Modified Villain formulation of abelian Chern-Simons theory

Theo Jacobson, University of Minnesota

work to appear

with Tin Sulejmanpasic

Ubiquity of (abelian) Chern-Simons theory

- \blacktriangleright most general abelian 2+1d topological order: $U(1)^K$ (Wen, Zee)
 - integer/fractional quantum hall effects
- chiral/parity anomaly
- level-rank/boson-fermion dualities

In the continuum, U(1) Chern-Simons theory is incredibly simple!

$$"S = \frac{ik}{4\pi} \int a \wedge da"$$

No nontrivial local operators, just topological Wilson lines

Naively a TQFT doesn't need a UV completion

Why discretize Chern-Simons theory?

Better understand subtleties of the continuum

- framing anomaly
- monopoles

literature dating back to late '80s missed interesting global aspects

level quantization

Establish exact boson/fermion dualities

- extend exact particle-vortex duality on the lattice
- existing lattice studies (e.g. $\psi \leftrightarrow XY + U(1)_1$) implements CS term with massive fermions (Chen, Son, Wang, Raghu '17, Chen, Zimet '18)

Interesting because it is not obvious it can be done

Continuum subtleties: framing

Ambiguous when i = j: self-linking requires point-splitting $\frac{\text{Polyakov '88}}{\text{Witten '89}}$

Natural to try to resolve on the lattice! But can it be done using a **local** action?

Lattice subtleties: extra zero modes

Long history of lattice CS/Maxwell-CS theories Lüscher '89, Müller '90,

Fröhlich + Marchetti '89. Eliezer + Semenoff '92

most constructions feature extra zero modes

Hamiltonian formulation

Euclidean formulation

▶ detrimental: cannot determine commutation relations

> But: can be lifted with a suitable choice of action

> > Eliezer, Semenoff '92

 generic for local, gauge-invariant, parity-odd action Berruto, Diamantini, Sodano '00 analogies with Nielson-Ninomiya

Lattice subtleties: monopoles

Older literature did not distinguish between U(1) and $\mathbb R$

$$\mathbb R$$
 gauge theory: $\frac{1}{2\pi}\int_{\Sigma}da=0$ $U(1)$ gauge theory: $\frac{1}{2\pi}\int_{\Sigma}da\in\mathbb Z$

conventional discretizations of U(1) gauge theory come with finite-action monopoles

monopoles are not gauge-invariant

This is problematic:

in the presence of a CS term!

Pisarski '86 Affleck, Harvey, Palla, Semenoff '89

Obstructions to lattice CS?

lssue	Resolution
Wilson loops require framing	Definition of lattice action requires a global 'framing' choice: Wilson loops are literally ribbons
Extra zero modes	Zero modes project out all unframed Wilson lines!
Lattice-scale monopoles spoil gauge-invariance	Systematically remove using 'modified Villain' formalism (Gattringer, Sulejmanpasic '19 (Gorantla, Lam, Seiberg, Shao '21)

Lattice preliminaries

 $\varphi_s, a_\ell, n_p =$ 0-, 1-, 2-forms, d = lattice exterior derivative

Villain formulation of U(1) gauge theory

algebra-valued link fields $a_\ell \in \mathbb{R}$

+ discrete plaquette fields $n_p \in \mathbb{Z}$

 $\left(\begin{array}{cc} \mbox{1-form gauge redundancy} \\ \mbox{makes a compact:} \\ U(1) = \mathbb{R}/2\pi\mathbb{Z} \end{array} \right) a_\ell \to a_\ell + (d\lambda)_\ell + 2\pi \, m_\ell, \ n_p \to n_p + (dm)_p, \\ \lambda \in \mathbb{R}, \ m_\ell \in \mathbb{Z} \end{array} \right)$

$$\frac{1}{2\pi} \int_{\Sigma} da \in \mathbb{Z} \implies \frac{1}{2\pi} \sum_{p \in \Sigma} \left[(da)_p - 2\pi n_p \right] = -\sum_{p \in \Sigma} n_p \in \mathbb{Z}$$

monopole:
$$(dn)_c \neq 0$$

Lattice building block: cup product

Naive action:
$$\frac{ik}{4\pi}\int a\wedge da \implies \frac{ik}{4\pi}\sum_{c}a\cup da$$
 & Fröhlich & Marchetti '89

