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A better view:

7

Modern nuclear structure physics is rigorous,
vigorous, and the launchpoint for many other 
investigations.
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To detect dark matter, 
one needs nuclear cross-sections.
For neutrino physics, nuclear cross-sections.
For neutrinoless bb decay, need nuclear matrix element
For parity/time-reversal violation (e.g. EDM), 
need nuclear matrix element….
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To detect dark matter, 
one needs nuclear cross-sections.

(e.g., “dmscatter: a fast program for WIMP-nucleus scattering,” 
O. C. Gorton, CWJ, et al, Comp. Phys. Comm. 284, 108597 (2023) )
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…and of course, hadronic reactions as found, e.g., 
at rare isotope facility: origin of the elements, 
extreme & exotic behavior, etc.
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THE THEME OF THIS TALK…

11

There	are	‘tool	users’	and	‘tool	builders’

Much	of	my	recent	career	
has	been	about	tool	building
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PART I

12

Overview	of	the	interacting	shell	model

...and	its	current	capabilities
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To compute electromagnetic and weak transition rates, we use 
Fermi’s (actually Dirac’s) Golden Rule from time-dependent perturbation theory:

Transition probability (strength)

Many-body 
matrix element

One-body 
matrix element

One-body density
matrix elements
between many-body states

(can also generalize to 
two-body transition operators)
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€ 

ˆ H Ψ = E Ψ

To get the many-body states, we use 
the matrix formalism (a.k.a configuration-interaction)

€ 

Ψ = cα α
α

∑

€ 

Hαβ = α ˆ H β

€ 

Hαβcβ
β

∑ = Ecα if

€ 

α β = δαβ
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•How the basis states are represented

  

€ 

Ψ( r 1,
 r 2,
 r 3…) = φn1

( r 1)φn2
( r 2)φn3

( r 3)…φnN
( r N )

Product wavefunction (“Slater Determinant”)

Each many-body state can be uniquely determined 
by a list of “occupied” single-particle states
= “occupation representation”

  

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0

The single particle states are in ‘orbitals’ or 
‘shells’, hence ‘shell model’
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A brief and incomplete history

1949: Goeppert-Mayer and Axel, Jensen & Suess show
spin-orbit splitting explain magic numbers. Single-particle
picture describes many measured magnetic moments.
(Non-interacting shell model)

1956: Edith Halbert and J. B. French perform early 
configuration-interaction (interacting shell model) 
calculations.

1965: Cohen-Kurath empirical interaction for valence p-shell
1977: Whitehead introduces Lanczos method
1984: Wildenthal interaction for valence sd-shell
1991: FPD6 interaction for valence pf shell
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Issues:

€ 

Hαβcβ
β

∑ = Ecα

• Origin of Hamiltonian matrix elements
Semi-phenomenological vs. ab initio
(fit to A-body               vs.   fit to few-body)

• Representation and selection of basis
(basis “scheme” and model space)

• Computation with Hamiltonian matrix element
Storage vs. construction “on-the-fly”

€ 

Ψ = cα α
α

∑
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Modern many-body calculations

No-core shell model: in harmonic oscillator 
basis, “all” particles active (up to Nmax h.o. excitation
quanta), with high-precision interaction (e.g. chiral EFT,
HOBET, etc.) fit to few-body data

e.g. p-shell nuclides up to Nmax = 10 … 22

Ab initio approaches include coupled-cluster, 
Green’s-function Monte Carlo, and
the no-core shell model (NCSM)

cf. Barrett et al, Progress in Particle and Nuclear Physics 69, 131 (2013)

See talk by
J. Sobczyk
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Ab initio/ “No-core shell model”: take to infinite limit

Two parameters: h.o. basis frequency W
and model space cutoff Nmax

Naïve expectation: take Nmax -> infinity
Converged results independent of W
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Some highlight achievements:

• Can get spectra of light nuclei ”from first principles”

