き TRIUMF

Neutrinoless double-beta decay and muon capture as a probe

Lotta Jokiniemi
TRIUMF, Theory Department
INT 23-1b workshop
05/25/2023
Arthur B. McDonald
Canadian Astroparticle Physics Research Institute

き TRIUMF

Outline

Introduction

Corrections to $0 \nu \beta \beta$-decay nuclear matrix elements
The contact term
Contribution of ultrasoft neutrinos

Muon capture as a probe of $0 \nu \beta \beta$ decay
VS-IMSRG Study on Muon Capture on ${ }^{24} \mathrm{Mg}$
No-Core Shell-Model Studies on Muon Capture on Light Nuclei
Phenomenological study on muon capture on ${ }^{136} \mathrm{Ba}$

き TRIUMF

Neutrinoless double-beta decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|\boldsymbol{M}_{\mathbf{L}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

- Violates lepton-number conservation

き TRIUMF

Neutrinoless double-beta decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|\boldsymbol{M}_{\mathbf{L}}^{\mathbf{0} \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles

き TRIUMF

Neutrinoless double-beta decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|\boldsymbol{M}_{\mathbf{L}}^{\mathbf{0} \boldsymbol{\nu}}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles
- Runs virtually through all J^{π} states in
 the intermediate nucleus

き TRIUMF

Neutrinoless double-beta decay

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|\boldsymbol{M}_{\mathbf{L}}^{\mathbf{0}} \boldsymbol{\nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles
- Runs virtually through all J^{π} states in
 the intermediate nucleus
- Momentum transfer $q \sim 100 \mathrm{MeV}$

¿ TRIUMF

Nuclear matrix elements of neutrinoless double-beta decay

$$
M^{0 \nu}=\frac{R}{g_{\mathrm{A}}^{2}} \int \frac{\mathrm{~d} \mathbf{k}}{2 \pi^{2}} \frac{e^{i \mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{E_{\nu}+E_{n}-\frac{1}{2}\left(E_{i}-E_{f}\right)-\frac{1}{2}\left(E_{1}-E_{2}\right)}
$$

- Energy of the virtual neutrino $E_{\nu}=\sqrt{m_{\nu}^{2}+\mathrm{k}^{2}} \sim|\mathrm{k}| \sim k_{\mathrm{F}} \sim 100 \mathrm{MeV}$ ("soft neutrinos")

¿ TRIUMF

Nuclear matrix elements of neutrinoless double-beta decay

$$
M^{0 \nu}=\frac{R}{g_{\mathrm{A}}^{2}} \int \frac{\mathrm{~d} \mathbf{k}}{2 \pi^{2}} \frac{e^{i \mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{E_{\nu}+E_{n}-\frac{1}{2}\left(E_{i}-E_{f}\right)-\frac{1}{2}\left(E_{1}-E_{2}\right)}
$$

- Energy of the virtual neutrino $E_{\nu}=\sqrt{m_{\nu}^{2}+\mathrm{k}^{2}} \sim|\mathrm{k}| \sim k_{\mathrm{F}} \sim 100 \mathrm{MeV}$ ("soft neutrinos")
- Electrons carry away roughly the same amount of energy: $E_{1}-E_{2} \sim 0 \mathrm{MeV}$

き TRIUMF

Nuclear matrix elements of neutrinoless double-beta decay

$$
M^{0 \nu}=\frac{R}{g_{\mathrm{A}}^{2}} \int \frac{\mathrm{~d} \mathbf{k}}{2 \pi^{2}} \frac{e^{i \mathbf{k}(\mathbf{x}-\mathbf{y})}}{E_{\nu}} \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{E_{\nu}+E_{n}-\frac{1}{2}\left(E_{i}-E_{f}\right)-\frac{1}{2}\left(E_{1}-E_{2}\right)}
$$

- Energy of the virtual neutrino $E_{\nu}=\sqrt{m_{\nu}^{2}+\mathrm{k}^{2}} \sim|\mathrm{k}| \sim k_{\mathrm{F}} \sim 100 \mathrm{MeV}$ ("soft neutrinos")
- Electrons carry away roughly the same amount of energy: $E_{1}-E_{2} \sim 0 \mathrm{MeV}$

$$
\rightarrow M^{0 \nu}=\frac{R}{g_{\mathrm{A}}^{2}} \int \frac{\mathrm{~d} \mathbf{k}}{2 \pi^{2}} \frac{e^{i \mathbf{k}(\mathbf{x}-\mathbf{y})}}{|\mathbf{k}|} \sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}-E_{f}\right)}
$$

¿ TRIUMF

Without closure approximation:

Closure approximation

$$
\sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}-E_{f}\right)}
$$

き TRIUMF

Without closure approximation:

Closure approximation

With closure approximation:

$$
\sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}-E_{f}\right)}
$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies

き TRIUMF

Closure approximation

Without closure approximation:
With closure approximation:

$$
\sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}-E_{f}\right)}
$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies
- Typically used in pnQRPA

き TRIUMF

Without closure approximation:

$$
\sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}-E_{f}\right)}
$$

Closure approximation

With closure approximation:

- Remove the dependence on intermediate states: $\boldsymbol{E}_{n} \rightarrow\left\langle\boldsymbol{E}_{n}\right\rangle$
- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies
- Typically used in pnQRPA

き TRIUMF

Without closure approximation:

$$
\sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}-E_{f}\right)}
$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies
- Typically used in pnQRPA

Closure approximation

With closure approximation:

- Remove the dependence on intermediate states: $\boldsymbol{E}_{n} \rightarrow\left\langle\boldsymbol{E}_{n}\right\rangle$
- Use the relation $\sum_{n}|n\rangle\langle n|=1$

き TRIUMF

Without closure approximation:

$$
\sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}-E_{f}\right)}
$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies
- Typically used in pnQRPA

Closure approximation

With closure approximation:

- Remove the dependence on intermediate states: $\boldsymbol{E}_{n} \rightarrow\left\langle\boldsymbol{E}_{n}\right\rangle$
- Use the relation $\sum_{n}|n\rangle\langle n|=1$

$$
\rightarrow \frac{\langle f| J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+\left\langle E_{n}\right\rangle-\frac{1}{2}\left(E_{i}-E_{f}\right)}
$$

き TRIUMF

Without closure approximation:

$$
\sum_{n} \frac{\langle f| J_{\mu}(\mathbf{x})|n\rangle\langle n| J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+E_{n}-\frac{1}{2}\left(E_{i}-E_{f}\right)}
$$

- Intermediate states $|n\rangle$ with all spin-parities J^{π} up to high energies
- Typically used in pnQRPA

Closure approximation

With closure approximation:

- Remove the dependence on intermediate states: $\boldsymbol{E}_{n} \rightarrow\left\langle\boldsymbol{E}_{n}\right\rangle$
- Use the relation $\sum_{n}|n\rangle\langle n|=1$

$$
\rightarrow \frac{\langle f| J_{\mu}(\mathbf{x}) J^{\mu}(\mathbf{y})|i\rangle}{|\mathbf{k}|+\left\langle E_{n}\right\rangle-\frac{1}{2}\left(E_{i}-E_{f}\right)}
$$

- Typically used with most nuclear methods

き TRIUMF

Outline

Introduction

Corrections to $0 \nu \beta \beta$-decay nuclear matrix elements
The contact term
Contribution of ultrasoft neutrinos

Muon capture as a probe of $0 \nu \beta \beta$ decay
VS-IMSRG Study on Muon Capture on ${ }^{24} \mathrm{Mg}$
No-Core Shell-Model Studies on Muon Capture on Light Nuclei
Phenomenological study on muon capture on ${ }^{136} \mathrm{Ba}$
Summary and Outlook

き TRIUMF

Outline

Introduction

Corrections to $0 \nu \beta \beta$-decay nuclear matrix elements
The contact term
Contribution of ultrasoft neutrinos

Muon capture as a probe of $0 \nu \beta \beta$ decay
VS-IMSRG Study on Muon Capture on ${ }^{24} \mathrm{Mg}$
No-Core Shell-Model Studies on Muon Capture on Light Nuclei
Phenomenological study on muon capture on ${ }^{136} \mathrm{Ba}$
Summary and Outlook

¿ TRIUMF

New leading-order short-range nuclear matrix element

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|M_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

- Previously unacknowledged contact operator was introduced
V. Cirigliano et al., Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

き TRIUMF

New leading-order short-range nuclear matrix element

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|M_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

- Previously unacknowledged contact operator was introduced V. Cirigliano et al., Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)
- The operator connects directly the initial and final nuclei

$$
\begin{gathered}
M_{\mathrm{S}}^{0 \nu}=\frac{2 R}{\pi g_{\mathrm{A}}^{2}}\left(0_{f}^{+}\left\|\sum_{m, n} \tau_{m}^{-} \tau_{n}^{-} \int j_{0}(q r) h_{\mathrm{S}}\left(q^{2}\right) q^{2} \mathrm{~d} q\right\| 0_{i}^{+}\right) \\
h_{\mathrm{S}}\left(q^{2}\right)=2 g_{\nu}^{\mathrm{NN}} e^{-q^{2} /\left(2 \Lambda^{2}\right)}
\end{gathered}
$$

き TRIUMF

New leading-order short-range nuclear matrix element

$$
\frac{1}{t_{1 / 2}^{0 \nu}}=g_{\mathrm{A}}^{4} G^{0 \nu}\left|M_{\mathrm{L}}^{0 \nu}+M_{\mathrm{S}}^{0 \nu}\right|^{2}\left(\frac{m_{\beta \beta}}{m_{e}}\right)^{2}
$$

- Previously unacknowledged contact operator was introduced V. Cirigliano et al., Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)
- The operator connects directly the initial and final nuclei

$$
\begin{gathered}
M_{\mathrm{S}}^{0 \nu}=\frac{2 R}{\pi g_{\mathrm{A}}^{2}}\left(0_{f}^{+}\left\|\sum_{m, n} \tau_{m}^{-} \tau_{n}^{-} \int j_{0}(q r) h_{\mathrm{S}}\left(q^{2}\right) q^{2} \mathrm{~d} q\right\| 0_{i}^{+}\right) \\
h_{\mathrm{S}}\left(q^{2}\right)=2 g_{\nu}^{\mathrm{NN}} e^{-q^{2} /\left(2 \Lambda^{2}\right)}
\end{gathered}
$$

き TRIUMF

Unknown coupling in the contact term

- Axial-vector coupling g_{A} known from $n \rightarrow p+e^{-}+\bar{\nu}_{e}$:

$$
g_{\mathrm{A}}=1.2754(11)
$$

D. Dubbers, B. Märkisch, Annu. Rev. Nucl. Part. Sci. 71, 139 (2021)

き TRIUMF

Unknown coupling in the contact term

- Axial-vector coupling g_{A} known from $n \rightarrow p+e^{-}+\bar{\nu}_{e}$:

$$
g_{\mathrm{A}}=1.2754(11)
$$

D. Dubbers, B. Märkisch, Annu. Rev. Nucl. Part. Sci. 71, 139 (2021)

- The new coupling $g_{\nu}^{\text {NN }}$ should be fitted to $2 n \rightarrow 2 p+2 e^{-}$

¿ TRIUMF

Unknown coupling in the contact term

- Axial-vector coupling g_{A} known from $n \rightarrow p+e^{-}+\bar{\nu}_{e}$:

$$
g_{\mathrm{A}}=1.2754(11)
$$

D. Dubbers, B. Märkisch, Annu. Rev. Nucl. Part. Sci. 71, 139 (2021)

- The new coupling $g_{\nu}^{\text {NN }}$ should be fitted to $2 n \rightarrow 2 p+2 e^{-}$
- No such data

