Shell model calculations for neutrino and BSM physics

Calvin W. Johnson

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number, DE-FG02-03ER41272"

An all-too-common view:

An all-too-common view:

Dark matter, string theory, neutrino physics....

Dark matter, string theory, neutrino physics....

Nuclear structure physics

An all-too-common view:

Dark matter, string theory, neutrino physics....

Nuclear structure physics

A better view:

Dark matter, string theory, neutrino physics....

Nuclear structure physics

A better view:
SPACEPORT

Modern nuclear structure physics is rigorous, vigorous, and the launchpoint for many other investigations.

To detect dark matter, one needs nuclear cross-sections.
For neutrino physics, nuclear cross-sections.
For neutrinoless $\beta \beta$ decay, need nuclear matrix element
For parity/time-reversal violation (e.g. EDM), need nuclear matrix element....

To detect dark matter, one needs nuclear cross-sections.

(e.g., "dmscatter: a fast program for WIMP-nucleus scattering,"
O. C. Gorton, CWJ, et al, Comp. Phys. Comm. 284, 108597 (2023))

...and of course, hadronic reactions as found, e.g., at rare isotope facility: origin of the elements, extreme \& exotic behavior, etc.

The theme of this Talk...

There are 'tool users' and 'tool builders'

Much of my recent career has been about tool building

INT-23-85W, April 17, 2023

Part I

Overview of the interacting shell model

INT-23-85W, April 17, 2023

To compute electromagnetic and weak transition rates, we use San Diego State Fermi's (actually Dirac's) Golden Rule from time-dependent perturbation theory:

(can also generalize to two-body transition operators)

INT-23-85W, April 17, 2023

To compute electromagnetic and weak transition rates, we use San Diego State Fermi's (actually Dirac's) Golden Rule from time-dependent perturbation theory:

(can also generalize to two-body transition operators)

INT-23-85W, April 17, 2023

To get the many-body states, we use the matrix formalism (a.k.a configuration-interaction)

$$
\begin{gathered}
\hat{\mathbf{H}}|\Psi\rangle=E|\Psi\rangle \\
|\Psi\rangle=\sum_{\alpha} c_{\alpha}|\alpha\rangle \quad H_{\alpha \beta}=\langle\alpha| \hat{\mathbf{H}}|\beta\rangle \\
\sum_{\beta} H_{\alpha \beta} c_{\beta}=E c_{\alpha} \quad \text { if } \quad\langle\alpha \mid \beta\rangle=\delta_{\alpha \beta}
\end{gathered}
$$

The single particle states are in 'orbitals' or

- How the basis states are represented

Product wavefunction ("Slater Determinant")

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3} \ldots\right)=\phi_{\text {(n) }}\left(\vec{r}_{1}\right) \phi_{\text {(2) }}\left(\vec{r}_{2}\right) \phi_{\text {तI }}\left(\vec{r}_{3}\right) \ldots \phi_{\text {®n }}\left(\vec{r}_{N}\right)
$$

Each many-body state can be uniquely determined by a list of "occupied" single-particle states = "occupation representation"

$$
|\alpha\rangle=\hat{a}_{n_{1}}^{+} \hat{a}_{n_{2}}^{+} \hat{a}_{n_{3}}^{+} \ldots \hat{a}_{n_{N}}^{+}|0\rangle
$$

A brief and incomplete history

1949: Goeppert-Mayer and Axel, Jensen \& Suess show spin-orbit splitting explain magic numbers. Single-particle picture describes many measured magnetic moments.
(Non-interacting shell model)
1956: Edith Halbert and J. B. French perform early configuration-interaction (interacting shell model) calculations.

1965: Cohen-Kurath empirical interaction for valence p-shell 1977: Whitehead introduces Lanczos method 1984: Wildenthal interaction for valence $s d$-shell 1991: FPD6 interaction for valence $p f$ shell

Issues:
$\sum_{\beta} H_{\alpha \beta} c_{\beta}=E c_{\alpha}$

$$
|\Psi\rangle=\sum_{\alpha} c_{\alpha}|\alpha\rangle
$$

- Origin of Hamiltonian matrix elements Semi-phenomenological vs. ab initio (fit to A-body vs. fit to few-body)
- Representation and selection of basis (basis "scheme" and model space)
- Computation with Hamiltonian matrix element Storage vs. construction "on-the-fly"

