'n'} (n' || \hat{O}_s \left(-\sqrt{\frac{A-1}{A}} \boldsymbol{\xi}_s, -\sqrt{\frac{A-1}{A}} \boldsymbol{\pi}_s \right) || p') \\ & \times (M^u)_{n'p',np}^{-1} (\Psi_f || [a_n^{\dagger} \tilde{a}_p]_u || \Psi_i) \;, \end{split}$$

where

$$\begin{aligned} \boldsymbol{\xi}_s &= -\sqrt{A/(A-1)} (\mathbf{r}_s - \mathbf{R}_{\rm CM}) \\ \boldsymbol{\pi}_s &= -\sqrt{A/(A-1)} (\mathbf{p}_s - \mathbf{P}) \end{aligned}$$

Two-Body Currents

 Fermi-gas density ρ adjusted so that δ_a(0) reproduces the effect of exact two-body currents in

P. Gysbers et al., Nature Phys. 15, 428 (2019)

LJ, Navrátil, Kotila and Kravvaris, work in progress Discovery, accelerated

Two-Body Currents

 Fermi-gas density ρ adjusted so that δ_a(0) reproduces the effect of exact two-body currents in

P. Gysbers et al., Nature Phys. 15, 428 (2019)

► Two-body currents typically reduce the OMC rates by $\sim 1-2\%$ in ⁶Li and by $\lesssim 10\%$ in ¹²C and ¹⁶O

LJ, Navrátil, Kotila and Kravvaris, work in progress

iscover

<u>Sel</u>

Interaction dependence

LJ, Navrátil, Kotila, Kravvaris, work in progress

C

 $\overline{\mathbf{O}}$

č

- Interaction dependence
- Adding the E₇ spin-orbit term improves agreement with experiment

LJ, Navrátil, Kotila, Kravvaris, work in progress

 NCSM describes well the complex systems ¹⁶O and ¹⁶N

LJ, Navrátil, Kotila, Kravvaris, work in progress

d

 \overline{a}

Ũ

- NCSM describes well the complex systems ¹⁶O and ¹⁶N
- Less sensitive to the interaction than ${}^{12}C(\mu^-,\nu_\mu){}^{12}B$

- NCSM describes well the complex systems ¹⁶O and ¹⁶N
- ► Less sensitive to the interaction than ${}^{12}C(\mu^-,\nu_\mu){}^{12}B$
- $\begin{array}{rcl} & \rightarrow & \text{Forbidden } \beta \text{ decay} \\ & {}^{16}\mathrm{N}(2^-_{\mathrm{gs}}) \ \rightarrow \ {}^{16}\mathrm{O}(0^+_{\mathrm{gs}}) + e^- + \bar{\nu}_e \\ & \text{for beyond-standard model} \\ & \text{studies} \end{array}$

- NCSM describes well the complex systems ¹⁶O and ¹⁶N
- ► Less sensitive to the interaction than ¹²C(μ⁻, ν_μ)¹²B
- $\begin{array}{rcl} & \rightarrow & \text{Forbidden } \beta \text{ decay} \\ & {}^{16}\mathrm{N}(2^-_{\mathrm{gs}}) \ \rightarrow \ {}^{16}\mathrm{O}(0^+_{\mathrm{gs}}) + e^- + \bar{\nu}_e \\ & \text{for beyond-standard model} \\ & \text{studies} \end{array}$
 - Ongoing experiment at SARAF, Israel

- NCSM describes well the complex systems ¹⁶O and ¹⁶N
- Less sensitive to the interaction than ¹²C(μ[−], ν_μ)¹²B
- $\begin{array}{rcl} & \rightarrow & \text{Forbidden } \beta \text{ decay} \\ & {}^{16}\mathrm{N}(2^-_{\mathrm{gs}}) \rightarrow {}^{16}\mathrm{O}(0^+_{\mathrm{gs}}) + e^- + \bar{\nu}_e \\ & \text{for beyond-standard model} \\ & \text{studies} \end{array}$
 - Ongoing experiment at SARAF, Israel
 - $\rightarrow\,$ Theory estimates based on NCSM