Maris , Vary, Navratil
PRC 87, 014327 (2013)

chiral 2+3 body forces

P. MARIS, J. P. VARY, AND P. NAVRÁTIL PHYSICAL REVIEW C 87, 014327 (2013)

TABLE I. The 7Be and 7Li ground- and excited-state energies
(in MeV) obtained using the chiral NN and chiral NN + NNN

interactions. The HO frequency of h̄! = 13 MeV and the 8h̄! model
space were used. Our measures of basis-space dependence are given
for the last two significant figures of the quoted theory result. Two
quantities, as explained in the text, are quoted in parenthesis for
excitation energies with the notation: (0.5 × total range of swing
with h̄! at Nmax = 8; difference at h̄! = 13 MeV between Nmax = 6
and 8 results). Only the second quantity is quoted for the magnitude
of the total ground-state energy. The 7Be states labeled “mixed iso”
have large isospin mixing and their basis-space dependence can be
approximated by the dependencies in the corresponding states of 7Li.
Experimental values are from Ref. [29].

Expt. NN NN + NNN

7Be
|Egs( 3

2
− 1

2 )| 37.6004(5) 32.75 36.98(43)
Ex( 1

2
−
1

1
2 ) 0.429 0.233 0.371 (67;24)

Ex( 7
2

−
1

1
2 ) 4.57(5) 5.28 5.14 (21;11)

Ex( 5
2

−
1

1
2 ) 6.73(10) 6.66 7.43 (17;23)

Ex( 5
2

−
2

1
2 ) 7.21(6) 8.12 8.11 (04;18)

Ex( 7
2

−
2

1
2 ) 9.27(10) 10.52 10.98 (25;31)

Ex( 3
2

−
2

1
2 ) 9.9 9.29 10.13 (46;30)

Ex( 1
2

−
2

1
2 ) 10.00 10.91 (49;35)

Ex( 3
2

−
3

1
2 ) 11.57 12.28 (mixed iso)

Ex( 3
2

−
1

3
2 ) 11.01(3) 12.10 12.38 (mixed iso)

7Li
|Egs( 3

2
− 1

2 )| 39.245 34.34 38.60(44)
Ex( 1

2
−
1

1
2 ) 0.478 0.238 0.382 (69;24)

Ex( 7
2

−
1

1
2 ) 4.65 5.36 5.20 (22;12)

Ex( 5
2

−
1

1
2 ) 6.60 6.72 7.50 (16;23)

Ex( 5
2

−
2

1
2 ) 7.45 8.35 8.31 (01;17)

Ex( 3
2

−
2

1
2 ) 8.75 9.58 10.43 (44;28)

Ex( 1
2

−
2

1
2 ) 9.09 10.29 11.18 (47;33)

Ex( 7
2

−
2

1
2 ) 9.57 10.81 11.28 (24;29)

Ex( 3
2

−
1

3
2 ) 11.24 12.25 12.46 (18;28)

resonance width. This may be useful for estimating relative
widths [28].

From the Nmax = 8 curve in Fig. 1 we select the optimal
frequency as h̄! = 13 MeV for examining our results in
greater detail. This adoption sets one of the inputs to the
determination of the basis-space dependence in excitation
energies as just described. We also define the basis-space
dependence of our total ground-state energy as the difference
in total energy at this adopted minimum for the basis-space
increment from Nmax = 6 to 8. As an example, this produces
the estimate of 0.44 MeV for the 7Li ground-state energy which
is quoted in parenthesis next to the eigenvalue in Table I.

We observe a similarity in the Nmax dependence or results
in Figs. 1 and 2. In both cases, our estimated uncertainties
range up to several hundred keV (see Table I). However, in
the absence of a firm trend in Nmax for our results, one should
not take our quoted uncertainties as estimates of numerical
accuracy but rather as characteristics of the dependence of the
results on the presently available basis spaces.