¿ TRIUMF

Unknown coupling in the contact term

- Axial-vector coupling g_{A} known from $n \rightarrow p+e^{-}+\bar{\nu}_{e}$:

$$
g_{\mathrm{A}}=1.2754(11)
$$

D. Dubbers, B. Märkisch, Annu. Rev. Nucl. Part. Sci. 71, 139 (2021)

- The new coupling $g_{\nu}^{\text {NN }}$ should be fitted to $2 n \rightarrow 2 p+2 e^{-}$
- No such data
- Alternative ways to find the value of g_{ν}^{NN} :

¿ TRIUMF

Unknown coupling in the contact term

- Axial-vector coupling g_{A} known from $n \rightarrow p+e^{-}+\bar{\nu}_{e}$:

$$
g_{\mathrm{A}}=1.2754(11)
$$

D. Dubbers, B. Märkisch, Annu. Rev. Nucl. Part. Sci. 71, 139 (2021)

- The new coupling $g_{\nu}^{\text {NN }}$ should be fitted to $2 n \rightarrow 2 p+2 e^{-}$
- No such data
- Alternative ways to find the value of g_{ν}^{NN} :
- Solve from lattice QCD
Z. Davoudi and S. V. Kadam, Phys. Rev. Lett. 126, 152003 (2021), Phys. Rev. D 105, 094502 (2022)

き TRIUMF

Unknown coupling in the contact term

- Axial-vector coupling g_{A} known from $n \rightarrow p+e^{-}+\bar{\nu}_{e}$:

$$
g_{\mathrm{A}}=1.2754(11)
$$

D. Dubbers, B. Märkisch, Annu. Rev. Nucl. Part. Sci. 71, 139 (2021)

- The new coupling $g_{\nu}^{\text {NN }}$ should be fitted to $2 n \rightarrow 2 p+2 e^{-}$
- No such data
- Alternative ways to find the value of g_{ν}^{NN} :
- Solve from lattice QCD
Z. Davoudi and S. V. Kadam, Phys. Rev. Lett. 126, 152003 (2021), Phys. Rev. D 105, 094502 (2022)
- Perturbative QCD calculation
V. Cirigliano et al., Phys. Rev. Lett. 126, 172002 (2021), JHEP 05, 289 (2021)

き TRIUMF

Unknown coupling in the contact term

- Axial-vector coupling g_{A} known from $n \rightarrow p+e^{-}+\bar{\nu}_{e}$:

$$
g_{\mathrm{A}}=1.2754(11)
$$

D. Dubbers, B. Märkisch, Annu. Rev. Nucl. Part. Sci. 71, 139 (2021)

- The new coupling $g_{\nu}^{\text {NN }}$ should be fitted to $2 n \rightarrow 2 p+2 e^{-}$
- No such data
- Alternative ways to find the value of g_{ν}^{NN} :
- Solve from lattice QCD
Z. Davoudi and S. V. Kadam, Phys. Rev. Lett. 126, 152003 (2021), Phys. Rev. D 105, 094502 (2022)
- Perturbative QCD calculation
V. Cirigliano et al., Phys. Rev. Lett. 126, 172002 (2021), JHEP 05, 289 (2021)
- Use charge-independence breaking
V. Cirigliano et al., Phys. Rev. C 100, 055504 (2019)

き TRIUMF

Phenomenological many-body methods

- Nuclear Shell Model (NSM)

き TRIUMF

Phenomenological many-body methods

- Nuclear Shell Model (NSM)
- Solves the Schrödinger equation in valence space

※TRIUMF

Phenomenological many-body methods

- Nuclear Shell Model (NSM)

- Solves the Schrödinger equation in valence space
+ All correlations within valence space

き TRIUMF

Phenomenological many-body methods

- Nuclear Shell Model (NSM)

- Solves the Schrödinger equation in valence space
+ All correlations within valence space
- Restricted to valence space

Phenomenological many-body methods

- Nuclear Shell Model (NSM)
- Solves the Schrödinger equation in valence space
+ All correlations within valence space
- Restricted to valence space
- Quasiparticle Random-Phase Approximation (QRPA)

Phenomenological many-body methods

- Nuclear Shell Model (NSM)
- Solves the Schrödinger equation in valence space
+ All correlations within valence space
- Restricted to valence space
- Quasiparticle Random-Phase Approximation (QRPA)
- States \equiv two-quasiparticle excitations

Phenomenological many-body methods

- Nuclear Shell Model (NSM)
- Solves the Schrödinger equation in valence space
+ All correlations within valence space
- Restricted to valence space
- Quasiparticle Random-Phase Approximation (QRPA)
- States \equiv two-quasiparticle excitations
+ Large model spaces, wide reach

Phenomenological many-body methods

- Nuclear Shell Model (NSM)

- Solves the Schrödinger equation in valence space
+ All correlations within valence space
- Restricted to valence space
- Quasiparticle Random-Phase Approximation (QRPA)
- States \equiv two-quasiparticle excitations
+ Large model spaces, wide reach
- Missing correlations, adjustable parameters,...

Phenomenological many-body methods

- Nuclear Shell Model (NSM)
- Solves the Schrödinger equation in valence space
+ All correlations within valence space
- Restricted to valence space
- Quasiparticle Random-Phase Approximation (QRPA)
- States \equiv two-quasiparticle excitations
+ Large model spaces, wide reach
- Missing correlations, adjustable parameters,...

き TRIUMF

Contact Term in pnQRPA and NSM

$$
\int C_{\mathrm{L} / \mathrm{S}}(r) \mathrm{d} r=M_{\mathrm{L} / \mathrm{S}}^{0 \nu}
$$

In pnQRPA:

$M_{\mathrm{S}} / M_{\mathrm{L}} \approx 30 \%-80 \%$

In NSM:

$M_{\mathrm{S}} / M_{\mathrm{L}} \approx 15 \%-50 \%$

LJ, P. Soriano and J. Menéndez, Phys. Lett. B 823, 136720 (2021)

き TRIUMF

Effective Neutrino Masses

- Effective neutrino masses combining the likelihood functions of GERDA $\left({ }^{76} \mathrm{Ge}\right)$, CUORE $\left({ }^{130} \mathrm{Te}\right)$, EXO-200 $\left({ }^{136} \mathrm{Xe}\right)$ and KamLAND-Zen (${ }^{136} \mathrm{Xe}$)
S. D. Biller, Phys. Rev. D 104, 012002 (2021)
- Middle bands: $M_{\mathrm{L}}^{(0 \nu)}$

Lower bands: $M_{\mathrm{L}}^{(0 \nu)}+M_{\mathrm{S}}^{(0 \nu)}$
Upper bands: $M_{\mathrm{L}}^{(0 \nu)}-M_{\mathrm{S}}^{(0 \nu)}$

LJ, P. Soriano and J. Menéndez, Phys. Lett. B 823, 136720 (2021)

¿ TRIUMF

Outline

Introduction

Corrections to $0 \nu \beta \beta$-decay nuclear matrix elements
The contact term
Contribution of ultrasoft neutrinos

Muon capture as a probe of $0 \nu \beta \beta$ decay
VS-IMSRG Study on Muon Capture on ${ }^{24} \mathrm{Mg}$
No-Core Shell-Model Studies on Muon Capture on Light Nuclei
Phenomenological study on muon capture on ${ }^{136} \mathrm{Ba}$
Summary and Outlook

¿ TRIUMF

Contribution of ultrasoft neutrinos

- Contribution of ultrasoft neutrinos $\left(|\mathrm{k}| \ll k_{\mathrm{F}}\right)$ to $0 \nu \beta \beta$ decay:
V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

$$
M_{\mathrm{usoft}}^{0 \nu}=-\frac{\pi R}{g_{\mathrm{A}}^{2}} \sum_{n} \frac{\mathrm{~d}^{d-1} k}{(2 \pi)^{d-1}} \frac{1}{|\mathbf{k}|}\left[\frac{\langle f| J_{\mu}|n\rangle\langle n| J^{\mu}|i\rangle}{|\mathbf{k}|+E_{2}+E_{n}-E_{i}-i \eta}+\frac{\langle f| J_{\mu}|n\rangle\langle n| J^{\mu}|i\rangle}{|\mathbf{k}|+E_{1}+E_{n}-E_{i}-i \eta}\right]
$$

き TRIUMF

- Contribution of ultrasoft neutrinos $\left(|\mathrm{k}| \ll k_{\mathrm{F}}\right)$ to $0 \nu \beta \beta$ decay:
V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

$$
M_{\mathrm{usoft}}^{0 \nu}=-\frac{\pi R}{g_{\mathrm{A}}^{2}} \sum_{n} \frac{\mathrm{~d}^{d-1} k}{(2 \pi)^{d-1}} \frac{1}{|\mathbf{k}|}\left[\frac{\langle f| J_{\mu}|n\rangle\langle n| J^{\mu}|i\rangle}{|\mathbf{k}|+E_{2}+E_{n}-E_{i}-i \eta}+\frac{\langle f| J_{\mu}|n\rangle\langle n| J^{\mu}|i\rangle}{|\mathbf{k}|+E_{1}+E_{n}-E_{i}-i \eta}\right]
$$

- Keeping only $\mathrm{k}=0$ term in the current and assuming $E_{1}=E_{2}=Q_{\beta \beta} / 2+m_{e}$:

$$
\begin{aligned}
M_{\mathrm{usoft}}^{0 \nu}\left(\mu_{\mathrm{us}}\right)= & \frac{R}{2 \pi} \sum_{n}\langle f| \sum_{a} \sigma_{a} \tau_{a}^{+}|n\rangle\langle n| \sum_{b} \sigma_{b} \tau_{b}^{+}|i\rangle \\
& \times 2\left(\frac{Q_{\beta \beta}}{2}+m_{e}+E_{n}-E_{i}\right)\left(\ln \frac{\mu_{\mathrm{us}}}{2\left(\frac{Q_{\beta \beta}}{2}+m_{e}+E_{n}-E_{i}\right)}+1\right)
\end{aligned}
$$

き TRIUMF

Contribution of ultrasoft neutrinos

- Contribution of ultrasoft neutrinos $\left(|\mathrm{k}| \ll k_{\mathrm{F}}\right)$ to $0 \nu \beta \beta$ decay:
V. Cirigliano et al., Phys. Rev. C 97, 065501 (2018)

$$
M_{\mathrm{usoft}}^{0 \nu}=-\frac{\pi R}{g_{\mathrm{A}}^{2}} \sum_{n} \frac{\mathrm{~d}^{d-1} k}{(2 \pi)^{d-1}} \frac{1}{|\mathbf{k}|}\left[\frac{\langle f| J_{\mu}|n\rangle\langle n| J^{\mu}|i\rangle}{|\mathbf{k}|+E_{2}+E_{n}-E_{i}-i \eta}+\frac{\langle f| J_{\mu}|n\rangle\langle n| J^{\mu}|i\rangle}{|\mathbf{k}|+E_{1}+E_{n}-E_{i}-i \eta}\right]
$$

- Keeping only $\mathrm{k}=0$ term in the current and assuming $E_{1}=E_{2}=Q_{\beta \beta} / 2+m_{e}$:

$$
\begin{aligned}
M_{\mathrm{usoft}}^{0 \nu}\left(\mu_{\mathrm{us}}\right)= & \frac{R}{2 \pi} \sum_{n}\langle f| \sum_{a} \sigma_{a} \tau_{a}^{+}|n\rangle\langle n| \sum_{b} \sigma_{b} \tau_{b}^{+}|i\rangle \\
& \times 2\left(\frac{Q_{\beta \beta}}{2}+m_{e}+E_{n}-E_{i}\right)\left(\ln \frac{\mu_{\mathrm{us}}}{2\left(\frac{Q_{\beta \beta}}{2}+m_{e}+E_{n}-E_{i}\right)}+1\right)
\end{aligned}
$$

- We take $\mu_{\mathrm{us}}=m_{\pi} \sim k_{\mathrm{F}} \sim 100 \mathrm{MeV}$

¿ TRIUMF

Ultrasoft neutrinos in pnQRPA and nuclear shell model

In pnQRPA:

$\left|M_{\mathrm{usoft}}^{0 \nu} / M_{\mathrm{L}}^{0 \nu}\right| \approx 1 \%-15 \%$
In NSM:
$\left|M_{\mathrm{usoft}}^{0 \nu} / M_{\mathrm{L}}^{0 \nu}\right| \approx 1 \%-5 \%$

LJ, P. Soriano, J Menéndez, work in progress

き TRIUMF

Ultrasoft neutrinos as correction of the closure approximation

- In nuclear shell model, using closure approximation typically decreases $M_{\mathrm{L}}^{0 \nu}$ by $\sim 10 \%$
R. A. Sen'kov, M. Horoi, Phys. Rev. C 88, 064312 (2013), Phys. Rev. C 93, 044334 (2016),Phys.Rev.C 89, 054304 (2014)

R. A. Sen'kov, M. Horoi, Phys. Rev. C 88, 064312 (2013)

き TRIUMF

Ultrasoft neutrinos as correction of the closure approximation

- In nuclear shell model, using closure approximation typically decreases $M_{\mathrm{L}}^{0 \nu}$ by $\sim 10 \%$
R. A. Sen'kov, M. Horoi, Phys. Rev. C 88, 064312 (2013), Phys. Rev. C 93, 044334 (2016),Phys.Rev.C 89, 054304 (2014)
- Difference comes mostly from low-excitation-energy 1^{+}states $\left({ }^{48} \mathrm{Ca}\right)$

R. A. Sen'kov, M. Horoi, Phys. Rev. C 88, 064312 (2013)

き TRIUMF

Ultrasoft neutrinos as correction of the closure approximation

- In nuclear shell model, using closure approximation typically decreases $M_{\mathrm{L}}^{0 \nu}$ by $\sim 10 \%$
R. A. Sen'kov, M. Horoi, Phys. Rev. C 88, 064312 (2013), Phys. Rev. C 93, 044334 (2016),Phys.Rev.C 89, 054304 (2014)
- Difference comes mostly from low-excitation-energy 1^{+}states $\left({ }^{48} \mathrm{Ca}\right)$
- $M_{\text {usoft }}^{0 \nu}$ may be considered as closure correction

R. A. Sen'kov, M. Horoi, Phys. Rev. C 88, 064312 (2013)

Ultrasoft neutrinos as correction of the closure approximation

- In nuclear shell model, using closure approximation typically decreases $M_{\mathrm{L}}^{0 \nu}$ by $\sim 10 \%$
R. A. Sen'kov, M. Horoi, Phys. Rev. C 88, 064312 (2013), Phys. Rev. C 93, 044334 (2016),Phys.Rev.C 89, 054304 (2014)
- Difference comes mostly from low-excitation-energy 1^{+}states $\left({ }^{48} \mathrm{Ca}\right)$
- $M_{\text {usoft }}^{0 \nu}$ may be considered as closure correction
\rightarrow TODO: compare $M_{\mathrm{L}}^{0 \nu}-M_{\mathrm{L}, \mathrm{cl}}^{0 \nu}$ with

R. A. Sen'kov, M. Horoi, Phys. Rev. C 88, 064312 (2013) $M_{\text {usoft }}^{0 \nu}$ in pnQRPA

き TRIUMF

Outline

Introduction

Corrections to $0 \nu \beta \beta$-decay nuclear matrix elements
The contact term
Contribution of ultrasoft neutrinos

Muon capture as a probe of $0 \nu \beta \beta$ decay
VS-IMSRG Study on Muon Capture on ${ }^{24} \mathrm{Mg}$
No-Core Shell-Model Studies on Muon Capture on Light Nuclei
Phenomenological study on muon capture on ${ }^{136} \mathrm{Ba}$
Summary and Outlook

き TRIUMF

Ordinary Muon Capture (OMC)

$$
\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)
$$

- A muon can replace an electron in an atom, forming a muonic atom

き TRIUMF

Ordinary Muon Capture (OMC)

$\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)$

- A muon can replace an electron in an atom, forming a muonic atom
- Eventually bound on the $1 s_{1 / 2}$ orbit

Ordinary Muon Capture (OMC)

$\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)$

- A muon can replace an electron in an atom, forming a muonic atom
- Eventually bound on the $1 s_{1 / 2}$ orbit
- The muon can then be captured by the positively charged nucleus

き TRIUMF

Ordinary Muon Capture (OMC)

$\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)$

- A muon can replace an electron in an atom, forming a muonic atom
- Eventually bound on the $1 s_{1 / 2}$ orbit
- The muon can then be captured by the positively charged nucleus

Ordinary = non-radiative

Radiative muon capture (RMC):
$\left.\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)+\gamma\right)$

き TRIUMF

Ordinary Muon Capture (OMC) vs. $0 \nu \beta \beta$

¿ TRIUMF

Ordinary Muon Capture (OMC) vs. $0 \nu \beta \beta$

- Weak interaction process with momentum transfer $q \approx 100 \mathrm{MeV} / c^{2}$

¿ TRIUMF

Ordinary Muon Capture (OMC) vs. $0 \nu \beta \beta$

- Weak interaction process with momentum transfer $q \approx 100 \mathrm{MeV} / c^{2}$
- Large m_{μ} allows transitions to all J^{π} states up to high energies

き TRIUMF

Ordinary Muon Capture (OMC) vs. $0 \nu \beta \beta$

- Weak interaction process with momentum transfer $q \approx 100 \mathrm{MeV} / c^{2}$
- Large m_{μ} allows transitions to all J^{π} states up to high energies
- Both the axial vector coupling g_{A} and the pseudoscalar coupling g_{P} involved

き TRIUMF

Ordinary Muon Capture (OMC) vs. $0 \nu \beta \beta$

- Weak interaction process with momentum transfer $q \approx 100 \mathrm{MeV} / c^{2}$
- Large m_{μ} allows transitions to all J^{π} states up to high energies
- Both the axial vector coupling g_{A} and the pseudoscalar coupling g_{P} involved
\rightarrow Similar to $0 \nu \beta \beta$ decay!

¿ TRIUMF

g_{A} Quenching at High Momentum Exchange?

- Recently, first ab initio solution to g_{A} quenching puzzle was proposed for β-decay
P. Gysbers et al., Nature Phys. 15, 428 (2019)

Gysbers et al., Nature Phys. 15, 428 (2019)

¿ TRIUMF

g_{A}
 Quenching at High Momentum Exchange?

- Recently, first ab initio solution to g_{A} quenching puzzle was proposed for β-decay
P. Gysbers et al., Nature Phys. 15, 428 (2019)
- Solution: adding two-body currents and missing correlations

Gysbers et al., Nature Phys. 15, 428 (2019)

き TRIUMF

g_{A}
 Quenching at High Momentum Exchange?

- Recently, first ab initio solution to g_{A} quenching puzzle was proposed for β-decay
P. Gysbers et al., Nature Phys. 15, 428 (2019)
- Solution: adding two-body currents and missing correlations
- How about g_{A} quenching at high momentum transfer $\approx 100 \mathrm{MeV}$?

Gysbers et al., Nature Phys. 15, 428 (2019)

き TRIUMF

g_{A}
 Quenching at High Momentum Exchange?

- Recently, first ab initio solution to g_{A} quenching puzzle was proposed for β-decay
P. Gysbers et al., Nature Phys. 15, 428 (2019)
- Solution: adding two-body currents and missing correlations
- How about g_{A} quenching at high momentum transfer $\approx 100 \mathrm{MeV}$?
- OMC could provide a hint!

Gysbers et al., Nature Phys. 15, 428 (2019)

g_{A}
 Quenching at High Momentum Exchange?

- Recently, first ab initio solution to g_{A} quenching puzzle was proposed for β-decay
P. Gysbers et al., Nature Phys. 15, 428 (2019)
- Solution: adding two-body currents and missing correlations
- How about g_{A} quenching at high momentum transfer $\approx 100 \mathrm{MeV}$?
- OMC could provide a hint!
- In principle, one could also access the pseudoscalar coupling g_{P}

Gysbers et al., Nature Phys. 15, 428 (2019)

き TRIUMF

Muon-Capture Theory

- Interaction Hamiltonian \rightarrow capture rate:

$$
W\left(J_{i} \rightarrow J_{f}\right)=\frac{2 J_{f}+1}{2 J_{i}+1}\left(1-\frac{q}{m_{\mu}+A M}\right) q^{2} \sum_{\kappa u}\left|\boldsymbol{g}_{\mathbf{V}} \boldsymbol{M}_{\mathbf{V}}(\kappa, u)+g_{\mathrm{M}} \boldsymbol{M}_{\mathrm{M}}(\ldots)+\boldsymbol{g}_{\mathbf{A}} \boldsymbol{M}_{\mathbf{A}}(\ldots)+g_{\mathrm{P}} M_{\mathrm{P}}(\ldots)\right|^{2}
$$

Theory of Allowed and Forbidden Transitions in Muon Capture Reactions*

Masato Morita
Columbia University, New York, New York
AND
Akiriko Fujif \dagger
Brookhaven National Laboratory, Uplon, Long Island, New York
(Received November 9, 1959)

き TRIUMF

Muon-Capture Theory

- Interaction Hamiltonian \rightarrow capture rate:

$$
W\left(J_{i} \rightarrow J_{f}\right)=\frac{2 J_{f}+1}{2 J_{i}+1}\left(1-\frac{q}{m_{\mu}+A M}\right) q^{2} \sum_{\kappa u}\left|g_{\mathbf{V}} \boldsymbol{M}_{\mathbf{V}}(\kappa, u)+g_{\mathrm{M}} \boldsymbol{M}_{\mathrm{M}}(\ldots)+\boldsymbol{g}_{\mathbf{A}} \boldsymbol{M}_{\mathbf{A}}(\ldots)+g_{\mathrm{P}} M_{\mathrm{P}}(\ldots)\right|^{2}
$$

```
PHYSICAL REVIEW
```


Theory of Allowed and Forbidden Transitions in Muon Capture Reactions*

Masato Morita
Columbia University, New York, New York
AND
Akimigo Fujㅍi
Brookhaven National Laboratory, Uplon, Long Island, New York
(Received November 9, 1959)

- Use realistic bound-muon wave functions

き TRIUMF

- Interaction Hamiltonian \rightarrow capture rate:

$$
W\left(J_{i} \rightarrow J_{f}\right)=\frac{2 J_{f}+1}{2 J_{i}+1}\left(1-\frac{q}{m_{\mu}+A M}\right) q^{2} \sum_{\kappa u}\left|g_{\mathbf{V}} M_{\mathbf{V}}(\kappa, u)+g_{\mathrm{M}} M_{\mathrm{M}}(\ldots)+\boldsymbol{g}_{\mathbf{A}} M_{\mathrm{A}}(\ldots)+g_{\mathrm{P}} M_{\mathrm{P}}(\ldots)\right|^{2}
$$

Theory of Allowed and Forbidden Transitions in Muon Capture Reactions*
 actions*

AND

- Use realistic bound-muon wave functions
- Add the effect of two-body currents

Muon-Capture Theory

PHYSICAL REVIEW

```
PHYSICAL REVIEW
```


VOLUM 118, NUMER

$$
\begin{gathered}
\text { Masato Morita } \\
\text { Columbia University, New York, New York }
\end{gathered}
$$

Akiriko Fujif \dagger
Brookhaven National Laboratory, Uplon, Long Island, New York
(Received November 9, 1959)

Bound-Muon Wave Functions

- Expand the muon wave function in terms of spherical spinors

$$
\psi_{\mu}(\kappa, \mu ; \mathbf{r})=\psi_{\kappa \mu}^{(\mu)}=\left[\begin{array}{c}
-i F_{\kappa}(r) \chi_{-\kappa \mu} \\
G_{\kappa}(r) \chi_{\kappa \mu}
\end{array}\right],
$$

$$
\begin{aligned}
& \text { B-S }=\text { Bethe-Salpeter: } G_{-1}=2\left(\alpha Z m_{\mu}^{\prime}\right)^{\frac{3}{2}} e^{-\alpha Z m_{\mu}^{\prime} r} \\
& \text { pI }=\text { pointlike } \\
& \text { fs }=\text { finite size nucleus }
\end{aligned}
$$

