

INT program: Intersection of nuclear structure and high-energy nuclear collisions

Isobar collisions as precision nuclear structure probes Jiangyong Jia

Brookhaven National Laboratory

01/31/2023

Office of Science | U.S. Department of Energy

Landscape of nuclear physics

Most nuclear experiments starts with nuclei

Rich structure of atomic nuclei

Collective phenomena of many-body quantum system

- clustering, halo, skin, bubble...
- quadrupole/octupole/hexdecopole deformations
- Nontrivial evaluation with N and Z.

Understanding via effective nuclear theories

Lattice, Ab.initio (starting from NN interaction)

β₂-landscape

- Shell models (configuration interaction)
- DFT models (non-relativistic and covariant)

Collective structure for heavy ion collision

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1+e^{(r-R(\theta,\phi))/a_0}}$$

$$R(\theta,\phi) = R_0 \left(1+\frac{\beta_2}{[\cos\gamma Y_{2,0}+\sin\gamma Y_{2,2}]}+\frac{\beta_3}{\beta_3}\sum_{m=-3}^3 \alpha_{3,m}Y_{3,m}+\frac{\beta_4}{\beta_4}\sum_{m=-4}^4 \alpha_{4,m}Y_{4,m}\right)$$

High-energy heavy ion collision

5

Key features facilitating the connection to nuclear structure 1) Extremely short passing time means that collision takes a snap-shot of the nuclear and nucleon wavefunction in the two nuclei. 2) Large particle production in overlap region means the produced QGP is dense and expand hydrodynamically.

Outline

- Describe hydrodynamics that connects initial condition and final state.
- Describe observables used to infer QGP properties and the initial condition
- Discuss how nuclear structure impacts the initial condition and observables
- Case study with isobar collision data to imagine both IC and NS.
- Speculate future system scan and its prospect for nuclear structure imaging.

Hydrodynamic evolution

Energy-momentum conservation Relativistic viscous Hydrodynamics (first-order): $\partial_{\mu}T^{\mu\nu} = 0$ $= \underbrace{\epsilon u^{\mu} u^{\nu} - (P + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}}_{\checkmark}$ Shear tensor Equation-of-state $P(\in)$ Bulk pressure $\pi^{\mu\nu} = -\eta \sigma^{\mu\nu}$ n: shear viscosity $\Pi = -\zeta
abla {}^{\perp}_{\lambda} u^{\lambda} \quad \zeta$: bulk viscosity 1) Collective flow driven by QCD eos: $F = -\nabla P(\epsilon)$

2) But resisted by viscosity η

Reduce anisotropic flow

Reduce radial flow

Shape-flow transmutation via pressure-gradient force

$$egin{aligned} N_{ ext{part}} & R_{ot}^2 \propto \langle r_{ot}^2
angle^{i2\phi}
angle \ & \mathcal{E}_3 \propto \left\langle r_{ot}^3 e^{i3\phi}
ight
angle & \mathcal{E}_n \propto \langle r_{ot}^n Y_{n,n}
angle \ & \mathcal{E}_4 \propto \left\langle r_{ot}^4 e^{i4\phi}
ight
angle \end{aligned}$$

Iltiplicity Radial Flow Harmonic Flow $N_{ch} \qquad \frac{d^2N}{d\phi dp_T} = N(p_T) \left(\sum_n V_n e^{-in\phi}\right)$

arXiv:1206.1905

Advantage of High energy: ⇒Large multiplicity and boost invariance ⇒approx. linear response in each event

$$N_{ch} \propto N_{part} ~~ rac{\delta[p_T]}{[p_T]} \propto - rac{\delta R_\perp}{R_\perp} ~~ V_n \propto {\cal E}_n$$

Shape-flow transmutation via pressure-gradient force

volume, size and shape

 $egin{aligned} N_{ ext{part}} & R_{ot}^2 \propto \langle r_{ot}^2
angle, & \mathcal{E}_2 \propto \left\langle r_{ot}^2 e^{i2\phi}
ight
angle \ & \mathcal{E}_3 \propto \left\langle r_{ot}^3 e^{i3\phi}
ight
angle \ & \mathcal{E}_4 \propto \left\langle r_{ot}^4 e^{i4\phi}
ight
angle \end{aligned}$

Multiplicity Radial Flow Harmonic Flow $N_{ch} \qquad \frac{d^2N}{d\phi dp_T} = N(p_T) \left(\sum_n V_n \ e^{-in\phi}\right)$