Exp 8hΩ 6hΩ 4hΩ
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FIG. 3. (Color online) Calculated and experimental excitation
energies of 7Li. Dependence on the size of the basis is presented.
The chiral EFT NN and NNN interaction was used. The isospin of
the states is T = 1/2 unless shown otherwise. See the text for further
details.

We show the low-lying spectra of 7Li in Fig. 3 at the
optimum frequency and at the sequence of Nmax truncations
corresponding to the curves in Fig. 1. The energies, radii, and
electromagnetic observables are summarized in Tables I and
II, where we also include the 7Be results. We obtain the same
level ordering for 7Be and 7Li which is also the same for both
NN and the NN + NNN interactions with the exception of
a reversal of the 7/2−

2 and 3/2−
2 levels in 7Be. That is, in 7Be,

the experimental 7/2−
2 and 3/2−

2 levels are reversed compared
to our results and the situation in 7Li. On the other hand, our
NN + NNN ordering is in agreement with experiment for the
nine lowest states in 7Li.

Our calculated spectra for both of the A = 7 nuclei show a
reasonable stability with respect to the frequency change. The
results in Table I (and A = 8 results in Tables III and VI below)
indicate that there are residual differences between theoretical
and experimental energies that are significantly larger than
our quoted basis-space dependence of the calculated results. It
will be interesting to see if the differences between theory and
experiment persist once more accurate calculations become
feasible. If they do, the question becomes whether these
differences are significantly reduced, for example, when a
chiral NNN interaction becomes available that is more
complete than the one currently available [33].

We present in Table II a selection of results for magnetic
moments, M1 transitions and other properties of the A = 7
nuclei. All electromagnetic observables are evaluated with the
free-space electromagnetic coupling constants. That is, we do
not employ effective charges or effective magnetic moments
for the nucleons.

The results in Table II with NN alone and NN + NNN
interactions are both in reasonable agreement with experiment.
One observes that there is a trend for radii and quadrupole
moments to increase with increasing basis size and/or de-
creasing frequency. This is, in part, a consequence of the
incorrect asymptotics of the HO basis and also our basis-space

014327-4
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Some highlight achievements:

• Can get spectra of light nuclei ”from first principles”

Maris et al PRC 90, 014314 (2014)

12C with chiral 2+3 body forces

Hoyle state
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“Phenomenological” calculations work 
in a fixed space, usually with a core

inert core

excluded

valence space}

cf.  Caurier et al, Rev. Mod. Phys. 77, 427 (2005)
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Modern many-body calculations

Phenomenological/empirical shell model:
Fixed valence space calculations with frozen core

Interaction matrix elements start from ‘realistic’ force
(usually modified by a G-matrix calculation)
matrix elements adjusted to reproduce many-body spectra

-- can tackle heavier nuclides
-- but lose physical interpretation of, e.g., s.p. wfn
-- no theory to expand model space

cf.  Caurier et al, Rev. Mod. Phys. 77, 427 (2005)
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Modern many-body calculations

New: “Non-empirical” or “ab initio valence space”
Valence space calculations; start from ab initio
and transformed via in-medium similarity-
renormalization-group (next talk by Baishan Hu).

(In principle, more predictive than standard 
‘empirical’ shell model; can choose valence space.)

S. R. Stroberg, et al., Annual Review of Nuclear and Particle Science 69, 307 (2019)
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Choice of wave function basis 

One chooses between a few, complicated states
or  many simple states
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Choice of wave function basis 

One chooses between a few, complicated states
or  many simple states

M-scheme      J-scheme    SU(3)                coupled-cluster

1

1010

108

10 6
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Choice of wave function basis 

One chooses between a few, complicated states
or  many simple states

M-scheme      J-scheme    SU(3)                coupled-cluster

1

1010

108

10 6

(not really diagonalization)

See talk by
J. Sobczyk
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Choice of wave function basis 