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

¿ TRIUMF

Bound-Muon Wave Functions

- Expand the muon wave function in terms of spherical spinors

$$
\psi_{\mu}(\kappa, \mu ; \mathbf{r})=\psi_{\kappa \mu}^{(\mu)}=\left[\begin{array}{c}
-i F_{\kappa}(r) \chi_{-\kappa \mu} \\
G_{\kappa}(r) \chi_{\kappa \mu}
\end{array}\right],
$$

$$
\begin{aligned}
& \text { B-S }=\text { Bethe-Salpeter: } G_{-1}=2\left(\alpha Z m_{\mu}^{\prime}\right)^{\frac{3}{2}} e^{-\alpha Z m_{\mu}^{\prime} r} \\
& \mathbf{p I}=\text { pointlike } \\
& \mathbf{f s}=\text { finite size nucleus }
\end{aligned}
$$

where $\kappa=-j(j+1)+l(l+1)-\frac{1}{4}$ ($\kappa=-1$ for the $1 s_{1 / 2}$ orbit)

- Solve the Dirac equations in the Coulomb potential $V(r)$:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} r} G_{-1}+\frac{1}{r} G_{-1}=\frac{1}{\hbar c}\left(m c^{2}-E+V(r)\right) F_{-1} \\
\frac{\mathrm{~d}}{\mathrm{~d} r} F_{-1}-\frac{1}{r} F_{-1}=\frac{1}{\hbar c}\left(m c^{2}+E-V(r)\right) G_{-1}
\end{array}\right.
$$

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

Axial-Vector Two-Body Currents (2BCs)

- One-body currents

$$
\mathbf{J}_{i, 1 \mathrm{~b}}^{3}=\frac{\tau_{i}^{3}}{2}\left(g_{\mathrm{A}} \boldsymbol{\sigma}_{i}-\frac{g_{\mathrm{P}}}{2 m_{\mathrm{N}}} \mathbf{q} \cdot \boldsymbol{\sigma}_{i}\right)
$$

+ two-body currents

$$
\mathbf{J}_{i, 2 \mathrm{~b}}^{\mathrm{eff}}=g_{\mathrm{A}} \frac{\tau_{i}^{3}}{2}\left[\delta a\left(\mathbf{q}^{2}\right) \boldsymbol{\sigma}_{i}+\frac{\delta a^{P}\left(\mathbf{q}^{2}\right)}{\mathbf{q}^{2}}\left(\mathbf{q} \cdot \boldsymbol{\sigma}_{i}\right) \mathbf{q}\right]
$$

Hoferichter, Klos, Schwenk Phys. Lett. B 746, 410 (2015)

き TRIUMF

Axial-Vector Two-Body Currents (2BCs)

- One-body currents

$$
\mathbf{J}_{i, 1 \mathrm{~b}}^{3}=\frac{\tau_{i}^{3}}{2}\left(g_{\mathrm{A}} \boldsymbol{\sigma}_{i}-\frac{g_{\mathrm{P}}}{2 m_{\mathrm{N}}} \mathbf{q} \cdot \boldsymbol{\sigma}_{i}\right)
$$

+ two-body currents

$$
\mathbf{J}_{i, 2 \mathrm{~b}}^{\mathrm{eff}}=g_{\mathrm{A}} \frac{\tau_{i}^{3}}{2}\left[\delta a\left(\mathbf{q}^{2}\right) \boldsymbol{\sigma}_{i}+\frac{\delta a^{P}\left(\mathbf{q}^{2}\right)}{\mathbf{q}^{2}}\left(\mathbf{q} \cdot \boldsymbol{\sigma}_{i}\right) \mathbf{q}\right]
$$

Hoferichter, Klos, Schwenk Phys. Lett. B 746, 410 (2015)

- Two-body currents approximated by

$$
\left\{\begin{array}{l}
g_{\mathrm{A}} \rightarrow\left(1+\delta_{a}\left(q^{2}\right)\right) g_{\mathrm{A}}, \\
g_{\mathrm{P}} \rightarrow\left(1-\frac{q^{2}+m_{\pi}^{2}}{q^{2}} \boldsymbol{\delta}_{\boldsymbol{a}}^{P}\left(\boldsymbol{q}^{2}\right)\right) g_{\mathrm{P}}
\end{array}\right.
$$

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

き TRIUMF

Muon-Capture Studies at PSI, Switzerland

- Most muon-capture experiments date back to ~1960s - 1990s

き TRIUMF

Muon-Capture Studies at PSI, Switzerland

- Most muon-capture experiments date back to ~ 1960s - 1990s
- MONUMENT (OMC4DBD) collaboration now aiming to measure:

き TRIUMF

Muon-Capture Studies at PSI, Switzerland

- Most muon-capture experiments date back to ~1960s - 1990s
- MONUMENT (OMC4DBD) collaboration now aiming to measure:
- Partial muon-capture rates for OMC on ${ }^{24} \mathbf{M g},{ }^{32} \mathrm{~S}$ and ${ }^{56} \mathrm{Fe}$

き TRIUMF

Muon-Capture Studies at PSI, Switzerland

- Most muon-capture experiments date back to ~1960s - 1990s
- MONUMENT (OMC4DBD) collaboration now aiming to measure:
- Partial muon-capture rates for OMC on ${ }^{24} \mathbf{M g},{ }^{32} \mathrm{~S}$ and ${ }^{56} \mathrm{Fe}$
- Muon-capture in $\beta \beta$-decay triplets, e.g. ${ }^{136} \mathrm{Ba},{ }^{48} \mathrm{Ti}$

き TRIUMF

Muon-Capture Studies at PSI, Switzerland

- Most muon-capture experiments date back to ~1960s - 1990s
- MONUMENT (OMC4DBD) collaboration now aiming to measure:
- Partial muon-capture rates for OMC on ${ }^{24} \mathbf{M g},{ }^{32} \mathrm{~S}$ and ${ }^{56} \mathrm{Fe}$
- Muon-capture in $\beta \beta$-decay triplets, e.g. ${ }^{136} \mathrm{Ba},{ }^{48} \mathrm{Ti}$
- Potentially partial capture rates for ${ }^{12} \mathrm{C},{ }^{13} \mathrm{C}$

き TRIUMF

Outline

Introduction

Corrections to $0 \nu \beta \beta$-decay nuclear matrix elements
The contact term
Contribution of ultrasoft neutrinos
Muon capture as a probe of $0 \nu \beta \beta$ decay
VS-IMSRG Study on Muon Capture on ${ }^{24} \mathrm{Mg}$
No-Core Shell-Model Studies on Muon Capture on Light Nuclei
Phenomenological study on muon capture on ${ }^{136} \mathrm{Ba}$
Summary and Outlook

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction

き TRIUMF

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled with a unitary transformation

き TRIUMF

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled with a unitary transformation
- Operators can be made consistent with the Hamiltonian!

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled with a unitary transformation
- Operators can be made consistent with the Hamiltonian!
- The nuclear many-body problem can then be solved with a shell-model code

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled with a unitary transformation
- Operators can be made consistent with the Hamiltonian!
- The nuclear many-body problem can then be solved with a shell-model code
- Can be applied to medium-heavy to heavy nuclei

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled with a unitary transformation
- Operators can be made consistent with the Hamiltonian!
- The nuclear many-body problem can then be solved with a shell-model code
- Can be applied to medium-heavy to heavy nuclei
\rightarrow First case: OMC on ${ }^{24} \mathrm{Mg}$

き TRIUMF

Capture Rates to Low-Lying States in ${ }^{24} \mathrm{Na}$

J_{i}^{π}	$E_{\exp }(\mathrm{MeV})$	\left.${\text { Rate }\left(10^{3}\right.} 1 / \mathrm{s}\right)$					
		Exp. 1	NSM			VS-IMSRG	
			1 bc	$1 \mathrm{bc}+2 \mathrm{bc}$	1 bc	$1 \mathrm{bc}+2 \mathrm{bc}$	
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2	
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9	
Sum $\left(1^{+}\right)$		38.5 ± 8.9	36.7	24.5	30.0	20.0	
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3	
2_{2}^{+}	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9	
Sum $\left(2^{+}\right)$		20.9 ± 2.6	4.1	3.2	1.5	1.2	

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

[^0]
Capture Rates to Low-Lying States in ${ }^{24} \mathrm{Na}$

$J_{i}{ }^{\pi}$	$E_{\text {exp }}(\mathrm{MeV})$	Rate ($10^{3} 1 / \mathrm{s}$)				
		Exp. ${ }^{1}$		NSM	VS-IMSRG	
			1bc	$1 \mathrm{bc}+2 \mathrm{bc}$	1bc	$1 \mathrm{bc}+2 \mathrm{bc}$
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9
Sum(1^{+})		38.5 ± 8.9	36.7	24.5	30.0	20.0
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	-5	0.3
2_{2}^{+}	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9
Sum (2 ${ }^{+}$)		20.9 ± 2.6	4.1	3.2	1.5	1.2

- Rate to the lowest two 1^{+}states agrees with experiment

[^1]
Capture Rates to Low-Lying States in ${ }^{24} \mathrm{Na}$

$J_{i}{ }^{\pi}$	$E_{\text {exp }}(\mathrm{MeV})$	Rate ($10^{3} 1 / \mathrm{s}$)				
		Exp. ${ }^{1}$		NSM	VS-IMSRG	
			1bc	$1 \mathrm{bc}+2 \mathrm{bc}$	1bc	$1 \mathrm{bc}+2 \mathrm{bc}$
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9
Sum(1^{+})		38.5 ± 8.9	36.7	24.5	30.0	20.0
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	-5	0.3
2_{2}^{+}	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9
Sum (2 ${ }^{+}$)		20.9 ± 2.6	4.1	3.2	1.5	1.2

- Rate to the lowest two 1^{+}states agrees with experiment
- The effect of two-body currents may be overestimated

[^2]
Capture Rates to Low-Lying States in ${ }^{24} \mathrm{Na}$

- Rate to the lowest two 1^{+}states agrees with experiment
- The effect of two-body currents may be overestimated
-1^{+}states mixed

[^3]
Capture Rates to Low-Lying States in ${ }^{24} \mathrm{Na}$

J_{i}^{π}	$E_{\text {exp }}(\mathrm{MeV})$	Rate ($10^{3} 1 / \mathrm{s}$)				
		Exp. ${ }^{1}$	NSM		VS-IMSRG	
			1bc	1bc+2bc	1 bc	$1 \mathrm{bc}+2 \mathrm{bc}$
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9
Sum(1^{+})		38.5 ± 8.9	36.7	24.5	30.0	20.0
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3
2_{2}^{+}	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9
Sum(2^{+})		20.9 ± 2.6		3.2	1.5	1.2

- Rate to the lowest two 1^{+}states agrees with experiment
- The effect of two-body currents may be overestimated
- 1^{+}states mixed
- Both NSM and VS-IMSRG notably underestimate the rates to 2^{+}states

[^4]
き TRIUMF

Interaction Dependence

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

き TRIUMF

- Rates are sensitive to the interaction
- It does not explain the poor agreement with the measured rates to the 2^{+}states (on the right)

Interaction Dependence

¿ TRIUMF

Outline

Introduction

Corrections to $0 \nu \beta \beta$-decay nuclear matrix elements
The contact term
Contribution of ultrasoft neutrinos

Muon capture as a probe of $0 \nu \beta \beta$ decay
VS-IMSRG Study on Muon Capture on ${ }^{24} \mathrm{Mg}$
No-Core Shell-Model Studies on Muon Capture on Light Nuclei Phenomenological study on muon capture on ${ }^{136} \mathrm{Ba}$