9

- Collective expansion for small Knudson number $\frac{\lambda}{R} \ll 1$
- Viscosity effects amplified by velocity gradient $\pi^{\mu\nu} = -\eta \sigma^{\mu\nu}$
- For flow to develop quickly, η/s must be small $\frac{\eta}{s} \sim 1-3 \times \frac{1}{4\pi} \frac{\hbar}{k}$

Richness of flow fluctuations

Observables for flow fluctuations

Two-particle correlation function

$$\left\langle rac{d^2 N_1}{d \phi d p_{\mathrm{T}}} rac{d^2 N_2}{d \phi d p_{\mathrm{T}}}
ight
angle \Rightarrow \left\langle oldsymbol{V}_n(p_{T1}) oldsymbol{V}_n^*(p_{T2})
ight
angle ~~n-n=0$$

Multi-particle correlation function

These multi-particle observables quantifies the initial volume, size and shape event-by-event

Observables for flow fluctuations

0.2 < p_ < 3.0 GeV/d

100-08

Centrality [%]

٧,

Au+Au

100

 $\sqrt{s_{NN}}$ (GeV)

0-5%

ALICE Pb+Pb

1000

Challenges in HI and role of nuclear structure

Approach: state-of-the-art 3D hydro model + Bayesian inferences based on flow & other data. Challenge: simultaneously constrain two unknowns: <u>initial</u> <u>condition</u> and <u>QGP properties</u>. Status: QGP shear/bulk viscosity extraction limited by large uncertainties from initial condition

temperature dependence of viscosity

Strategy: constrain initial condition "independently" with nuclear structure input

How deformation influence HI initial condition

Expected structure dependencies

The shape and size the overlap, therefore v_2 and p_T , also depend on diffuseness a_0 and radius R_0

At fixed N_{part}

$$a_{nt} = a_0 \searrow \implies v_2 \nearrow p_T \nearrow$$

 $R_0 \searrow \implies p_T \checkmark$

15

part

Low-energy vs high-energy HI method

Shape from B(En), radial profile from e+A or ion-A scattering

Shape frozen in crossing time (<10⁻²⁴s), probe entire mass distribution via multi-point correlations.

Collective flow response to nuclear structure

 $S(\mathbf{s}_1, \mathbf{s}_2) \equiv \langle \delta \rho(\mathbf{s}_1) \delta \rho(\mathbf{s}_2) \rangle \\ = \langle \rho(\mathbf{s}_1) \rho(\mathbf{s}_2) \rangle - \langle \rho(\mathbf{s}_1) \rangle \langle \rho(\mathbf{s}_2) \rangle.$

17

High-order fluctuations

- In principle, can measure any moments of $p(1/R, \varepsilon_2, \varepsilon_3...)$
 - Mean $\langle d_{\perp} \rangle$ • Variances: $\langle \varepsilon_n^2 \rangle$, $\langle (\delta d_\perp/d_\perp)^2 \rangle$ $d_\perp \equiv 1/R_\perp$ • Skewness $\langle \varepsilon_n^2 \delta d_\perp/d_\perp \rangle$, $\langle (\delta d_\perp/d_\perp)^3 \rangle$ $\langle v_n^2 \delta p_{\rm T}/p_{\rm T} \rangle$, $\langle (\delta p_{\rm T}/p_{\rm T})^3 \rangle$

 - Kurtosis $\langle \varepsilon_n^4 \rangle 2 \langle \varepsilon_n^2 \rangle^2, \langle (\delta d_\perp/d_\perp)^4 \rangle 3 \langle (\delta d_\perp/d_\perp)^2 \rangle^2 \langle v_n^4 \rangle 2 \langle v_n^2 \rangle^2, \langle (\delta p_{\rm T}/p_{\rm T})^4 \rangle 3 \langle (\delta p_{\rm T}/p_{\rm T})^2 \rangle^2$
- All with rather simple connection to deformation, for example:
 - Variances

. . .