One chooses between a few, complicated states
or  many simple states

M-scheme: basis states with fixed total Jz
Simple and easy to construct/work with
Requires large dimension basis

J-scheme: basis states with fixed total J
Enforced rotational symmetry, smaller dimensions
Generally built from M-scheme states
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Choice of wave function basis 

One chooses between a few, complicated states
or  many simple states

Symmetry-adapted (SU(3), Sp(3,R), etc):
States from selected group irreps
Enforced symmetries, rotational + translational,
smaller dimensions
Often built from M-scheme states or by recursion
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Symplectic Sp(3,R) Symmetry

(From K. Launey, LSU)
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8Be, 0gs 
+ 

0ħω: 42.5% 

2ħω: 29.4% 

4ħω: 14.3% 

6ħω: 8.4% 

8ħω: 5.4% 

79
.4
%

2.
9%

2.
0%

1.2
%

1.4
% N3LO

JISP16

N3LO

Launey et al., Prog. Part. Nucl. Phys. 89 (2016) 101
Dytrych et al., Phys. Rev. Lett. 111 (2013) 252501
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Collectivity features
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(4 0) S=0
(0 2) S=0

(2 1) S=1

Giant 
resonances

N2LOopt; 9 shells, ħω = 15 MeV

18Ne, B(E2: 2+->0+)
------------------------
Experiment……… 17.7(18) W.u.

9 shells …………… 1.13 W.u.

33 shells …………. 13.0(7) W.u.
(no effective charges)

01
+ 0 0.000

21
+ 0 1.634

41
+ 0 4.248

61
+ 0 8.778

0.000

1.582

4.175

8.621

Exp X2\10 SA-NCSM

20Ne

0

2

4

6

8

10
E x
@M

eV
D

13 shells 
SA-NCSM (selected model space): 50 million SU(3) states 
Complete model space: 1000 billion states

Ne & Mg isotopes

Grigor Sargsyan
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It’s also important to know:

Computational burden is not primarily the dimension
but is the # of nonzero Hamiltonian matrix elements.

Loop over a:

€ 

Hαβcβ
β

∑ = Ecα
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J-scheme matrices are smaller but much denser than
M-scheme, and “symmetry-adapted” (i.e. SU(3)) 
matrices are smaller (and denser) still.

example:  12C Nmax = 8

scheme basis dim
M 0.6 x 109

J (J=4) 9 x 107

SU(3) 9 x 106

(truncated)
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J-scheme matrices are smaller but much denser than
M-scheme, and “symmetry-adapted” (i.e. SU(3)) 
matrices are smaller (and denser) still.

example:  12C Nmax = 8

scheme basis dim      # of nonzero matrix elements
M 0.6 x 109 5 x 1011

J (J=4) 9 x 107 3 x 1013

SU(3) 9 x 106 2 x 1012

(truncated)

Dytrych, et al. Computer Physics Comm 207, 202 (2016)
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J-scheme matrices are smaller but much denser than
M-scheme, and “symmetry-adapted” (i.e. SU(3)) 
matrices are smaller (and denser) still.

example:  12C Nmax = 8

scheme basis dim      # of nonzero matrix elements
M 0.6 x 109 5 x 1011 4 Tb of memory!
J (J=4) 9 x 107 3 x 1013 240 Tb of memory!
SU(3) 9 x 106 2 x 1012 16 Tb of memory!
(truncated)

Dytrych, et al. Computer Physics Comm 207, 202 (2016)
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Older codes (e.g., OXBASH) stored nonzero matrix 
elements on hard drive -> I/O as bottleneck

More recent codes (e.g., MFDn) store nonzero matrix 
elements in RAM -> requires supercomputer
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Older codes (e.g., OXBASH) stored nonzero matrix 
elements on hard drive -> I/O as bottleneck

More recent codes (e.g., MFDn) store nonzero matrix 
elements in RAM -> requires supercomputer