Summary and Outlook

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis

$$
E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{b} \Omega
$$

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
- HO basis truncated with $N_{\max }$

き TRIUMF

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
- HO basis truncated with $N_{\text {max }}$
- Hamiltonian based on the chiral EFT with different interactions:

$$
\left.E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{}\right) \Omega
$$

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
- HO basis truncated with $N_{\text {max }}$
- Hamiltonian based on the chiral EFT with different interactions:
- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{InI}\right)$

Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN)
Gysbers et al., Nature Phys. 15, 428 (2019) (3N)

$$
\left.E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{}\right) \Omega
$$

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
- HO basis truncated with $N_{\text {max }}$
- Hamiltonian based on the chiral EFT with different interactions:
- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{InI}\right)$

Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN)

Gysbers et al., Nature Phys. 15, 428 (2019) (3N)

- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{In} \mathrm{I}, \mathrm{E} 7\right)$

Girlanda, Kievsky, Viviani, Phys. Rev. C 84, 014001 (2011) (E_{7})

$$
E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{h} \Omega
$$

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
- HO basis truncated with $N_{\max }$
- Hamiltonian based on the chiral EFT with different interactions:
- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{InI}\right)$

Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN)
Gysbers et al., Nature Phys. 15, 428 (2019) (3N)

- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{In} \mathrm{I}, \mathrm{E} 7\right)$

Girlanda, Kievsky, Viviani, Phys. Rev. C 84, 014001 (2011) (E_{7})

- $\mathrm{NN}\left(\mathrm{N}^{3} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{InI}\right)$

Entem, Machleidt, Phys. Rev. C 68, 041001 (2003) (NN)
Somà et al., Phys. Rev. C 101, 014318 (2020) (3N)

$$
\left.E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{}\right) \Omega
$$

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
- HO basis truncated with $N_{\max }$
- Hamiltonian based on the chiral EFT with different interactions:
- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{InI}\right)$

Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN)

Gysbers et al., Nature Phys. 15, 428 (2019) (3N)

- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{In} \mathrm{l}, \mathrm{E} 7\right)$

Girlanda, Kievsky, Viviani, Phys. Rev. C 84, 014001 (2011) (E_{7})

- $\mathrm{NN}\left(\mathrm{N}^{3} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{InI}\right)$

Entem, Machleidt, Phys. Rev. C 68, 041001 (2003) (NN)
Somà et al., Phys. Rev. C 101, 014318 (2020) (3N)
$\rightarrow \mathrm{OMC}$ on ${ }^{6} \mathrm{Li},{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$

$$
\begin{aligned}
& I=1,3 \\
& I=0,2 \\
& \quad I=1
\end{aligned}
$$

$$
I=0
$$

$$
\begin{gathered}
N=1 \\
N=0
\end{gathered}
$$

$$
E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{h} \Omega
$$

Capture Rates to the Ground State of ${ }^{6} \mathrm{He}$

- NCSM in keeping with experiment

Capture Rates to the Ground State of ${ }^{6} \mathrm{He}$

- NCSM in keeping with experiment
- The rates can be compared with the variational (VMC) and Green's function Monte-Carlo (GFMC) calculations King et al., Phys. Rev. C 105, L042501 (2022)

$$
{ }^{6} \mathrm{Li}\left(1_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{6} \mathrm{He}\left(0_{\mathrm{gs}}^{+}\right)+\nu_{\mu}
$$

LJ, Navrátil, Kotila, Kravvaris,
work in progress

Capture Rates to the Ground State of ${ }^{12} \mathrm{~B}$

- Interaction dependence

き TRIUMF

Capture Rates to the Ground State of ${ }^{12} \mathrm{~B}$

- Interaction dependence
- Adding the E_{7} spin-orbit term improves agreement with experiment

LJ, Navrátil, Kotila, Kravvaris,
work in progress

き TRIUMF

Capture Rates to the Ground State of ${ }^{12} \mathrm{~B}$

- Interaction dependence
- Adding the E_{7} spin-orbit term improves agreement with experiment
- Converge slow (clustering effects?)

LJ, Navrátil, Kotila, Kravvaris,
work in progress

き TRIUMF

Capture Rates to the Ground State of ${ }^{12} \mathrm{~B}$

- Interaction dependence
- Adding the E_{7} spin-orbit term improves agreement with experiment
- Converge slow (clustering effects?)
- The results can be compared against earlier NCSM ones

Hayes et al., Phys. Rev. Lett. 91, 012502 (2003)

LJ, Navrátil, Kotila, Kravvaris,

Capture Rates to the Ground State of ${ }^{12} \mathrm{~B}$

- Interaction dependence
- Adding the E_{7} spin-orbit term improves agreement with experiment
- Converge slow (clustering effects?)
- The results can be compared against earlier NCSM ones

Hayes et al., Phys. Rev. Lett. 91, 012502 (2003)

- 3-body forces essential to reproduce the measured rate

LJ, Navrátil, Kotila, Kravvaris,
work in progress

Capture Rates to the ground state of ${ }^{16} \mathrm{~N}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$

LJ, Navrátil, Kotila, Kravvaris,
work in progress

き TRIUMF

Capture Rates to the ground state of ${ }^{16} \mathrm{~N}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
- Less sensitive to the interaction than ${ }^{12} \mathrm{C}\left(\mu^{-}, \nu_{\mu}\right)^{12} \mathrm{~B}$

$$
{ }^{16} \mathrm{O}\left(0_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{16} \mathrm{~N}\left(2_{\mathrm{gs}}^{-}\right)+\nu_{\mu}
$$

LJ, Navrátil, Kotila, Kravvaris,

き TRIUMF

Capture Rates to the ground state of ${ }^{16} \mathrm{~N}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
- Less sensitive to the interaction than ${ }^{12} \mathrm{C}\left(\mu^{-}, \nu_{\mu}\right)^{12} \mathrm{~B}$
\rightarrow Forbidden β decay ${ }^{16} \mathrm{~N}\left(2_{\mathrm{gs}}^{-}\right) \rightarrow{ }^{16} \mathrm{O}\left(0_{\mathrm{gs}}^{+}\right)+e^{-}+\bar{\nu}_{e}$ for beyond-standard model studies

LJ, Navrátil, Kotila, Kravvaris,

き TRIUMF

Capture Rates to the ground state of ${ }^{16} \mathrm{~N}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
- Less sensitive to the interaction than ${ }^{12} \mathrm{C}\left(\mu^{-}, \nu_{\mu}\right)^{12} \mathrm{~B}$
\rightarrow Forbidden β decay
${ }^{16} \mathrm{~N}\left(2_{\mathrm{gs}}^{-}\right) \rightarrow{ }^{16} \mathrm{O}\left(0_{\mathrm{gs}}^{+}\right)+e^{-}+\bar{\nu}_{e}$ for beyond-standard model studies
- Ongoing experiment at SARAF, Israel

LJ, Navrátil, Kotila, Kravvaris,

き TRIUMF

Capture Rates to the ground state of ${ }^{16} \mathrm{~N}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
- Less sensitive to the interaction than ${ }^{12} \mathrm{C}\left(\mu^{-}, \nu_{\mu}\right)^{12} \mathrm{~B}$
\rightarrow Forbidden β decay ${ }^{16} \mathrm{~N}\left(2_{\mathrm{gs}}^{-}\right) \rightarrow{ }^{16} \mathrm{O}\left(0_{\mathrm{gs}}^{+}\right)+e^{-}+\bar{\nu}_{e}$ for beyond-standard model studies
- Ongoing experiment at SARAF, Israel
\rightarrow Theory estimates based on NCSM

LJ, Navrátil, Kotila, Kravvaris,

Total Muon-Capture Rates in ${ }^{12} \mathrm{~B}$ and ${ }^{16} \mathrm{~N}$

- Color gradient: increasing $N_{\text {max }}$ (3,5,7 for ${ }^{12} \mathrm{C}$ and ,4,6 for ${ }^{16} \mathrm{O}$)

Total Muon-Capture Rates in ${ }^{12} \mathbf{B}$ and ${ }^{16} \mathbf{N}$

- Color gradient: increasing $N_{\max }$ (3,5,7 for ${ }^{12} \mathrm{C}$ and ,4,6 for ${ }^{16} \mathrm{O}$)
- Rates obtained summing over ~ 50 final states of each parity

Total Muon-Capture Rates in ${ }^{12} \mathrm{~B}$ and ${ }^{16} \mathrm{~N}$

- Color gradient: increasing $N_{\text {max }}$ (3,5,7 for ${ }^{12} \mathrm{C}$ and 2,4,6 for ${ }^{16} \mathrm{O}$)
- Rates obtained summing over ~ 50 final states of each parity
- Summing up the rates up to ~ 20 MeV , we capture $\sim 85 \%$ of the

 total rate in both ${ }^{12} \mathrm{~B}$ and ${ }^{16} \mathrm{~N}$

き TRIUMF

Calculation:

$$
\mu^{-}+{ }^{12} \mathrm{C}\left(0_{\mathrm{gs}}^{+}\right) \rightarrow \nu_{\mu}+{ }^{12} \mathrm{~B}\left(J_{k}^{\pi}\right)
$$

Total Muon-Capture Rates

Experiment:

$$
\mu^{-}+{ }^{100} \mathrm{Mo} \rightarrow \nu_{\mu}+{ }^{100} \mathrm{Nb}
$$

Hashim et al., Phys. Rev. C 97, 014617 (2018)

き TRIUMF

Calculation:

$$
\mu^{-}+{ }^{12} \mathrm{C}\left(0_{\mathrm{gs}}^{+}\right) \rightarrow \nu_{\mu}+{ }^{12} \mathrm{~B}\left(J_{k}^{\pi}\right)
$$

Missing potentially important contribution from high energies

Total Muon-Capture Rates

Experiment:

$$
\mu^{-}+{ }^{100} \mathrm{Mo} \rightarrow \nu_{\mu}+{ }^{100} \mathrm{Nb}
$$

Hashim et al., Phys. Rev. C 97, 014617 (2018)

¿ TRIUMF

Outline

Introduction

Corrections to $0 \nu \beta \beta$-decay nuclear matrix elements
The contact term
Contribution of ultrasoft neutrinos

Muon capture as a probe of $0 \nu \beta \beta$ decay
VS-IMSRG Study on Muon Capture on ${ }^{24} \mathrm{Mg}$
No-Core Shell-Model Studies on Muon Capture on Light Nuclei
Phenomenological study on muon capture on ${ }^{136} \mathrm{Ba}$
Summary and Outlook

Muon capture on ${ }^{136} \mathrm{Ba}$

- OMC on ${ }^{136} \mathrm{Ba}$ one of the candidates to be measured by the MONUMENT collaboration

Atomic number

Muon capture on ${ }^{136} \mathrm{Ba}$

- OMC on ${ }^{136} \mathrm{Ba}$ one of the candidates to be measured by the MONUMENT collaboration
- Calls for phenomenology:

Muon capture on ${ }^{136} \mathrm{Ba}$

- OMC on ${ }^{136} \mathrm{Ba}$ one of the candidates to be measured by the MONUMENT collaboration
- Calls for phenomenology:
- Far too heavy for NCSM ($A \gg 20$)

Atomic number

Muon capture on ${ }^{136} \mathrm{Ba}$

- OMC on ${ }^{136} \mathrm{Ba}$ one of the candidates to be measured by the MONUMENT collaboration
- Calls for phenomenology:
- Far too heavy for NCSM ($A \gg 20$)
- Need both positive and negative-parity states \rightarrow difficult for VS-IMSRG

Atomic number

き TRIUMF

Muon capture on ${ }^{136} \mathrm{Ba}$

- OMC on ${ }^{136} \mathrm{Ba}$ one of the candidates to be measured by the MONUMENT collaboration
- Calls for phenomenology:
- Far too heavy for NCSM ($A \gg 20$)
- Need both positive and negative-parity states \rightarrow difficult for VS-IMSRG
- Solution: (phenomenological) nuclear shell model and proton-neutron QRPA