Skewness

$$egin{aligned} &\langle arepsilon_2^2
angle &\sim a_2 + b_2 eta_2^2 + b_{2,3} eta_3^2 \ &\langle arepsilon_3^2
angle &\sim a_3 + b_3 eta_3^2 + b_{3,2} eta_2^2 + b_{3,4} eta_4^2 \ &\langle arepsilon_4^2
angle &\sim a_4 + b_4 eta_4^2 + b_{4,2} eta_2^2 \ &(\delta d_\perp / d_\perp)^2
angle &\sim a_0 + b_0 eta_2^2 + b_{0,3} eta_3^2 \end{aligned}$$

$$egin{aligned} &\langle arepsilon_2^2 \delta d_\perp / d_\perp
angle &\sim a_1 - b_1 \cos(3\gamma) eta_2^3 \ &\langle (\delta d_\perp / d_\perp)^3
angle &\sim a_2 + b_2 \cos(3\gamma) eta_2^3 \end{aligned}$$

Kurtosis

$$\frac{\langle \varepsilon_2^4 \rangle - 2 \langle \varepsilon_2^2 \rangle^2}{\langle (\delta d_\perp / d_\perp)^4 \rangle - 3 \langle (\delta d_\perp / d_\perp)^2 \rangle^2} \sim a_4 - b_4 \beta_2^4$$

Isobar collisions at RHIC: a precision tool

arXiv:2109.00131

Voloshin, hep-ph/0406311

- Designed to search for the chiral magnetic effect: strong P & CP violation of QCD in the presence of EM field. Turns out the CME signal is small, and isobar-differences are dominated by the nuclear structure differences.
- <0.4% precision is achieved in ratio of many observables between ⁹⁶Ru+ ⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr systems→ precision imaging tool

Isobar collisions at RHIC: a precision tool²

• A key question for any HI observable **O**:

$$egin{aligned} rac{O_{96}{
m Ru}+^{96}{
m Ru}}{O_{96}{
m Zr}+^{96}{
m Zr}} \stackrel{?}{=} 1 \end{aligned}$$

Deviation from 1 must has origin in the nuclear structure, which impacts the initial state and then survives to the final state.

Expectation

Species	β_2	β_3	a_0	R_0
Ru	0.162	0	$0.46~\mathrm{fm}$	$5.09~{\rm fm}$
Zr	0.06	0.20	$0.52~\mathrm{fm}$	$5.02~{\rm fm}$
difference	$\Delta \beta_2^2$	$\Delta \beta_3^2$	Δa_0	ΔR_0
umerence	0.0226	-0.04	-0.06 fm	$0.07~\mathrm{fm}$

$$\rho(r, \theta, \phi) \propto \frac{1}{1 + e^{[r - R_0(1 + \beta_2 Y_2^0(\theta, \phi) + \beta_3 Y_3^0(\theta, \phi))]/a_0}}$$

2109.00131

$$\mathcal{O} \approx b_0 + b_1 \beta_2^2 + b_2 \beta_3^2 + b_3 (R_0 - R_{0,\text{ref}}) + b_4 (a - a_{\text{ref}})$$

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Only probes isobar differences

Relate to neutron skin:
$$\Delta r_{np} = \langle r_n \rangle^{1/2} - \langle r_p \rangle^{1/2}$$

$$\Delta r_{np,Ru} - \Delta r_{np,Zr} \propto (R_0 \Delta R_0 - R_{0p} \Delta R_{0p}) + 7/3\pi^2 (a\Delta a - a_p \Delta a_p)$$
mass

Structure influences everywhere

 $\mathcal{O}_{\mathrm{Ru}}$

 $R_{\mathcal{O}} \equiv$

Nuclear structure via v_2 -ratio and v_3 -ratio ²²

Nuclear structure via v₂-ratio and v₃-ratio

23

Nuclear structure via v_2 -ratio and v_3 -ratio

24

Nuclear structure via v_2 -ratio and v_3 -ratio

Nuclear structure via v_2 -ratio and v_3 -ratio

26

Simultaneously constrain these parameters using different N_{ch} regions

Nuclear structure via $p(N_{ch})$, $< p_T >$ -ratio²⁷

Isobar ratios not affected by final state

- Vary the shear viscosity via partonic cross-section
 - Flow signal change by 30-50%, the v_n ratio unchanged.

