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Motivation

Cartoon of the QCD phase diagram
[Drischler et al., 2021]
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Motivation

Mass-Radius diagram from NICER (left) and
tidal deformabilities from GW170817 (right)
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Motivation

[Nature Phys. 16 (2020) 9, 907-910]
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Motivation

Equations of state for QCD matter
[Annala et al., Nature Phys. 2020]
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Should we always believe in General Relativity (GR)?

If applied to cosmological problems, e.g. early-time inflation and
late-time accelerated expansion of the Universe, GR is apparently
insufficient even adding a Λ constant or dark-energy component.

Simple extensions like ‘LH−E ∼ R → f (R) = R +αR2’ (known as the
Starobinsky model) solve these problems without a Λ constant or
inflaton field.

In fact, this Starobinsky model shows very good agreement with the
Planck 2018 data for the inflationary epoch via the analysis of the
CMB anisotropies.
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Modified theories of gravity f (R)

The corresponding action in the Jordan frame is given by

I =
1

16π

∫
d4x
√
−gf (R) + Im,

which produces the modified Einstein’s field equations given by

fRRµν −
1

2
gµν f + [gµν�−∇µ∇ν ]fR = 8πTµν ,

where Tµν is the matter energy-momentum tensor and � ≡ ∇µ∇µ is
the d’Alembertian operator.

Notice that now the Ricci scalar satisfies the equation

3�fR(R) + RfR(R)− 2f (R) = 8πT

which in the outside vacuum case, T = 0, has non-trivial solutions in
contrast to R = 0 in GR.
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Starobinsky TOV equations

As usual, for compact-star interiors we consider the static and
spherically-symmetric spacetime element as

ds2 = −e2ψ(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2).

The modified TOV equations within f (R) = R + αR2 gravity are

dψ

dr
=

1

4r(1 + 2αR + αrR ′)

[
r2e2λ(16πp − αR2) + ...

]
,

dλ

dr
=

1

4r(1 + 2αR + αrR ′)

{
2(1 + 2αR)

(
1− e2λ

)
+ ...

}
,

d2R

dr2
=

e2λ

6α
[R + 8π(3p − ρ)] +

(
λ′ − ψ′ − 2

r

)
R ′,

dp

dr
= −(ρ+ p)ψ′.

As in GR, the stellar surface is found when p(r = rsur) = 0.
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Boundary conditions for R2−gravity stars

In order to ensure the regularity of the geometry at the stellar center,
we establish the following boundary conditions

ρ(0) = ρc , ψ(0) = ψc , λ(0) = 0,

R(0) = Rc , R ′(0) = 0,

where “ρc” and “Rc” are the values of the central energy density and
central scalar curvature, respectively.

Besides, it is also useful to settle the junction conditions as

ψin(rsur) = ψout(rsur), λin(rsur) = λout(rsur),

Rin(rsur) = Rout(rsur), R ′in(rsur) = R ′out(rsur).
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Boundary conditions for R2−gravity stars
We can define a mass parameter in R2 −−gravity just as in Einstein’s
theory

m = 4π

∫
r2ρdr + α

∫ {
R2

4
− R

r2

d

dr

[
r(1− e−2λ)

]
+

1

e2λ
[...]

}
r2dr .

If α 6= 0, even in the outer region of a compact star this ‘m(r)’
generates an extra mass contribution due to the Ricci scalar and its
derivatives sometimes called “gravitational sphere”.

Besides, asymptotic flatness requires

lim
r→∞

R(r) = 0, lim
r→∞

m(r) = constant.

So, Rc must be chosen appropriately at infinity. Thus, the total
gravitational mass of the star M is determined from the asymptotic
behavior

M ≡ lim
r→∞

r

2

(
1− 1

e2λ

)
.
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Thermal and dense QCD:
Simple prescription but a challenging calculation

The total pressure of a QCD can be obtained from

P(T , {µi}) = T log

∫
Dψ̄DψDAµe−

∫
d3x

∫ 1/T
0 dτLQCD .

For T 6= 0 and µ . T : Lattice-gauge-field theory methods apply.

For µ & T : Unfeasible due to the fermionic sign problem.

Perturbative control at low densities (chiral effective field theory) and
at ultra-high densities (perturbative QCD), both in the cold limit.
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Cold and dense perturbative QCD (pQCD)
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pQCD quark stars within R2−gravity
The 3-loop result of Kurkela et al. (2010) can be cast in a simple pocket
formula for the pressure given by [Fraga et al., 2014]

p = pSB(µB)

(
c1 −

a(X )

(µB/GeV)− b(X )

)
,

where pSB(µB) = (3/4π2)(µB/3)4 is the Stefan-Boltzmann pressure.
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Pressures for the MIT bag model (B) and perturbative QCD (FKV)
[arXiv:1311.5154,2112.09950]
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Maximal parameters of R2−quark stars

EoS α [r2
g ] Rc [10−3r−2

g ] ρc [1015g/cm3] rsur [km] msur [M�] M [M�] EB [M�]

0 21.160 1.693 11.752 2.037 2.037 -0.437
FKV3 1 15.735 1.775 11.784 1.921 2.052 -0.462

10 5.284 1.912 11.939 1.800 2.109 -0.509

0 17.687 1.400 12.927 2.235 2.235 -0.612
FVK32 1 13.682 1.459 12.956 2.117 2.248 -0.626

10 4.981 1.587 13.100 1.982 2.305 -0.678

0 9.727 0.744 17.755 3.041 3.041 -1.443
FVK4 1 8.278 0.763 17.775 2.922 3.051 -1.458

10 3.925 0.829 17.900 2.738 3.105 -1.526
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Structure of R2−quark stars
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Solutions of the Starobinsky TOV equations [JCJ et al., 2022]
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Mechanical stability of R2−quark stars
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Effects on their masses and radii [JCJ et al., 2022]
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Baryon stability of R2−quark stars
The binding energy is defined as EB = M −Mpr, where Mpr is the
baryonc mass obtainable as follows

Mpr = mBNB = 4πmB

∫ rsur

0
eλ(r)r2nB(r)dr ,

being ‘nB(r)’ is the baryon number density profile and ‘mB’ the
neutron mass.
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Effects on their binding energies [JCJ et al., 2022]
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OTHER EXAMPLES: f (R ,T ) = R + 2βT

In this case ‘T ’ is the trace of the energy-momentum tensor and ‘β’ a free
parameter.

Modified mass-radius relations [arXiv:2012.03342]
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OTHER EXAMPLES: f (R ,G) = R − 2Λ + αG
(Einstein-Gauss-Bonnet)

The Gauss-Bonnet invariant is defined as
G = R2 − 4RµνR

µν + RµνσρR
µνσρ and ‘α’ another free parameter.

Results using the SLy nuclear EoS [arXiv:2107.03859]
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Summary and lessons

Most (if not all) M,R and Λ̄ indirect measurements assume that GR
is valid in static NSs and NS mergers when interprete their findings.
Besides, few (if not any) studies considering 1st-order transitions or
pQCD results in the EoS are assumed a priori in their analysis.

We have shown that even in simple extensions of GR, the M ′s and R ′s
of quark stars display a difference of ∼ 15 percent with GR results.

Are the nuclear matter EoSs from astrophysics consistent with
heavy-ion collision observables in the range ρ < 4ρ0?
Modified gravity shows that there is a bias introduced at around ‘ρ0’
when using astrophysics to constrain the nuclear-matter EoS.
Systematically this might introduce higher error bands for P = P(nB)
and even worse when applying the same reasoning to NS mergers.
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