Modern many-body calculations
$A b$ initio approaches include coupled-cluster, See talk by Green's-function Monte Carlo, and the no-core shell model (NCSM)

No-core shell model: in harmonic oscillator basis, "all" particles active (up to $\mathrm{N}_{\max }$ h.o. excitation quanta), with high-precision interaction (e.g. chiral EFT, HOBET, etc.) fit to few-body data
e.g. p-shell nuclides up to $\mathrm{N}_{\max }=10 \ldots 22$
cf. Barrett et al, Progress in Particle and Nuclear Physics 69, 131 (2013)

Ab initio/ "No-core shell model": take to infinite limit
Two parameters: h.o. basis frequency Ω and model space cutoff $\mathrm{N}_{\max }$

Naïve expectation: take $\mathrm{N}_{\text {max }}$-> infinity Converged results independent of Ω

Some highlight achievements:

- Can get spectra of light nuclei "from first principles"

Maris , Vary, Navratil PRC 87, 014327 (2013)
chiral $2+3$ body forces

Some highlight achievements:

- Can get spectra of light nuclei "from first principles"

Maris et al PRC 90, 014314 (2014)
${ }^{12} \mathrm{C}$ with chiral $2+3$ body forces

"Phenomenological" calculations work an Difgo State UNIVERSITY in a fixed space, usually with a core

cf. Caurier et al, Rev. Mod. Phys. 77, 427 (2005)

Modern many-body calculations

Phenomenological/empirical shell model: Fixed valence space calculations with frozen core

Interaction matrix elements start from 'realistic' force (usually modified by a G-matrix calculation) matrix elements adjusted to reproduce many-body spectra
-- can tackle heavier nuclides
-- but lose physical interpretation of, e.g., s.p. wfn
-- no theory to expand model space
cf. Caurier et al, Rev. Mod. Phys. 77, 427 (2005)

Modern many-body calculations

New: "Non-empirical" or "ab initio valence space" Valence space calculations; start from ab initio and transformed via in-medium similarity-renormalization-group (next talk by Baishan Hu).
(In principle, more predictive than standard 'empirical' shell model; can choose valence space.)
S. R. Stroberg, et al., Annual Review of Nuclear and Particle Science 69, 307 (2019)

Choice of wave function basis

One chooses between a few, complicated states or many simple states

Choice of wave function basis

One chooses between a few, complicated states or many simple states

Choice of wave function basis

One chooses between a few, complicated states or many simple states

Choice of wave function basis

One chooses between a few, complicated states or many simple states

M-scheme: basis states with fixed total J_{z} Simple and easy to construct/work with Requires large dimension basis

J-scheme: basis states with fixed total J Enforced rotational symmetry, smaller dimensions Generally built from M-scheme states

Choice of wave function basis

One chooses between a few, complicated states or many simple states

Symmetry-adapted (SU(3), $\operatorname{Sp}(3, R)$, etc): States from selected group irreps Enforced symmetries, rotational + translational, smaller dimensions
Often built from M-scheme states or by recursion

Symplectic Sp(3,R) Symmetry

Collectivity features

It's also important to know:

Computational burden is not primarily the dimension but is the \# of nonzero Hamiltonian matrix elements.

Loop over α :

$$
\sum_{\beta} H_{\overparen{\alpha \beta}} c_{\beta}=E c_{\alpha}
$$

J-scheme matrices are smaller but much denser than M-scheme, and "symmetry-adapted" (i.e. SU(3)) matrices are smaller (and denser) still.
example: ${ }^{12} \mathrm{C}_{\mathrm{max}}=8$
scheme basis dim
M $\quad 0.6 \times 10^{9}$
$\mathrm{J}(\mathrm{J}=4) \quad 9 \times 10^{7}$
SU(3) $\quad 9 \times 10^{6}$
(truncated)

J -scheme matrices are smaller but much denser than M-scheme, and "symmetry-adapted" (i.e. SU(3)) matrices are smaller (and denser) still.
example: ${ }^{12} \mathrm{C}_{\mathrm{max}}=8$
scheme basis dim
M
0.6×10^{9}
J ($\mathrm{J}=4$)
9×10^{7}
SU(3) $\quad 9 \times 10^{6}$
\# of nonzero matrix elements 5×10^{11}
3×10^{13}
2×10^{12}
(truncated)
Dytrych, et al. Computer Physics Comm 207, 202 (2016)