28

Isobar to constrain initial condition

See talk by A. Kirchner and F. Taghavi

Different ways of depositing energy $T \propto \left(\frac{T_A^p + T_B^p}{2}\right)^{q/p}$ $e(x,y) \sim \begin{cases} T_A + T_B & N_{\text{part}} - \text{scaling}, p = 1 \\ T_A T_B & N_{\text{coll}} - \text{scaling}, p = 0, q = 2 \\ \sqrt{T_A T_B} & \text{Trento default}, p = 0 \\ \min\{T_A, T_B\} & \text{KLN model}, p \sim -2/3 \\ T_A + T_B + \alpha T_A T_B & \text{two-component model}, \\ & \text{similar to quark-glauber model} \end{cases}$

Use nuclear structure as extra lever-arm for initial condition

Exploiting the lever-arm from nuclear structure

Example: shape evolution of ^{144–154}Sm isotopic chain³¹

Transition from nearly-spherical to well-deformed nuclei when size increase by less than 7%. Using HI to access the multi-nucleon correlations leading to such shape evolution, as well as dynamical β_3 and β_4 shape fluctuations (in addition to initial condition)

 $egin{aligned} & ext{ In central collisions} \ & \left< \epsilon_2^2 \right> = a' + b' eta_2^2 & a' = \left< \varepsilon_2^2 \right>_{|eta_2=0} \propto 1/A \ & \left< v_2^2 \right> = a + b eta_2^2 & a = \left< v_2^2 \right>_{|eta_2=0} \propto 1/A \end{aligned}$

b', b are ~ independent of system

Systems with similar A falls on the same curve.

Fix a and b with two isobar systems with known β_2 , then predict others.

$$\begin{array}{c} 32\\ \text{Prolate}\\ \beta_2 = 0.25, \cos(3\gamma) = 1\\ \hline \\ \mathbf{f}_a, \mathbf{f}_a \end{array} \begin{array}{c} \text{tip-tip}\\ \text{body-body} \end{array} \begin{array}{c} \text{tip-tip}\\ \text{body-body} \end{array} \begin{array}{c} \mathbf{f}_a (\theta, \phi) = R_0 \left(1 + \beta_2 [\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}] \\ 1910.04673, 2004.14463\\ \text{area}\\ \frac{\text{small } v_2}{\text{small area}} \\ v_2 \searrow \\ p_T \swarrow \\ \text{area} \\ \frac{\text{large } v_2}{\text{small } \text{grearea}} \\ v_2 \swarrow \\ p_T \searrow \\ \frac{\text{large } v_2}{\text{small } \text{fp}} \\ \text{v_2} \swarrow \\ p_T \searrow \end{array} \right)$$

Need 3-point correlators to probe the 3 axes

 $\left\langle v_2^2 \delta p_{
m T}
ight
angle \sim -eta_2^3 \cos(3\gamma) \qquad \left\langle (\delta p_{
m T})^3
ight
angle \sim eta_2^3 \cos(3\gamma)$

2109.00604

 $\begin{aligned} \mathsf{Triaxial}\\ \beta_2 = 0.25, \cos(3\gamma) = 0 \end{aligned}$

Oblate $\beta_2 = 0.25, \cos(3\gamma) = -1$

Influence of triaxiality: Glauber model

Skewness sensitive to y

Described by

$$\left\langle arepsilon_2^2 rac{\delta d_\perp}{d_\perp}
ight
angle \propto \left\langle v_2^2 \delta p_{
m T}
ight
angle \propto a + b \cos(3\gamma) eta_2^3$$

variances insensitive to γ

$$\left< arepsilon_2^2 \right> \propto \left< v_2^2 \right> \propto a + b eta_2^2$$

Use variance to constrain β_2 , use skewness to constrain γ

(β_2, γ) diagram in heavy-ion collisions

35

 $\begin{array}{l} d_{\perp} \propto 1/R_{\perp} \\ \text{The } (\beta_2, \gamma) \text{ dependence in 0-1\%} & \langle \varepsilon_2^2 \rangle \approx [0.02 + \beta_2^2] \times 0.235 \\ \text{U+U Glauber model can be} & \langle (\delta d_{\perp}/d_{\perp})^2 \rangle \approx [0.035 + \beta_2^2] \times 0.0093 \\ \text{approximated by:} & \langle \varepsilon_2^2 \delta d_{\perp}/d_{\perp} \rangle \approx [0.0005 - (0.07 + 1.36\cos(3\gamma))\beta_2^3] \times 10^{-2} \end{array}$

Collision system scan to map out this trajectory: calibrate coefficients with species with known β , γ , then predict for species of interest.