Atomic number

¿ TRIUMF

Excitation energies in ${ }^{136} \mathrm{Cs}(J \leq 5)$

- The shell-model and pnQRPA energies are surprisingly similar

P. Gimeno, LJ, J. Kotila, M. Ramalho, J. Suhonen,
10.20944/preprints202304.0899.v1 (submitted to Universe)

き TRIUMF

Excitation energies in ${ }^{136} \mathrm{Cs}(J \leq 5)$

- The shell-model and pnQRPA energies are surprisingly similar
- Agreement with experiment gets much better with the new measurement
B. M. Rebeiro et al., arXiv:2301.11371 (2023)

き TRIUMF

Muon capture rates to low-lying states in ${ }^{136}$ Cs

- Summing up the rates to states with $E_{X}<1 \mathrm{MeV}$:
P. Gimeno, LJ, J. Kotila, M. Ramalho, J. Suhonen, 10.20944/preprints202304.0899.v1 (submitted to Universe)

	Rate $(1 \mathrm{~b})\left(10^{3} 1 / s\right)$	Rate $(1 \mathrm{~b}+2 \mathrm{~b})\left(10^{3} 1 / s\right)$	Rate $(1 \mathrm{~b}+2 \mathrm{~b}) /$ Total rate
NSM	248	$150-174$	$1.4-1.5 \%$
pnQRPA	1103	$592-807$	$5-7 \%$

き TRIUMF

Muon capture rates to low-lying states in ${ }^{136}$ Cs

- Summing up the rates to states with $E_{X}<1 \mathrm{MeV}$:
P. Gimeno, LJ, J. Kotila, M. Ramalho, J. Suhonen, 10.20944/preprints202304.0899.v1 (submitted to Universe)

	Rate (1b) $\left(10^{3} 1 / s\right)$	Rate $(1 \mathrm{~b}+2 \mathrm{~b})\left(10^{3} 1 / s\right)$	Rate $(1 \mathrm{~b}+2 \mathrm{~b}) /$ Total rate
NSM	248	$150-174$	$1.4-1.5 \%$
pnQRPA	1103	$592-807$	$5-7 \%$

- pnQRPA gives ≈ 4 times larger rates than NSM

き TRIUMF

Muon capture rates to low-lying states in ${ }^{136}$ Cs

- Summing up the rates to states with $E_{X}<1 \mathrm{MeV}$:
P. Gimeno, LJ, J. Kotila, M. Ramalho, J. Suhonen, 10.20944/preprints202304.0899.v1 (submitted to Universe)

	Rate $(1 \mathrm{~b})\left(10^{3} 1 / s\right)$	Rate $(1 \mathrm{~b}+2 \mathrm{~b})\left(10^{3} 1 / s\right)$	Rate $(1 \mathrm{~b}+2 \mathrm{~b}) /$ Total rate
NSM	248	$150-174$	$1.4-1.5 \%$
pnQRPA	1103	$592-807$	$5-7 \%$

- pnQRPA gives ≈ 4 times larger rates than NSM
- With experimental data, we will know which one is (more) correct

Muon capture rates to low-lying states in ${ }^{136}$ Cs

- Summing up the rates to states with $E_{X}<1 \mathrm{MeV}$:
P. Gimeno, LJ, J. Kotila, M. Ramalho, J. Suhonen, 10.20944/preprints202304.0899.v1 (submitted to Universe)

	Rate $(1 \mathrm{~b})\left(10^{3} 1 / s\right)$	Rate $(1 \mathrm{~b}+2 \mathrm{~b})\left(10^{3} 1 / s\right)$	Rate $(1 \mathrm{~b}+2 \mathrm{~b}) /$ Total rate
NSM	248	$150-174$	$1.4-1.5 \%$
pnQRPA	1103	$592-807$	$5-7 \%$

- pnQRPA gives ≈ 4 times larger rates than NSM
- With experimental data, we will know which one is (more) correct
- May hint which model is more reliable for the $0 \nu \beta \beta$ decay of ${ }^{136} \mathrm{Xe}$!

Muon capture rates to low-lying states in ${ }^{136}$ Cs

- Summing up the rates to states with $E_{X}<1 \mathrm{MeV}$:
P. Gimeno, LJ, J. Kotila, M. Ramalho, J. Suhonen, 10.20944/preprints202304.0899.v1 (submitted to Universe)

	Rate $(1 \mathrm{~b})\left(10^{3} 1 / s\right)$	Rate $(1 \mathrm{~b}+2 \mathrm{~b})\left(10^{3} 1 / s\right)$	Rate $(1 \mathrm{~b}+2 \mathrm{~b}) /$ Total rate
NSM	248	$150-174$	$1.4-1.5 \%$
pnQRPA	1103	$592-807$	$5-7 \%$

- pnQRPA gives ≈ 4 times larger rates than NSM
- With experimental data, we will know which one is (more) correct
- May hint which model is more reliable for the $0 \nu \beta \beta$ decay of ${ }^{136} \mathrm{Xe}$!
- Similar study ongoing for OMC on ${ }^{128,130} \mathrm{Xe}$

き TRIUMF

Outline

Introduction

Corrections to $0 \nu \beta \beta$-decay nuclear matrix elements
The contact term
Contribution of ultrasoft neutrinos

Muon capture as a probe of $0 \nu \beta \beta$ decay
VS-IMSRG Study on Muon Capture on ${ }^{24} \mathrm{Mg}$
No-Core Shell-Model Studies on Muon Capture on Light Nuclei
Phenomenological study on muon capture on ${ }^{136} \mathrm{Ba}$
Summary and Outlook

き TRIUMF

Summary

- Newly introduced contact term significantly enhances the $0 \nu \beta \beta$-decay NMEs

Summary

- Newly introduced contact term significantly enhances the $0 \nu \beta \beta$-decay NMEs
- Studying the contribution from ultrasoft neutrinos may help us estimate the closure correction to the $0 \nu \beta \beta$-decay NMEs

Summary

- Newly introduced contact term significantly enhances the $0 \nu \beta \beta$-decay NMEs
- Studying the contribution from ultrasoft neutrinos may help us estimate the closure correction to the $0 \nu \beta \beta$-decay NMEs
- Ab initio muon-capture studies could shed light on g_{A} quenching at finite momentum exchange regime relevant for $0 \nu \beta \beta$ decay

Summary

- Newly introduced contact term significantly enhances the $0 \nu \beta \beta$-decay NMEs
- Studying the contribution from ultrasoft neutrinos may help us estimate the closure correction to the $0 \nu \beta \beta$-decay NMEs
- Ab initio muon-capture studies could shed light on g_{A} quenching at finite momentum exchange regime relevant for $0 \nu \beta \beta$ decay
- Phenomenological methods still needed for heavy/difficult systems

き TRIUMF

Outlook

- Study the effect of vector two-body currents (one-pion-exchange \& pion-in-flight) on OMC rates

き TRIUMF

Outlook

- Study the effect of vector two-body currents (one-pion-exchange \& pion-in-flight) on OMC rates
- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG

き TRIUMF

Outlook

- Study the effect of vector two-body currents (one-pion-exchange \& pion-in-flight) on OMC rates
- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead

き TRIUMF

Outlook

- Study the effect of vector two-body currents (one-pion-exchange \& pion-in-flight) on OMC rates
- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead
- Study the effect of exact two-body currents and/or continuum on the OMC rates

き TRIUMF

Outlook

- Study the effect of vector two-body currents (one-pion-exchange \& pion-in-flight) on OMC rates
- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes

Outlook

- Study the effect of vector two-body currents (one-pion-exchange \& pion-in-flight) on OMC rates
- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes
- ${ }^{16} \mathrm{~N}$ potential candidate for forbidden β-decay studies (ongoing)

Outlook

- Study the effect of vector two-body currents (one-pion-exchange \& pion-in-flight) on OMC rates
- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes
- ${ }^{16} \mathrm{~N}$ potential candidate for forbidden β-decay studies (ongoing)
- ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ are both of interest in neutrino-scattering experiments

$$
\left(\nu_{\mu}+{ }^{12} \mathrm{C} \rightarrow \mu^{-}+{ }^{12} \mathrm{~N}\right)
$$

きTRIUMF

Thank you Merci

き TRIUMF

- Rates written in terms of reduced one-body matrix elements:

$$
\left(\Psi_{f}\left\|\sum_{s=1}^{A} \hat{O}_{k w u x}\left(\mathbf{r}_{s}, \mathbf{p}_{s}\right)\right\| \Psi_{i}\right)=\frac{1}{\sqrt{2 u+1}} \sum_{p n}\left(n\left\|\hat{O}_{k w u x}\left(\mathbf{r}_{s}, \mathbf{p}_{s}\right)\right\| p\right)\left(\Psi_{f}\left\|\left[a_{n}^{\dagger} \tilde{a}_{p}\right]_{u}\right\| \Psi_{i}\right)
$$

NME	$\hat{O}_{k w u x}\left(\mathbf{r}_{s}, \mathbf{p}_{s}\right)$
$\mathcal{M}[0 w u]$	$j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mathcal{Y}_{0 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}\right) \delta_{w u}$
$\mathcal{M}[1 w u]$	$j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mathcal{Y}_{1 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}, \boldsymbol{\sigma}_{s}\right)$
$\mathcal{M}[0 w u \pm]$	$\left[j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mp \frac{1}{q} j_{w \mp 1}\left(q r_{s}\right) \frac{d}{d r_{s}} G_{-1}\left(r_{s}\right)\right] \mathcal{Y}_{0 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}\right) \delta_{w u}$
$\mathcal{M}[1 w u \pm]$	$\left[j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mp \frac{1}{q} j_{w \mp 1}\left(q r_{s}\right) \frac{d}{d r_{s}} G_{-1}\left(r_{s}\right)\right] \mathcal{Y}_{1 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}, \boldsymbol{\sigma}_{s}\right)$
$\mathcal{M}[0 w u p]$	$i j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mathcal{Y}_{0 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}\right) \boldsymbol{\sigma}_{s} \cdot \mathbf{p}_{s} \delta_{w u}$
$\mathcal{M}[1 w u p]$	$i j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mathcal{Y}_{1 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}, \mathbf{p}_{s}\right)$

き TRIUMF

- Rates written in terms of reduced one-body matrix elements:

$$
\left(\Psi_{f}\left\|\sum_{s=1}^{A} \hat{O}_{k w u x}\left(\mathbf{r}_{s}, \mathbf{p}_{s}\right)\right\| \Psi_{i}\right)=\frac{1}{\sqrt{2 u+1}} \sum_{p n}\left(n\left\|\hat{O}_{k w u x}\left(\mathbf{r}_{s}, \mathbf{p}_{s}\right)\right\| p\right)\left(\Psi_{f}\left\|\left[a_{n}^{\dagger} \tilde{a}_{p}\right]_{u}\right\| \Psi_{i}\right)
$$

NME	$\hat{O}_{k w u x}\left(\mathbf{r}_{s}, \mathbf{p}_{s}\right)$
$\mathcal{M}[0 w u]$	$j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mathcal{Y}_{0 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}\right) \delta_{w u}$
$\mathcal{M}[1 w u]$	$j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mathcal{Y}_{1 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}, \boldsymbol{\sigma}_{s}\right)$
$\mathcal{M}[0 w u \pm]$	$\left[j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mp \frac{1}{q} j_{w \mp 1}\left(q r_{s}\right) \frac{d}{d r_{s}} G_{-1}\left(r_{s}\right)\right] \mathcal{Y}_{0 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}\right) \delta_{w u}$
$\mathcal{M}[1 w u \pm]$	$\left[j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mp \frac{1}{q} j_{w \mp 1}\left(q r_{s}\right) \frac{d}{d r_{s}} G_{-1}\left(r_{s}\right)\right] \mathcal{Y}_{1 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}, \boldsymbol{\sigma}_{s}\right)$
$\mathcal{M}[0 w u p]$	$i j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mathcal{Y}_{0 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}\right) \boldsymbol{\sigma}_{s} \cdot \mathbf{p}_{s} \delta_{w u}$
$\mathcal{M}[1 w u p]$	$i j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mathcal{Y}_{1 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}, \mathbf{p}_{s}\right)$