 \cup = lattice analog of \wedge in de Rham cohomology:

 $\alpha^p \cup \beta^q = (\alpha \cup \beta)^{p+q} \,, \quad d(\alpha^p \cup \beta^q) = d\alpha^p \cup \beta^q + (-1)^p \, \alpha^p \cup d\beta^q$

(cup products break lattice rotational invariance)

New ingredient: higher cup products

Unlike \land product, \cup is not graded commutative

Instead: $\alpha \cup \beta = \beta \cup \alpha + d(\alpha \cup \beta) + d\alpha \cup \beta + \alpha \cup d\beta$

$$\alpha^p \cup_i \beta^q = (\alpha \cup_i \beta)^{p+q-i}$$

On simplicial complexes in algebraic topology (Steenrod, '47) On the **hypercubic** lattice only constructed recently (Chen, Tata '21)

Lattice action

Large gauge invariance and level quantization

$$S(a, n, \varphi) = \sum_{c} \frac{ik}{4\pi} a \cup da - \frac{ik}{2} (a \cup n + n \cup a) - \frac{ik}{2} a \cup_{1} dn + i\varphi \cup dn$$

$$\overset{\text{naive lattice}}{\underset{\text{action}}{\text{monopoles}}} \overset{\text{terms which ensure}}{\underset{\text{monopoles}}{\text{terms involving}}} \overset{\text{terms involving}}{\underset{\text{monopoles}}{\text{monopoles}}}$$

Large gauge transformation: $a \rightarrow a + 2\pi m, n \rightarrow n + dm$:

$$\delta S = -ik\pi \sum_{c} \left(m \cup dm + m \cup n + n \cup m + m \cup_{1} dn \right)$$

$$\in k\pi i \mathbb{Z}.$$

Level quantization: $k \in 2\mathbb{Z}$

(odd levels require more ingredients)

Electric charge of monopoles

$$\sum_{a} \frac{ik}{4\pi} a \cup da - \frac{ik}{2} (a \cup n + n \cup a) - \frac{ik}{2} a \cup_1 dn + i\varphi \cup dn$$

First two terms only invariant under $a \rightarrow a + d\lambda$ if dn = 0:

Modified Villain formulation: integrating out φ removes monopoles

 $\mathcal{M} = e^{i\varphi}$ is a monopole operator:

Keep φ explicitly if we assign it gauge charge: $\varphi \rightarrow \varphi - k\lambda$

 \Longrightarrow Monopole operators have electric charge k : $\mathcal{M} \to e^{-ik\lambda} \mathcal{M}$

Staggered symmetry and zero modes

Action is invariant under staggered shifts $a_\ell \rightarrow a_\ell + \epsilon_\ell$

'zero modes' noticed in the older literature

View as symmetry: which operators are charged? which are neutral?

Selection rules for Wilson loops

Start with an ordinary Wilson loop: $\langle W(C) \rangle = \int D[\text{fields}] e^{i \sum_{\ell \in C} a_{\ell}} e^{-S}$

Wilson loops of any size identically vanish: $\langle W(C) \rangle = 0$

acts like a gauge redundancy: projects out operators

Selection rules for Wilson loops

Insert a second Wilson loop slightly displaced:

Doubled Wilson loops are neutral and survive!