Shape fluctuations

 Shape fluctuations and shape coexistence can be accessed via highorder correlations

Shape fluctuations

 Shape fluctuations and shape coexistence can be accessed via highorder correlations.

Shape fluctuations

Fluctuation in γ washes out difference between prolate and oblate, such that all results approach triaxial case

Neutron skin in high-energy collisions

PREX and CREX has tension with theory and previous exp. Indicate a larger L value.

 $\Delta r_{
m np,Pb} = 0.28 \pm 0.07 {
m fm}
onumber \ \Delta r_{
m np,Ca} = 0.14 \pm 0.03 {
m fm}$

• Access the difference of neutron skin by comparing 40Ca+40Ca and 48Ca+48Ca

We know:

w:
$$egin{aligned} &\sqrt{ig\langle r_{
m p}^2ig
angle}({}^{48}{
m Ca})=\sqrt{ig\langle r_{
m p}^2ig
angle}({}^{40}{
m Ca})\ &\sqrt{ig\langle r_{
m p}^2ig
angle}({}^{40}{
m Ca})pprox\sqrt{ig\langle r_{
m n}^2ig
angle}({}^{40}{
m Ca}) \end{aligned}$$

Hence :

$$egin{aligned} \Delta_{
m np}ig(^{48}{
m Ca}ig) & - \Delta_{
m np}ig(^{40}{
m Ca}ig) \simeq \Delta_{
m np}ig(^{48}{
m Ca}ig) \ & \propto ar{R}_0\Delta R_0 + 7/3\pi^2ar{a}\Delta a \end{aligned}$$

Directly peeling off the skin matter

Similar to low energy fragmentation reaction

 Spectator neutrons in ultra-central isobar collisions is enhanced by neutron skin

N.Kozyrev, I. Pshenichnov 2204.07189

L. Liu, J. Xu et.al 2203.09924

Complete separation between participant and spectator matter

Talk by Lumeng Liu

Summary

- Constrain QGP initial condition with nuclear structure input
 Improve the extraction of QGP properties in the Bayesian approaches
- Understanding how initial condition responds to nuclear structure, in turn probes novel nuclear structure properties and add to low-energy studies.
- Collisions of carefully-selected isobar species (at LHC) will help us to understand the many-body nucleon correlations of atomic nuclei from small to large system

work are needed to firm-up this science case

A	isobars	A	isobars	A	isobars	A	isobars	Α	isobars	A	isobars
36	Ar, S	80	Se, Kr	106	Pd, Cd	124	Sn, Te, Xe	148	Nd, Sm	174	Yb, Hf
40	Ca, Ar	84	Kr, Sr, Mo	108	Pd, Cd	126	Te, Xe	150	Nd, Sm	176	Yb, Lu, Hf
46	Ca, Ti	86	Kr, Sr	110	Pd, Cd	128	Te, Xe	152	Sm,Gd	180	Hf, W
48	Ca, Ti	87	Rb, Sr	112	Cd, Sn	130	Te, Xe, Ba	154	Sm,Gd	184	W, Os
50	$\mathrm{Ti},\mathrm{V},\mathrm{Cr}$	92	Zr, Nb, Mo	113	Cd, In	132	Xe, Ba	156	Gd,Dy	186	W, Os
54	Cr, Fe	94	Zr, Mo	114	Cd, Sn	134	Xe, Ba	158	Gd,Dy	187	Re, Os
64	Ni, Zn	96	Zr, Mo, Ru	115	In, Sn	136	Xe, Ba, Ce	160	Gd,Dy	190	Os, Pt
70	Zn, Ge	98	Mo, Ru	116	Cd, Sn	138	Ba, La, Ce	162	Dy,Er	192	Os, Pt
74	Ge, Se	100	Mo, Ru	120	Sn, Te	142	Ce, Nd	164	Dy,Er	196	Pt, Hg
76	Ge, Se	102	Ru, Pd	122	Sn, Te	144	Nd, Sm	168	Er,Yb	198	Pt, Hg
78	Se, Kr	104	Ru, Pd	123	Sb, Te	146	Nd, Sm	170	Er,Yb	204	Hg, Pb

TABLE I. Pairs and triplets of stable isobars (half-life > $10^8 y$). 141 nuclides are listed. The region marked in red contains large strongly-deformed nuclei ($\beta_2 > 0.2$). The region marked in blue corresponds to nuclides which may present an octupole deformation in their ground state [48].