Alternate approach: “on-the-fly/factorization”
pioneered by ANTOINE code
used by NuShellX, BIGSTICK, KSHELL codes
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Alternate approach: “on-the-fly/factorization”
pioneered by ANTOINE code
used by NuShellX, BIGSTICK, KSHELL codes

“On-the-fly” uses the fact that only two (or three) 
particles at a time interact; the rest are spectators
-> ”loop over spectators”

A description of the “factorization” algorithm: 
CWJ, W. Ormand, P. Krastev,  Comp. Phys. Comm. 184, 
2761(2013)
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J-scheme matrices are smaller but much denser than
M-scheme, and “symmetry-adapted” (i.e. SU(3)) 
matrices are smaller still.

example:  12C Nmax = 8

scheme basis dim      # of nonzero matrix elements
M 0.6 x 109 5 x 1011 4 Tb of memory!
J (J=4) 9 x 107 3 x 1013 240 Tb of memory!
SU(3) 9 x 106 2 x 1012 16 Tb of memory!
(truncated) On-the-fly requires only 43 Gb!
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Links to free, open-source many-body codes:

fribtheoryalliance.org

In particular BIGSTICK,  available from: 
github.com/cwjsdsu/BigstickPublick

Manual at arXiv:1801.08432

Also: NuShellX (MSU)
KSHELL (Tokyo)
ANTOINE
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The BIGSTICK public shell-model code!

Download from: github.com/cwjsdsu/BigstickPublick

100-page manual at arXiv:1801.08432

Authors: CWJ, Erich Ormand, K. McElvain, H.Z. Shan,
R. Zbikowski

Runs on both desktop and parallel machines
--can run at least dimension 300M+ on desktop
--has done dimension 20 billion+ on supercomputers

Uses “factorization” algorithm:  Johnson, Ormand, and Krastev, 
Comp. Phys. Comm. 184, 2761(2013)



INT-23-85W, April 17, 2023 43

Despite advances, it is easy to get to model spaces 
beyond our reach:

Nmax calculations:
12C Nmax = 4  dim 1 million
12C Nmax = 6  dim 30 million
12C Nmax = 8  dim 500 million
12C Nmax = 10  dim  7.8 billion
12C Nmax = 12  dim 81 billion

Largest (?) known calculation, 12Be, Nmax=12, 35 billion
(McCoy et al, with MFDn)
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Some typical M-scheme basis 
dimensions....
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Some typical M-scheme basis 
dimensions....

p-shell...
dim < 100



INT-23-85W, April 17, 2023 46

Some typical M-scheme basis 
dimensions....

sd-shell...
dim < 100,000
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Some typical M-scheme basis 
dimensions....

pf-shell...
dim < 2 billion
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Some typical M-scheme basis 
dimensions....

50-82 shell...
dim < 7 quadrillion

e.g., 128Ce dim = 49 trillion...
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PART II

49

A	quick	sketch	

of	what	goes	into	a	shell	model	calculation
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WHAT GOES INTO A SHELL MODEL CALCULATION
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WHAT GOES INTO A SHELL MODEL CALCULATION

Model (valence) space
(file or parameter)

Interaction matrix 
elements (file)

(crafted by experts!)
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WHAT GOES INTO A SHELL MODEL CALCULATION

Model (valence) space
(file or parameter)

Interaction matrix 
elements (file)

(crafted by experts!)

Computing platform (laptop to parallel 
supercomputer)

Shell-model code
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(transition) 
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WHAT GOES INTO A SHELL MODEL CALCULATION

Model (valence) space
(file or parameter)

Interaction matrix 
elements (file)

(crafted by experts!)

Computing platform (laptop to parallel 
supercomputer)

Shell-model code

Eigenspectra

(transition) 
densities

Post-processing 
code ?

More post-
processing? 

y
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WHAT CAN A SHELL MODEL CODE CALCULATE?