¿ TRIUMF

Axial-Vector Two-Body Currents (2BCs)

- One-body (1b) axial-vector currents given by

$$
\mathbf{J}_{i, 1 \mathrm{~b}}^{3}=\frac{\tau_{i}^{3}}{2}\left(g_{\mathrm{A}} \boldsymbol{\sigma}_{i}-\frac{g_{\mathrm{P}}}{2 m_{\mathrm{N}}} \mathbf{q} \cdot \boldsymbol{\sigma}_{i}\right)
$$

where $g_{\mathrm{P}}=\left(2 m_{\mathrm{N}} q /\left(q^{2}+m_{\pi}^{2}\right)\right) g_{\mathrm{A}}$

¿ TRIUMF

Axial-Vector Two-Body Currents (2BCs)

- One-body (1b) axial-vector currents given by

$$
\mathbf{J}_{i, 1 \mathrm{~b}}^{3}=\frac{\tau_{i}^{3}}{2}\left(g_{\mathrm{A}} \boldsymbol{\sigma}_{i}-\frac{g_{\mathrm{P}}}{2 m_{\mathrm{N}}} \mathbf{q} \cdot \boldsymbol{\sigma}_{i}\right)
$$

where $g_{\mathrm{P}}=\left(2 m_{\mathrm{N}} q /\left(q^{2}+m_{\pi}^{2}\right)\right) g_{\mathrm{A}}$

- Additional pion-exchange, pion-pole, and contact two-body (2b) currents Hoferichter, Klos, Schwenk Phys. Lett. B 746, 410 (2015)

$$
\begin{aligned}
\mathbf{J}_{12}^{3}= & -\frac{g_{\mathrm{A}}}{2 F_{\pi}^{2}}\left[\tau_{1} \times \tau_{2}\right]^{3}\left[c_{4}\left(1-\frac{\mathbf{q}}{\mathbf{q}^{2}+M_{\pi}} \mathbf{q} \cdot\right)\left(\boldsymbol{\sigma}_{1} \times \mathbf{k}_{2}\right)+\frac{c_{6}}{4}\left(\boldsymbol{\sigma}_{1} \times \mathbf{q}\right)+i \frac{\mathbf{p}_{1}+\mathbf{p}_{1}^{\prime}}{4 m_{\mathrm{N}}}\right] \frac{\boldsymbol{\sigma}_{2} \cdot \mathbf{k}_{2}}{M_{\pi}^{2}+k_{2}^{2}} \\
& -\frac{g_{\mathrm{A}}}{F_{\pi}^{2}} \tau_{2}^{3}\left[c_{3}\left(1-\frac{\mathbf{q}}{\mathbf{q}^{2}+M_{\pi}} \mathbf{q} \cdot\right) \mathbf{k}_{2}+2 c_{1} M_{\pi}^{2} \frac{\mathbf{q}}{\mathbf{q}^{2}+M_{\pi}^{2}}\right] \frac{\boldsymbol{\sigma}_{2} \cdot \mathbf{k}_{2}}{M_{\pi}^{2}+k_{2}^{2}} \\
& -d_{1} \tau_{1}^{3}\left(1-\frac{\mathbf{q}}{\mathbf{q}^{2}+M_{\pi}^{2}} \mathbf{q} \cdot\right) \boldsymbol{\sigma}_{1}+(1 \leftrightarrow 2)-d_{2}\left(\tau_{1} \times \tau_{2}\right)^{3}\left(\boldsymbol{\sigma}_{1} \times \boldsymbol{\sigma}_{2}\right)\left(1-\cdot \mathbf{q} \frac{\mathbf{q}}{\mathbf{q}^{2}+M_{\pi}^{2}}\right)
\end{aligned}
$$

where $\mathbf{k}_{i}=\mathbf{p}_{i}^{\prime}-\mathbf{p}_{i}$ and $\mathbf{q}=-\mathbf{k}_{\mathbf{1}}-\mathbf{k}_{2}$

Axial-Vector Two-Body Currents (2BCs)

- Approximate 2BCs by normal-ordering w.r.t. spin-isospin-symmetric reference state with $\rho=2 k_{\mathrm{F}}^{3} /\left(3 \pi^{2}\right)$:
Hoferichter, Menéndez, Schwenk, Phys. Rev. D 102,074018 (2020)

$$
\mathbf{J}_{i, 2 \mathrm{~b}}^{\mathrm{eff}}=\sum_{j}\left(1-P_{i j}\right) \mathbf{J}_{i j}^{3}
$$

き TRIUMF

Axial-Vector Two-Body Currents (2BCs)

- Approximate 2BCs by normal-ordering w.r.t. spin-isospin-symmetric reference state with $\rho=2 k_{\mathrm{F}}^{3} /\left(3 \pi^{2}\right)$:

Hoferichter, Menéndez, Schwenk, Phys. Rev. D 102,074018 (2020)

$$
\begin{gathered}
\mathbf{J}_{i, 2 \mathrm{~b}}^{\mathrm{eff}}=\sum_{j}\left(1-P_{i j}\right) \mathbf{J}_{i j}^{3} \\
\rightarrow \mathbf{J}_{i, 2 \mathrm{~b}}^{\mathrm{eff}}=g_{\mathrm{A}} \frac{\tau_{i}^{3}}{2}\left[\delta a\left(\mathbf{q}^{2}\right) \boldsymbol{\sigma}_{i}+\frac{\delta a^{P}\left(\mathbf{q}^{2}\right)}{\mathbf{q}^{2}}\left(\mathbf{q} \cdot \boldsymbol{\sigma}_{i}\right) \mathbf{q}\right]
\end{gathered}
$$

where

$$
\begin{aligned}
& \delta_{a}\left(\mathbf{q}^{2}\right)=-\frac{\rho}{F_{\pi}^{2}}\left[\frac{c_{4}}{3}\left[3 I_{2}^{\sigma}(\rho, \mathbf{q})-I_{1}^{\sigma}(\rho,|\mathbf{q}|)\right]-\frac{1}{3}\left(c_{3}-\frac{1}{4 m_{\mathrm{N}}}\right) I_{1}^{\sigma}(\rho,|\mathbf{q}|)-\frac{c_{6}}{12} I_{c 6}(\rho,|\mathbf{q}|)-\frac{c_{D}}{4 g_{A} \Lambda_{\chi}}\right], \\
& \delta_{a}^{P}\left(\mathbf{q}^{2}\right)= \frac{\rho}{F_{\pi}^{2}}\left[-2\left(c_{3}-2 c_{1}\right) \frac{m_{\pi}^{2} \mathbf{q}^{2}}{\left(m_{\pi}^{2}+\mathbf{q}^{2}\right)^{2}}+\frac{1}{3}\left(c_{3}+c_{4}-\frac{1}{4 m_{\mathrm{N}}}\right) I^{P}(\rho,|\mathbf{q}|)-\left(\frac{c_{6}}{12}-\frac{2}{3} \frac{c_{1} m_{\pi}^{2}}{m_{\pi}^{2}+\mathbf{q}^{2}}\right) I_{c 6}(\rho,|\mathbf{q}|)\right. \\
&-\frac{\mathbf{q}^{2}}{m_{\pi}^{2}+\mathbf{q}^{2}}\left(\frac{c_{3}}{3}\left[I_{1}^{\sigma}(\rho,|\mathbf{q}|)+I^{P}(\rho,|\mathbf{q}|)\right]+\frac{c_{4}}{3}\left[I_{1}^{\sigma}(\rho,|\mathbf{q}|)+I^{P}(\rho,|\mathbf{q}|)-3 I_{2}^{\sigma}(\rho,|\mathbf{q}|)\right]\right)-\frac{c_{D}}{4 g_{A} \Lambda_{\chi}} \frac{\mathbf{q}^{2}{ }^{2} \frac{(1)}{2}}{m_{\pi}^{2}}
\end{aligned}
$$

Translationally invariant wave function

- We are not interested in the motion of the center of mass (CM) of the HO potential but only the intrinsic motion

Translationally invariant wave function

- We are not interested in the motion of the center of mass (CM) of the HO potential but only the intrinsic motion
- Translationally invariant wave functions can be achieved in two ways:

Translationally invariant wave function

- We are not interested in the motion of the center of mass (CM) of the HO potential but only the intrinsic motion
- Translationally invariant wave functions can be achieved in two ways:
- Working with $A-1$ Jacobi coordinates $\boldsymbol{\xi}_{s}=-\sqrt{A /(A-1)}\left(\mathbf{r}_{s}-\mathbf{R}_{\mathrm{CM}}\right)$:

$$
\Psi^{A}=\sum_{N=0}^{N_{\max }} \sum_{i} c_{N i} \Phi_{N i}^{\mathrm{HO}}\left(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{A-1}\right)
$$

Translationally invariant wave function

- We are not interested in the motion of the center of mass (CM) of the HO potential but only the intrinsic motion
- Translationally invariant wave functions can be achieved in two ways:
- Working with $A-1$ Jacobi coordinates $\boldsymbol{\xi}_{s}=-\sqrt{A /(A-1)}\left(\mathbf{r}_{s}-\mathbf{R}_{\mathrm{CM}}\right)$:

$$
\Psi^{A}=\sum_{N=0}^{N_{\max }} \sum_{i} c_{N i} \Phi_{N i}^{\mathrm{HO}}\left(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{A-1}\right)
$$

- Working with A single-particle coordinates and separating the center-of-mass motion:

$$
\Psi_{\mathrm{SD}}^{A}=\sum_{N=0}^{N_{\max }} \sum_{i} c_{N j}^{\mathrm{SD}} \Phi_{\mathrm{SD}}^{\mathrm{HO}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{A}\right)=\Psi^{A} \Psi_{\mathrm{CM}}\left(\mathbf{R}_{\mathrm{CM}}\right)
$$

Removing Spurious Center-of-Mass Motion

- OMC operators depend on single-particle coordinates r_{s} and $p_{s} w . r$. t. the center of mass

${ }^{12} \mathrm{C}\left(0_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{12} \mathrm{~B}\left(1_{\mathrm{gs}}^{+}\right)+\nu_{\mu}$

き TRIUMF

Removing Spurious Center-of-Mass Motion

- OMC operators depend on single-particle coordinates r_{s} and $p_{s} w . r$. t. the center of mass
- The CM contamination can be removed as:

Navrátil, Phys. Rev. C 104, 064322 (2021)

$$
\begin{aligned}
& \left(\Psi_{f}\left\|\sum_{s=1}^{A} \hat{O}_{s}\left(\mathbf{r}_{s}-\mathbf{R}_{\mathrm{CM}}, \mathbf{p}_{s}-\mathbf{P}\right)\right\| \Psi_{i}\right) \\
= & \frac{1}{\sqrt{2 u+1}} \times \sum_{p n p^{\prime} n^{\prime}}\left(n^{\prime}\left\|\hat{O}_{s}\left(-\sqrt{\frac{A-1}{A}} \boldsymbol{\xi}_{s},-\sqrt{\frac{A-1}{A}} \boldsymbol{\pi}_{s}\right)\right\| p^{\prime}\right) \\
& \times\left(M^{u}\right)_{n^{\prime} p^{\prime}, n p}^{-1}\left(\Psi_{f}\left\|\left[a_{n}^{\dagger} \tilde{a}_{p}\right]_{u}\right\| \Psi_{i}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{\xi}_{s} & =-\sqrt{A /(A-1)}\left(\mathbf{r}_{s}-\mathbf{R}_{\mathrm{CM}}\right) \\
\boldsymbol{\pi}_{s} & =-\sqrt{A /(A-1)}\left(\mathbf{p}_{s}-\mathbf{P}\right)
\end{aligned}
$$