(these are the only operators that survive)

Wilson loops are ribbons

$$U(1)_k$$
 CS theory has \mathbb{Z}_k 1-form symmetry:
 $a \to a + \frac{2\pi}{k}\omega, \ d\omega = 0$ char
/W

Wilson lines are the charged operators $\langle W\rangle \to e^{\frac{2\pi i}{k}}\langle W\rangle$

Doubled Wilson loops have **twice** the minimal charge at long distances:

Wilson loops are ribbons

$$U(1)_k$$
 CS theory has \mathbb{Z}_k 1-form symmetry:
$$a\to a+\tfrac{2\pi}{k}\omega,\ d\omega=0$$

Wilson lines are the charged operators $\langle W \rangle \rightarrow e^{\frac{2\pi i}{k}} \langle W \rangle$

Minimal charge Wilson loops are ribbons: edges connected by a surface

Wilson loops are topological

Wilson lines are also the charge operators of the 1-form symmetry

 \Leftrightarrow

2-form background gauge field for 1-form symmetry: $B = \delta[\tilde{C}]$ Topological, framed Wilson loop on curve \tilde{C}

background gauge transformations $B \rightarrow B + dV \label{eq:background}$

 \Leftrightarrow deformations of loop \tilde{C}

't Hooft anomaly

 \Leftrightarrow

Under background gauge transformations $B \rightarrow B + dV$

partition function transforms with phase

Wilson loops \tilde{C} can be deformed **up to** phases

$$\langle \widehat{W}(\widetilde{C})\widehat{W}(\widetilde{C}')\rangle = e^{\frac{2\pi i}{k}} \langle \widehat{W}(\widetilde{C})\rangle \langle \widehat{W}(\widetilde{C}')\rangle$$

familiar linking relation

Topological spin

We can identify twisted Wilson loops by their anomalous phase:

'Topological spin' $s = \frac{1}{2k}$ determined by self-linking number

Definition via 4d θ term

$$S_{\theta} = \sum_{h} \frac{i\theta}{8\pi^2} (da - 2\pi n) \cup (da - 2\pi n) \quad \leftarrow \text{ naive lattice version} \\ -\frac{i\theta}{4\pi} (da - 2\pi n) \cup_1 dn + \frac{i\theta}{2\pi} a \cup dn + ib \cup dn$$

b = magnetic gauge field = Lagrange multiplier removing monopoles

Witten effect:
$$b \rightarrow b - \frac{\theta}{2\pi}(d\lambda + 2\pi m)$$

Action *density* is gauge-invariant \implies can consider a lattice X with boundary

$$S_{\theta=2\pi k}(a,n,b=d\varphi)\Big|_{X} = S_{\mathsf{CS}}(a,n,\varphi)\Big|_{\partial X}$$

 φ is a dyonic

Higgs field

w/ fixed bulk lattice $X \simeq T^2 \times D$ we must condense dyons in the bulk to reproduce all fluxes on boundary

Anomaly inflow

4d θ term with $\theta = 2\pi k$ is a SPT phase protected by 1-form symmetry

Partition function is = 1 on a closed manifold without background fields, but:

$$S_{\theta=2\pi k}(B) = \frac{2\pi i}{2k} \sum_{h} B \cup B + B \cup_1 dB = \frac{2\pi i}{2k} \sum_{h} \mathcal{P}(B)$$

 \mathcal{P} = 'Pontryagin square' maps $H^2(M, \mathbb{Z}_k) \times H^2(M, \mathbb{Z}_k) \to H^4(M, \mathbb{Z}_{2k})$

Provides anomaly inflow for 't Hooft anomaly for 1-form symmetry

Summary:

We discretized $U(1)_k$ ($k \in 2\mathbb{Z}$) CS theory on a cubic spacetime lattice with global structure manifest:

- small/large gauge invariance and level quantization
- explicit monopole operators with electric charge
- \mathbb{Z}_k 1-form symmetry and 't Hooft anomaly
- framing of Wilson loops: natural observables are ribbons!

(bonus: new form of lattice theta term)

Future directions/questions

Villain Hamiltonians for CS and 4d θ term

incorporate Villain variables into Eliezer-Semenoff construction

formulate odd \boldsymbol{k} theory

requires explicit spin structure dependence

apply to axion-Maxwell theory

edge modes on lattice with boundary

 $\chi F \wedge F$

non-invertible defects using CS construction?

gravitational anomaly?

compare partition function with different choices of cup products

Monopole operators