J -scheme matrices are smaller but much denser than M-scheme, and "symmetry-adapted" (i.e. SU(3)) matrices are smaller (and denser) still.
example: ${ }^{12} \mathrm{C}_{\mathrm{max}}=8$
scheme basis dim
M
J (J=4)
SU(3) $\quad 9 \times 10^{6}$
\# of nonzero matrix elements $5 \times 10^{11} \quad 4 \mathrm{~Tb}$ of memory! $3 \times 10^{13} \quad 240 \mathrm{~Tb}$ of memory!
$2 \times 10^{12} 16 \mathrm{~Tb}$ of memory!
(truncated)
Dytrych, et al. Computer Physics Comm 207, 202 (2016)

Older codes (e.g., OXBASH) stored nonzero matrix elements on hard drive -> I/O as bottleneck

More recent codes (e.g., MFDn) store nonzero matrix elements in RAM -> requires supercomputer

Older codes (e.g., OXBASH) stored nonzero matrix elements on hard drive -> I/O as bottleneck

More recent codes (e.g., MFDn) store nonzero matrix elements in RAM -> requires supercomputer

Alternate approach: "on-the-fly/factorization" pioneered by ANTOINE code used by NuShellX, BIGSTICK, KSHELL codes

Alternate approach: "on-the-fly/factorization" pioneered by ANTOINE code used by NuShellX, BIGSTICK, KSHELL codes
"On-the-fly" uses the fact that only two (or three) particles at a time interact; the rest are spectators -> "loop over spectators"

A description of the "factorization" algorithm:
CWJ, W. Ormand, P. Krastev, Comp. Phys. Comm. 184, 2761(2013)
J-scheme matrices are smaller but much denser than M-scheme, and "symmetry-adapted" (i.e. SU(3)) matrices are smaller still.
example: ${ }^{12} \mathrm{C} \mathrm{N}_{\max }=8$
scheme basis dim
M
J (J=4)
SU(3)
(truncated)
\# of nonzero matrix elements
$5 \times 10^{11} \quad 4 \mathrm{~Tb}$ of memory!
$3 \times 10^{13} \quad 240 \mathrm{~Tb}$ of memory!
$2 \times 10^{12} \quad 16 \mathrm{~Tb}$ of memory!
On-the-fly requires only 43 Gb !

Links to free, open-source many-body codes:
fribtheoryalliance.org
In particular BIGSTICK, available from: github.com/cwjsdsu/BigstickPublick

Manual at arXiv:1801.08432

Also: NuShellX (MSU)
KSHELL (Tokyo)
ANTOINE

The BIGSTICK public shell-model code!

Download from: github.com/cwjsdsu/BigstickPublick
100-page manual at arXiv:1801.08432
Authors: CWJ, Erich Ormand, K. McElvain, H.Z. Shan, R. Zbikowski

```
Uses "factorization" algorithm: Johnson, Ormand, and Krastev, Comp. Phys. Comm. 184, 2761 (2013)
```

Runs on both desktop and parallel machines
--can run at least dimension $300 \mathrm{M}+$ on desktop --has done dimension 20 billion+ on supercomputers

INT-23-85W, April 17, 2023

Despite advances, it is easy to get to model spaces beyond our reach:
$\mathrm{N}_{\text {max }}$ calculations:
${ }^{12} \mathrm{C} \mathrm{N}_{\text {max }}=4$ dim 1 million
${ }^{12} \mathrm{C}_{\text {max }}=6$ dim 30 million
${ }^{12} \mathrm{C}^{2} \mathrm{~N}_{\max }=8 \operatorname{dim} 500$ million
${ }^{12} \mathrm{C} \mathrm{N}_{\text {max }}=10$ dim 7.8 billion
${ }^{12} \mathrm{C}_{\mathrm{max}}=12$ dim 81 billion

Largest (?) known calculation, ${ }^{12} \mathrm{Be}, \mathrm{N}_{\max }=12,35$ billion
(McCoy et al, with MFDn)

Some typical M-scheme basis

INT-23-85W, April 17, 2023

Some typical M-scheme basis

INT-23-85W, April 17, 2023

PART II

INT-23-85W, April 17, 2023

What goes into a shell model calculation

What goes into a shell model calculation

Model (valence) space (file or parameter)

Interaction matrix elements (file) (crafted by experts!)

What goes into a shell model calculation

> Model (valence) space (file or parameter)

Interaction matrix elements (file) (crafted by experts!)