• Hamiltonian eigenspectra and wave functions
• Matrix elements of one- and two-body (etc) operators between wave functions
• Spectroscopic factors (one-body easiest)
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WHAT CAN A SHELL MODEL CODE CALCULATE?

• Hamiltonian eigenspectra and wave functions
• Matrix elements of one- and two-body (etc) operators between wave functions
• Spectroscopic factors (one-body easiest)

+
• Strength functions of transition operators
• Group-theoretic decompositions
• Application of many-body Green’s function
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WHAT CAN A SHELL MODEL CODE CALCULATE?

Remember, with 
great power 
comes great 
responsibility!

• Hamiltonian eigenspectra and wave functions
• Matrix elements of one- and two-body (etc) operators between wave functions
• Spectroscopic factors (one-body easiest)

+
• Strength functions of transition operators
• Group-theoretic decompositions
• Application of many-body Green’s function
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WHAT’S DIFFICULT FOR A SHELL MODEL CODE?

• 3- and 4-body forces and densities
• Specific highly excited states (if convergence required)
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WHAT’S TRICKY FOR A SHELL MODEL CODE?

Cross-shell valence space calculations, e.g., p-sd or sd-pf

• Interactions are usually fitted to a very specific truncation; even if 
the code can handle a larger space, the results may not be valid
• One has to pay attention to spurious center-of-mass excitations

full M-scheme dimension

40Mg: 286 billion

40Ar: 927 trillion! sd shell

pf shell
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WHAT’S TRICKY FOR A SHELL MODEL CODE?

Cross-shell valence space calculations, e.g., p-sd or sd-pf

• Interactions are usually fitted to a very specific truncation; even if 
the code can handle a larger space, the results may not be valid
• One has to pay attention to spurious center-of-mass excitations

full M-scheme dimension

40Mg: 286 billion

40Ar: 927 trillion! sd shell

pf shell

Remember, with 
great power 
comes great 
responsibility!
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PART III

61

Some	technical	details

on	the	success	of	the	shell	model
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(Cornelius Lanczos)

How do we solve such large matrices?

The Lanczos
Algorithm!
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(Cornelius Lanczos)

  

€ 

A v 1 =α1
 v 1 + β1

 v 2
  

€ 

A v 2 = β1
 v 1 +α2

 v 2 + β2
 v 3

  

€ 

A v 3 =   

€ 

β2
 v 2 +α3

 v 3 + β3
 v 4

  

€ 

A v 4 =   

€ 

β3
 v 3 +α4

 v 4 + β4
 v 5

Starting from some initial vector (the “pivot”) v1 , 
the Lanczos algorithm iteratively creates 
a new basis (a “Krylov space”).

Lanczos is a special case of Arnoldi methods
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(Cornelius Lanczos)

This transforms the matrix A into a new basis,
in which A is now tridiagonal

126 R. R. Whitehead et al. 

insignificant modifications lead to an algorithm of almost unbelievable 
accuracy and stability. Here we will only sketch in the method and point 
out the features that make it suitable for shell-model work. 

In order to be able to use the Lanczos method efficiently we must choose 
the shell-model basis states, the representation, carefully. It turns out that, 
despite the obvious disadvantages, a basis of Slater determinants is the most 
useful set of states. The use of such states will be discussed at length in 
Section 3. 

2.1. The Lanczos Method 

Let Hbe any hermitian operator and Vl any vector of the N-dimensional 
space on which H operates such that Vl tVl = 1. We form additional or-
thonormal vectors by repeated operations with H thus: 

HVl = alvl + {3lV2 

HV2 = {3lVl + a 2v 2 + {32V3 

The tri-diagonal structure of these equations is a consequence of the hermi-
ticity of H. The process terminates automatically when the vectors Vl , V2 , ... 

exhaust the space, for at the Nth step we have 

but since there cannot be a further vector orthogonal to Vl , .•• , VN the 
new vector VN+1 must be zero. The method thus has the delightful feature 
that it terminates properly even if we do not know the dimensionality of 
the vector space at the beginning. (Here we are treating operators in general, 
not just matrices, and such ignorance of dimensionality may not be inex-
cusable.) 