\approx TRIUMF Excitation Energies in the A = 24 Systems

Discovery accelerate

51/42

\mathcal{R} TRIUMF Electromagnetic Moments in the A = 24 Systems

Nucleus	J_i^{π}		E(MeV)		$\mu(\mu_{ m N})$			$Q(e^2 \mathrm{fm}^2)$	
	-	exp.	NSM	IMSRG	exp.	NSM	IMSRG	exp.	NSM	IMSRG
24 Mg	2^{+}	1.369	1.502	1.981	1.08(3)	1.008	1.033	-29(3)	-19.346	-12.9
24 Mg	4^{+}	4.123	4.372	5.327	1.7(12)	2.021	2.096	-		
24 Mg	2^{+}	4.238	4.116	4.327	1.3(4)	1.011	1.085	-		
24 Mg	4^{+}	6.010	5.882	6.347	2.1(16)	2.015	2.089	-		
24 Na	4^{+}	0.0	0.0	0.0	1.6903(8)	1.533	1.485	-		
24 Na	1^{+}	0.472	0.540	0.397	-1.931(3)	-1.385	-0.344	-		

β Decays of the A=24 Systems

Nucleus	$J_i \to J_f$	$\log ft$				
		exp.	NSM	IMSRG		
24 Na	$1^+_1 \to 0^+_1$	5.80	5.188–5.223	4.448–4.545		
24 Na	$4^+_{\rm gs} \rightarrow 4^+_1$	6.11	5.416–5.461	5.795–5.866		
24 Na	$4^{+}_{\rm gs} \rightarrow 3^{+}_{1}$	6.60	5.727–5.773	6.342–6.422		

Excitation Energies of 12 **B**

		$E_{ m exc.}$ (MeV)				
J_i^{π}	Interaction	$N_{\rm max} = 4$	$N_{\rm max} = 6$	$N_{\max} = 8(IT)$	Exp.	
1_{1}^{+}	NN(N ⁴ LO)-3NInI NN(N ⁴ LO)-3NInIE7	0.0 0.135	0.0 0.000	0.0 0.000	0.0	
2_{1}^{+}	NN(N ⁴ LO)-3NInI NN(N ⁴ LO)-3NInIE7	0.251 0.000	0.465 0.027	0.538 0.097	0.953	
0_{1}^{+}	NN(N ⁴ LO)-3NInI NN(N ⁴ LO)-3NInIE7	2.073 3.306	1.831 2.909	1.713 2.761	2.723	
2^{+}_{2}	NN(N ⁴ LO)-3NInI NN(N ⁴ LO)-3NInIE7	3.816 4.919	3.490 4.463	3.344 4.281	3.760	

Discovery, accelerated

Excitation Energies of ¹⁶N

		$E_{ m exc.}$ (MeV)					
J_i^{π}	Interaction	$N_{\rm max} = 4$	$N_{\rm max} = 6$	$N_{\max} = 8(IT)$	Exp.		
2_{1}^{-}	NN(N ⁴ LO)-3NInI NN(N ⁴ LO)-3NInIE7	0.154 0.214	0.087 0.146	0.064 0.133	0.0		
0_{1}^{-}	NN(N ⁴ LO)-3NInI NN(N ⁴ LO)-3NInIE7	2.245 2.807	1.487 2.065	1.010 1.606	0.120		
3_{1}^{-}	NN(N ⁴ LO)-3NInI NN(N ⁴ LO)-3NInIE7	0.000 0.000	0.000 0.000	0.000 0.000	0.298		
1_{1}^{-}	NN(N ⁴ LO)-3NInI NN(N ⁴ LO)-3NInIE7	2.561 2.985	1.833 2.310	1.363 1.869	0.397		

Discovery, accelerated