Computing platform (laptop to parallel supercomputer)

What goes into a shell model calculation

SAN Diego State UNIVERSITY

> Model (valence) space (file or parameter)

Interaction matrix elements (file) (crafted by experts!)

Eigenspectra

Post-processing code?
(transition) densities

What goes into a shell model calculation

SAN Diego State UNIVERSITY

Model (valence) space (file or parameter)

> Interaction matrix elements (file) (crafted by experts!)

More postprocessing?

What can a shell model code calculate?

Hamiltonian eigenspectra and wave functions

- Matrix elements of one- and two-body (etc) operators between wave functions
- Spectroscopic factors (one-body easiest)

What can a shell model code calculate?

- Hamiltonian eigenspectra and wave functions
- Matrix elements of one- and two-body (etc) operators between wave functions
- Spectroscopic factors (one-body easiest)
- Strength functions of transition operators
- Group-theoretic decompositions
- Application of many-body Green's function

What can a shell model code calculate?

- Hamiltonian eigenspectra and wave functions
- Matrix elements of one- and two-body (etc) operators between wave functions
- Spectroscopic factors (one-body easiest)
- Strength functions of transition operators
- Group-theoretic decompositions
- Application of many-body Green's function

WHAT'S DIFFICULT FOR A SHELL MODEL CODE?

- 3- and 4-body forces and densities
- Specific highly excited states (if convergence required)

What's tricky for a shell model code?

Cross-shell valence space calculations, e.g., $p-s d$ or $s d$-pf

- Interactions are usually fitted to a very specific truncation; even if the code can handle a larger space, the results may not be valid
- One has to pay attention to spurious center-of-mass excitations

full M-scheme dimension

${ }^{40} \mathrm{Mg}: 286$ billion
${ }^{40}$ Ar: 927 trillion!

What's tricky for a shell model code?

Cross-shell valence space calculations, e.g., $p-s d$ or $s d$-pf

- Interactions are usually fitted to a very specific truncation; even if the code can handle a larger space, the results may not be valid
- One has to pay attention to spurious center-of-mass excitations

Part III

INT-23-85W, April 17, 2023

(Cornelius Lanczos)

The Lanczos Algorithm!

(Cornelius Lanczos)

$$
\begin{aligned}
& \mathbf{A} \vec{v}_{1}=\alpha_{1} \vec{v}_{1}+\beta_{1} \vec{v}_{2} \\
& \mathbf{A} \vec{v}_{2}=\beta_{1} \vec{v}_{1}+\alpha_{2} \vec{v}_{2}+\beta_{2} \vec{v}_{3} \\
& \mathbf{A} \vec{v}_{3}=\quad \beta_{2} \vec{v}_{2}+\alpha_{3} \vec{v}_{3}+\beta_{3} \vec{v}_{4} \\
& \mathbf{A} \vec{v}_{4}=\quad \quad \beta_{3} \vec{v}_{3}+\alpha_{4} \vec{v}_{4}+\beta_{4} \vec{v}_{5}
\end{aligned}
$$

Starting from some initial vector (the "pivot") v_{1}, the Lanczos algorithm iteratively creates a new basis (a "Krylov space").

Lanczos is a special case of Arnoldi methods

(Cornelius Lanczos)

SAN Diego State UNIVERSITY

$$
H \rightarrow \hat{H}=\left(\begin{array}{ccccc}
\alpha_{1} & \beta_{1} & & & \\
\beta_{1} & \alpha_{2} & \beta_{2} & & \\
& \beta_{2} & \alpha_{3} & \beta_{3} \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

(Cornelius Lanczos)

$$
H \rightarrow \hat{H}=\left(\begin{array}{ccccc}
\alpha_{1} & \beta_{1} & & & \\
\beta_{1} & \alpha_{2} & \beta_{2} & & \\
& \beta_{2} & \alpha_{3} & \beta_{3} \\
& \ddots & \ddots & \ddots
\end{array}\right)
$$

This is like Householder...except one does not fully transform the matrix.
The extremal eigenvalues of the transformed, truncated matrix quickly converge to the extremal eigenvalues of the original matrix!

(Cornelius Lanczos)

SAN Diego State UNIVERSITY

Whitehead, R. R., et al. Advances in nuclear physics. (1977) 123-176.