The vectors Vl , ... , VN, which we refer to as Lanczos vectors, form an 
orthonormal basis, in which the operator H takes on the tri-diagonal matrix 
representation 

C 
(31 p,) A P1 a 2 {32 

H--H= {32 a3 
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(Cornelius Lanczos)

This transforms the matrix A into a new basis,
in which A is now tridiagonal

This is like Householder…except one does not fully transform the matrix.

The extremal eigenvalues of  the transformed, truncated matrix quickly
converge to the extremal eigenvalues of  the original matrix!

126 R. R. Whitehead et al. 

insignificant modifications lead to an algorithm of almost unbelievable 
accuracy and stability. Here we will only sketch in the method and point 
out the features that make it suitable for shell-model work. 

In order to be able to use the Lanczos method efficiently we must choose 
the shell-model basis states, the representation, carefully. It turns out that, 
despite the obvious disadvantages, a basis of Slater determinants is the most 
useful set of states. The use of such states will be discussed at length in 
Section 3. 

2.1. The Lanczos Method 

Let Hbe any hermitian operator and Vl any vector of the N-dimensional 
space on which H operates such that Vl tVl = 1. We form additional or-
thonormal vectors by repeated operations with H thus: 

HVl = alvl + {3lV2 

HV2 = {3lVl + a 2v 2 + {32V3 

The tri-diagonal structure of these equations is a consequence of the hermi-
ticity of H. The process terminates automatically when the vectors Vl , V2 , ... 

exhaust the space, for at the Nth step we have 

but since there cannot be a further vector orthogonal to Vl , .•• , VN the 
new vector VN+1 must be zero. The method thus has the delightful feature 
that it terminates properly even if we do not know the dimensionality of 
the vector space at the beginning. (Here we are treating operators in general, 
not just matrices, and such ignorance of dimensionality may not be inex-
cusable.) 

The vectors Vl , ... , VN, which we refer to as Lanczos vectors, form an 
orthonormal basis, in which the operator H takes on the tri-diagonal matrix 
representation 

C 
(31 p,) A P1 a 2 {32 

H--H= {32 a3 
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(Cornelius Lanczos)

Computational Methods for Shell-Model Calculations 

100 

105 

BE 
MeV 

11 

115 

o 10 20 30 40 50 60 70 
No. of Iterations 

AI 26 

J = odd 
T = 0 

10 90 

133 

3 
3 

100 

Fig. 1. Convergence diagram for 26Al, odd J, T = O. Note the extensive interference 
between different levels as they converge. The dots on the lines indicate the points at 
which the eigenvalues have fully converged. 

previously unpublished (Whi 69) method, which is rather closer to the 
conventional ideas of the shell model and illustrates the advantages of our 
ultimate choice. 

We take as our shell-model basis states of the form 

(I) 

in which there is antisymmetry among the first (N - 2) and last two particles, 
but no definite symmetry under interchanges of particle indices between 
these two groups. The notation (j)m denotes the most general situation, 

eigenvalues of 
truncated matrix increasing # of

Lanczos vectors =
dimension of truncated
matrix

Whitehead, R. R., et al. 
Advances in nuclear physics. 
(1977) 123-176.