き TRIUMF

Removing Spurious Center-of-Mass Motion

- OMC operators depend on single-particle coordinates r_{s} and $p_{s} w . r$. t. the center of mass
- The CM contamination can be removed as:

Navrátil, Phys. Rev. C 104, 064322 (2021)

$$
\begin{aligned}
& \left(\Psi_{f}\left\|\sum_{s=1}^{A} \hat{O}_{s}\left(\mathbf{r}_{s}-\mathbf{R}_{\mathrm{CM}}, \mathbf{p}_{s}-\mathbf{P}\right)\right\| \Psi_{i}\right) \\
= & \frac{1}{\sqrt{2 u+1}} \times \sum_{p n p^{\prime} n^{\prime}}\left(n^{\prime}\left\|\hat{O}_{s}\left(-\sqrt{\frac{A-1}{A}} \boldsymbol{\xi}_{s},-\sqrt{\frac{A-1}{A}} \boldsymbol{\pi}_{s}\right)\right\| p^{\prime}\right) \\
& \times\left(M^{u}\right)_{n^{\prime} p^{\prime}, n p}^{-1}\left(\Psi_{f}\left\|\left[a_{n}^{\dagger} \tilde{a}_{p}\right]_{u}\right\| \Psi_{i}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{\xi}_{s} & =-\sqrt{A /(A-1)}\left(\mathbf{r}_{s}-\mathbf{R}_{\mathrm{CM}}\right) \\
\boldsymbol{\pi}_{s} & =-\sqrt{A /(A-1)}\left(\mathbf{p}_{s}-\mathbf{P}\right)
\end{aligned}
$$

き TRIUMF

Removing Spurious Center-of-Mass Motion

- OMC operators depend on single-particle coordinates r_{s} and $p_{s} w . r$. t. the center of mass
- The CM contamination can be removed as:

Navrátil, Phys. Rev. C 104, 064322 (2021)

$$
\begin{aligned}
& \left(\Psi_{f}\left\|\sum_{s=1}^{A} \hat{O}_{s}\left(\mathbf{r}_{s}-\mathbf{R}_{\mathrm{CM}}, \mathbf{p}_{s}-\mathbf{P}\right)\right\| \Psi_{i}\right) \\
= & \frac{1}{\sqrt{2 u+1}} \times \sum_{p n p^{\prime} n^{\prime}}\left(n^{\prime}\left\|\hat{O}_{s}\left(-\sqrt{\frac{A-1}{A}} \boldsymbol{\xi}_{s},-\sqrt{\frac{A-1}{A}} \boldsymbol{\pi}_{s}\right)\right\| p^{\prime}\right) \\
& \times\left(M^{u}\right)_{n^{\prime} p^{\prime}, n p}^{-1}\left(\Psi_{f}\left\|\left[a_{n}^{\dagger} \tilde{a}_{p}\right]_{u}\right\| \Psi_{i}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{\xi}_{s} & =-\sqrt{A /(A-1)}\left(\mathbf{r}_{s}-\mathbf{R}_{\mathrm{CM}}\right) \\
\boldsymbol{\pi}_{s} & =-\sqrt{A /(A-1)}\left(\mathbf{p}_{s}-\mathbf{P}\right)
\end{aligned}
$$

き TRIUMF

- Fermi-gas density ρ adjusted so that $\delta_{a}(0)$ reproduces the effect of exact two-body currents in
P. Gysbers et al., Nature Phys. 15, 428 (2019)

LJ, Navrátil, Kotila and Kravvaris, work in progress

き TRIUMF

- Fermi-gas density ρ adjusted so that $\delta_{a}(0)$ reproduces the effect of exact two-body currents in
P. Gysbers et al., Nature Phys. 15, 428 (2019)
- Two-body currents typically reduce the OMC rates by $\sim 1-2 \%$ in ${ }^{6} \mathrm{Li}$ and by $\lesssim 10 \%$ in ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$

Two-Body Currents

LJ, Navrátil, Kotila and Kravvaris, work in progress

き TRIUMF

Capture Rates to Low-Lying States in ${ }^{12} \mathrm{~B}$

- Interaction dependence

${ }^{12} \mathrm{C}\left(0_{\mathrm{gg}}^{+}\right)+\mu^{-} \rightarrow{ }^{12} \mathrm{~B}\left(1_{1}^{-}\right)+\nu_{\mu}$

き TRIUMF

Capture Rates to Low-Lying States in ${ }^{12} \mathrm{~B}$

- Interaction dependence
- Adding the E_{7} spin-orbit term improves agreement with experiment

${ }^{12} \mathrm{C}\left(0_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{12} \mathrm{~B}\left(1_{1}^{-}\right)+\nu_{\mu}$

Discovery,

き TRIUMF

Capture Rates to Low-Lying States in ${ }^{16} \mathrm{~N}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$

き TRIUMF

Capture Rates to Low-Lying States in ${ }^{16} \mathrm{~N}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
- Less sensitive to the interaction than ${ }^{12} \mathrm{C}\left(\mu^{-}, \nu_{\mu}\right){ }^{12} \mathrm{~B}$

き TRIUMF

Capture Rates to Low-Lying States in ${ }^{16} \mathrm{~N}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
- Less sensitive to the interaction than ${ }^{12} \mathrm{C}\left(\mu^{-}, \nu_{\mu}\right){ }^{12} \mathrm{~B}$
\rightarrow Forbidden β decay
${ }^{16} \mathrm{~N}\left(22_{\mathrm{gs}}^{-}\right) \rightarrow{ }^{16} \mathrm{O}\left(0_{\mathrm{gs}}^{+}\right)+e^{-}+\bar{\nu}_{e}$ for beyond-standard model studies

き TRIUMF

Capture Rates to Low-Lying States in ${ }^{16} \mathrm{~N}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
- Less sensitive to the interaction than ${ }^{12} \mathrm{C}\left(\mu^{-}, \nu_{\mu}\right)^{12} \mathrm{~B}$
\rightarrow Forbidden β decay
${ }^{16} \mathrm{~N}\left(2_{\mathrm{gs}}^{-}\right) \rightarrow{ }^{16} \mathrm{O}\left(0_{\mathrm{gs}}^{+}\right)+e^{-}+\bar{\nu}_{e}$ for beyond-standard model studies
- Ongoing experiment at SARAF, Israel

き TRIUMF

Capture Rates to Low-Lying States in ${ }^{16} \mathrm{~N}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
- Less sensitive to the interaction than ${ }^{12} \mathrm{C}\left(\mu^{-}, \nu_{\mu}\right){ }^{12} \mathrm{~B}$
\rightarrow Forbidden β decay
${ }^{16} \mathrm{~N}\left(22_{\mathrm{gs}}^{-}\right) \rightarrow{ }^{16} \mathrm{O}\left(0_{\mathrm{gs}}^{+}\right)+e^{-}+\bar{\nu}_{e}$ for beyond-standard model studies
- Ongoing experiment at SARAF, Israel
\rightarrow Theory estimates based on NCSM

¿ TRIUMF

Excitation Energies in the $A=24$ Systems

民 TRIUMF
 Electromagnetic Moments in the $A=24$ Systems

Nucleus	J_{i}^{π}	$E(\mathrm{MeV})$			$\mu\left(\mu_{\mathrm{N}}\right)$				$Q\left(e^{2} \mathrm{fm}^{2}\right)$		
		exp.	NSM	IMSRG	exp.	NSM	IMSRG	exp.	NSM	IMSRG	
${ }^{24} \mathrm{Mg}$	2^{+}	1.369	1.502	1.981	$1.08(3)$	1.008	1.033	$-29(3)$	-19.346	-12.9	
${ }^{24} \mathrm{Mg}$	4^{+}	4.123	4.372	5.327	$1.7(12)$	2.021	2.096	-			
${ }^{24} \mathrm{Mg}$	2^{+}	4.238	4.116	4.327	$1.3(4)$	1.011	1.085	-			
${ }^{24} \mathrm{Mg}$	4^{+}	6.010	5.882	6.347	$2.1(16)$	2.015	2.089	-			
${ }^{24} \mathrm{Na}$	4^{+}	0.0	0.0	0.0	$1.6903(8)$	1.533	1.485	-			
${ }^{24} \mathrm{Na}$	1^{+}	0.472	0.540	0.397	$-1.931(3)$	-1.385	-0.344	-			

β Decays of the $A=24$ Systems

Nucleus	$J_{i} \rightarrow J_{f}$	$\log f t$		
		exp.	NSM	IMSRG
${ }^{24} \mathrm{Na}$	$1_{1}^{+} \rightarrow 0_{1}^{+}$	5.80	$5.188-5.223$	$4.448-4.545$
${ }^{24} \mathrm{Na}$	$4_{\mathrm{gs}}^{+} \rightarrow 4_{1}^{+}$	6.11	$5.416-5.461$	$5.795-5.866$
${ }^{24} \mathrm{Na}$	$4_{\mathrm{gs}}^{+} \rightarrow 3_{1}^{+}$	6.60	$5.727-5.773$	$6.342-6.422$

Excitation Energies of ${ }^{12} \mathbf{B}$

J_{i}^{π}	Interaction	$E_{\text {exc. }}(\mathrm{MeV})$			
		$N_{\text {max }}=4$	$N_{\text {max }}=6$	$N_{\text {max }}=8(\mathrm{IT})$	Exp.
1_{1}^{+}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{NInl}$	0.0	0.0	0.0	0.0
	NN($\mathrm{N}^{4} \mathrm{LO}$)-3NInIE7	0.135	0.000	0.000	
2_{1}^{+}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{NInI}$	0.251	0.465	0.538	0.953
	NN($\mathrm{N}^{4} \mathrm{LO}$)-3NInIE7	0.000	0.027	0.097	
0_{1}^{+}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{NInI}$	2.073	1.831	1.713	2.723
	NN($\mathrm{N}^{4} \mathrm{LO}$)-3NInIE7	3.306	2.909	2.761	
2_{2}^{+}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{NInl}$	3.816	3.490	3.344	3.760
	NN($\mathrm{N}^{4} \mathrm{LO}$)-3NInIE7	4.919	4.463	4.281	

Excitation Energies of ${ }^{16} \mathrm{~N}$

J_{i}^{π}	Interaction	$E_{\text {exc. }}(\mathrm{MeV})$			
		$N_{\text {max }}=4$	$N_{\text {max }}=6$	$N_{\text {max }}=8(\mathrm{IT})$	Exp.
2_{1}^{-}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{NInI}$	0.154	0.087	0.064	0.0
	NN($\mathrm{N}^{4} \mathrm{LO}$)-3NInIE7	0.214	0.146	0.133	
0_{1}^{-}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{Ninl}$	2.245	1.487	1.010	0.120
	NN($\mathrm{N}^{4} \mathrm{LO}$)-3NInIE7	2.807	2.065	1.606	
3_{1}^{-}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{NInI}$	0.000	0.000	0.000	0.298
	NN($\mathrm{N}^{4} \mathrm{LO}$)-3NInIE7	0.000	0.000	0.000	
1_{1}^{-}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{NInI}$	2.561	1.833	1.363	0.397
	NN($\mathrm{N}^{4} \mathrm{LO}$)-3NInIE7	2.985	2.310	1.869	

[^0]: ${ }^{1}$ Gorringe et al., Phys. Rev. C 60, 055501 (1999)

[^1]: ${ }^{1}$ Gorringe et al., Phys. Rev. C 60, 055501 (1999)

[^2]: ${ }^{1}$ Gorringe et al., Phys. Rev. C 60, 055501 (1999)

[^3]: ${ }^{1}$ Gorringe et al., Phys. Rev. C 60, 055501 (1999)

[^4]: ${ }^{1}$ Gorringe et al., Phys. Rev. C 60, 055501 (1999)