The one drawback of Lanczos is, due to round-off error, one must explicitly enforce orthogonality of Lanczos vectors
("reorthogonalization")

STRENGTH FUNCTIONS IN THE NUCLEAR SHELL MODEL

Consider three ways to compute the strength function:

1. Transitions between individual initial and final states (using transition densities):

requires converged initial, final states

2. Transition from a converged initial state to unconverged final states using "Lanczos trick"
difficult to get converged initial state at high energy
3. (NEW) Transitions from semi-converged initial state to unconverged final states using "Lanczos trick" requires a local approximation to Brink-Axel

STRENGTH FUNCTIONS IN THE NUCLEAR SHELL MODEL

The naïve way to compute strength functions is between individual, converged states, both initial and final states

STRENGTH FUNCTIONS IN THE NUCLEAR SHELL MODEL

The naïve way to compute strength functions $\begin{gathered}\text { SAN DigGo SiAt } \\ 1 S \text { INIVRRSITY }\end{gathered}$ between individual, converged states, both initial and final states

But higher states take more Lanczos iterations to converge

INT-23-85W, April 17, 2023

Do we need each individual transition?

There is a 'trick' for generating strength functions easily using Lanczos.

Whitehead and Watt JPhys G 4, 835(1978)
Whitehead, Watt, and Kelvin. Phys Lett B 89, 313 (1980) Whitehead in Theory and Applications of Moment Methods in

Many-Fermion Systems, 235 (1980)
Bloom, Prog. Part. Nucl. Phys 11, 205 (1984)

8Be. Nmax=6. Gamow-Teller

8Be. Nmax=6. Gamow-Teller

This works because Lanczos generates exact moments of the strength function ($2 \mathrm{n}-1$ for n iterations)

See e.g. Whitehead in Theory and Applications of Moment Methods in Many-Fermion Systems, 235 (1980)

Strength functions in the nuclear shell model

The initial state is converged, but $\begin{gathered}\text { San Diego State } \\ \text { University }\end{gathered}$ final states do not need to be converged

(because moments)

INT-23-85W, April 17, 2023

Part IV

INT-23-85W, April 17, 2023

FUTURE DIRECTIONS FOR SHELL MODEL CALCULATIONS

SAN Diego State UNIVERSITY

- Coupling separate proton and neutron states
- Novel efficient truncation scheme
- Generator-coordinate-like approach
- Group-theoretical truncations
- Coupling separate proton and neutron states
- Novel efficient truncation scheme
- Generator-coordinate-like approach
- Group-theoretical truncations

motivated by looking at
proton-neutron 'entanglement entropy', CWJ \& Gorton, J. Phys. G 50, 045110 (2023).

Using BIGSTICK we construct many-proton states of good J

$$
\left|\Psi_{p}, J_{p} M\right\rangle=\sum_{\mu} c_{\mu}\left|p_{\mu}, M\right\rangle
$$

and the same for many-neutron states; these we couple together in a J-scheme code with fixed J for basis:
Oliver Gorton

$$
\left.\left.\left|\Psi_{J}\right\rangle=\sum_{a b} c_{a b}\left[\Psi_{p} a, J_{p}\right\rangle \otimes \Psi_{n} b, J_{n}\right\rangle\right) \begin{aligned}
& \text { same here, } \\
& \text { only for neutrons }
\end{aligned} \begin{aligned}
& \text { We don't take all possible of these, } \\
& \text { but choose those lowest in energy } \\
& \text { when solving the proton-only system }
\end{aligned}
$$

INT-23-85W, April 17, 2023
${ }^{52} \mathrm{Fe}$ in $p f$-shell with GX1A interaction decomposition of g.s.

These energies are the eigenenergies of 6 valence protons in the $p f$ shell
INT-23-85W, April 17, 2023
$p f$-shell with GX1A interaction
decomposition into proton components

Note exponential
(Boltzmann) fall-off
INT-23-85W, April 17, 2023

Oliver Gorton

PANASh
 couples through
 p-n interaction

proton+neutron
energies and densities

INT-23-85W, April 17, 2023

INT-23-85W, April 17, 2023

Summary:

Modern nuclear structure physics is modern and a vigorous, rigorous discipline, necessary for many other fields (astrophysics, tests of fundamental symmetries, etc.)

One approach is diagonalization of the Hamiltonian in a basis. Modern techniques and computers can handle up to ~ 35 billion basis states (though that is is not the primarily measure of computational burden) and there are many promising techniques for extending the reach and accuracy of shell model calculations