The one drawback of  Lanczos is,
due to round-off  error, 
one must explicitly enforce 
orthogonality of  Lanczos vectors

(“reorthogonalization”) 

converged

unconverged
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Consider three ways to compute the strength function:

1. Transitions between individual initial and final states
(using transition densities): 

requires converged initial, final states

2. Transition from a converged initial state to unconverged
final states using “Lanczos trick”

difficult to get converged initial state at high energy

3. (NEW) Transitions from semi-converged initial state 
to unconverged final states using “Lanczos trick”

requires a local approximation to Brink-Axel

Strength functions in the nuclear shell model
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The naïve way to compute strength functions is 
between individual, converged states, both 
initial and final states

Strength functions in the nuclear shell model

Ψ! "𝑂 Ψ" = ∑#$ 𝜌#$
!"𝑂#$

Many-body 
matrix element

One-body 
matrix element

One-body density
matrix elements
between many-body states

2



INT-23-85W, April 17, 2023

The naïve way to compute strength functions is 
between individual, converged states, both 
initial and final states

Strength functions in the nuclear shell model

But higher states
take more Lanczos
iterations to
converge

unconverged
states

converged
states
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Do we need each individual transition?

Whitehead and  Watt  J Phys G 4, 835(1978)
Whitehead, Watt, and Kelvin. Phys Lett B 89, 313 (1980)
Whitehead in Theory and Applications of Moment Methods in   

Many-Fermion Systems, 235 (1980)
Bloom, Prog. Part. Nucl. Phys 11, 205 (1984)

There is a ‘trick’ for generating strength functions easily using 
Lanczos.
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the convergence!
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This works because Lanczos generates exact 
moments of the strength function (2n-1 for n iterations)

See e.g. Whitehead in Theory and Applications of Moment Methods 
in Many-Fermion Systems, 235 (1980)
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Strength functions in the nuclear shell model

The initial state is converged, but 
final states do not need to be converged

(because moments)
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PART IV

75

Future	directions

for	the	shell	model
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FUTURE DIRECTIONS FOR SHELL MODEL CALCULATIONS

• Coupling separate proton and neutron states
• Novel efficient truncation scheme
• Generator-coordinate-like approach
• Group-theoretical truncations
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FUTURE DIRECTIONS FOR SHELL MODEL CALCULATIONS

• Coupling separate proton and neutron states
• Novel efficient truncation scheme
• Generator-coordinate-like approach
• Group-theoretical truncations

motivated by looking at 
proton-neutron ‘entanglement
entropy’, CWJ & Gorton,
J. Phys. G 50, 045110 (2023).
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Using BIGSTICK we construct many-proton states of good J

!!
Ψp , JpM = cµ pµ ,M

µ
∑

and the same for many-neutron states; these we couple
together in a J-scheme code with fixed J for basis:

!!
Ψ J = cab Ψpa, Jp ⊗ Ψnb, Jn⎡

⎣
⎤
⎦

ab
∑

J

Oliver Gorton

We don’t take all possible of these, 
but choose those lowest in energy
when solving the proton-only system

same here, 
only for neutrons
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52Fe in pf-shell with GX1A interaction

decomposition of g.s.

Note exponential 
(Boltzmann) fall-off

These energies are the eigenenergies of 6 valence protons in the pf shell 
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pf-shell with GX1A interaction

decomposition into proton components

Note exponential 
(Boltzmann) fall-off
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Oliver Gorton

BIGSTICK
(protons)

BIGSTICK
(neutrons)

proton many-body
energies + densities

neutron many-body
energies + densities

PANASh
couples through 
p-n interaction

proton+neutron
energies and densities
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Ni60 BIGSTICK
Ni60 PNism

(Projected HF g.s. energy = -76.33 MeV)

KB3G interaction

M-scheme dim= 1 billion!
PANASh calculations done on a laptop!

Oliver Gorton

= # of proton states

PANASh
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60Ni, KB3G
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We are studying 
convergence and 
are writing a paper
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Summary:

Modern nuclear structure physics is
modern and a vigorous, rigorous discipline,
necessary for many other fields (astrophysics,
tests of fundamental symmetries, etc.)

One approach is diagonalization of the 
Hamiltonian in a basis. Modern techniques
and computers can handle up to ~ 35 billion basis states
(though that is is not the primarily measure of computational burden)
and there are many promising techniques for extending
the reach and accuracy of shell model calculations


