Modified Villain formulation of abelian Chern-Simons theory

Theo Jacobson, University of Minnesota

work to appear
with Tin Sulejmanpasic

Ubiquity of (abelian) Chern-Simons theory

- most general abelian 2+1d topological order: $U(1)^{K}$ (Wen, Zee)
- integer/fractional quantum hall effects
- chiral/parity anomaly
- level-rank/boson-fermion dualities

In the continuum, $U(1)$ Chern-Simons theory is incredibly simple!

$$
" S=\frac{i k}{4 \pi} \int a \wedge d a "
$$

No nontrivial local operators, just topological Wilson lines
Naively a TQFT doesn't need a UV completion

Why discretize Chern-Simons theory?

Better understand subtleties of the continuum

- framing anomaly
- monopoles
literature dating back to late '80s missed interesting global aspects
- level quantization

Establish exact boson/fermion dualities

- extend exact particle-vortex duality on the lattice
- existing lattice studies (e.g. $\left.\psi \leftrightarrow X Y+U(1)_{1}\right)$ implements CS term with massive fermions
(Chen, Son, Wang, Raghu '17, Chen, Zimet '18)

Interesting because it is not obvious it can be done

Continuum subtleties: framing

$\left\langle W\left(C_{1}\right) W\left(C_{2}\right)\right\rangle=\exp \left[\frac{2 \pi i}{2 k} \sum_{i, j=1,2} \Phi\left(C_{i}, C_{j}\right)\right]$

Ambiguous when $i=j$: self-linking requires point-splitting Polyakov, '88 $\begin{gathered}\text { Witten ' } 89\end{gathered}$

Natural to try to resolve on the lattice! But can it be done using a local action?

Lattice subtleties: extra zero modes

- most constructions feature extra zero modes

Hamiltonian formulation

- detrimental: cannot determine commutation relations

Euclidean formulation

- generic for local, gauge-invariant, parity-odd action

Berruto, Diamantini, Sodano '00
analogies with Nielson-Ninomiya

But: can be lifted with a
suitable choice of action
Eliezer, Semenoff '92

Lattice subtleties: monopoles

Older literature did not distinguish between $U(1)$ and \mathbb{R}
\mathbb{R} gauge theory: $\frac{1}{2 \pi} \int_{\Sigma} d a=0 \quad U(1)$ gauge theory: $\frac{1}{2 \pi} \int_{\Sigma} d a \in \mathbb{Z}$
if Σ contractible, indicates the presence of a monopole

conventional discretizations of $U(1)$ gauge theory
come with finite-action monopoles
monopoles are not gauge-invariant
This is problematic: in the presence of a CS term!

Obstructions to lattice CS?

Issue	Resolution
Wilson loops require framing	Definition of lattice action requires a global 'framing' choice: Wilson loops are literally ribbons
Extra zero modes	Zero modes project out all unframed Wilson lines!
Lattice-scale monopoles spoil	Systematically remove using 'modified Villain' formalism gauge-invariance
Gattringer, Sulejmannasic '19 Gorantla, Lam, Seiberg, Shao '21)	

Lattice preliminaries

$$
\varphi_{s}, a_{\ell}, n_{p}=0-, 1 \text {-, 2-forms, } \quad d=\text { lattice exterior derivative }
$$

Villain formulation of $U(1)$ gauge theory

algebra-valued link fields $a_{\ell} \in \mathbb{R}$

+ discrete plaquette fields $n_{p} \in \mathbb{Z}$

1-form gauge redundancy makes a compact:

$$
\begin{gathered}
a_{\ell} \rightarrow a_{\ell}+(d \lambda)_{\ell}+2 \pi m_{\ell}, n_{p} \rightarrow n_{p}+(d m)_{p} \\
\lambda \in \mathbb{R}, m_{\ell} \in \mathbb{Z}
\end{gathered}
$$

$$
U(1)=\mathbb{R} / 2 \pi \mathbb{Z}
$$

$$
\frac{1}{2 \pi} \int_{\Sigma} d a \in \mathbb{Z} \Longrightarrow \frac{1}{2 \pi} \sum_{p \in \Sigma}\left[(d a)_{p}-2 \pi n_{p}\right]=-\sum_{p \in \Sigma} n_{p} \in \mathbb{Z}
$$

monopole:

$$
(d n)_{c} \neq 0
$$

Lattice building block: cup product

$$
\text { Naive action: } \frac{i k}{4 \pi} \int a \wedge d a \Longrightarrow \frac{i k}{4 \pi} \sum_{c} a \cup d a \quad \begin{gathered}
\text { Fröhlich } \\
\text { \& Marchetti '89 }
\end{gathered}
$$

$$
\begin{gathered}
\cup=\text { lattice analog of } \wedge \text { in de Rham cohomology: } \\
\alpha^{p} \cup \beta^{q}=(\alpha \cup \beta)^{p+q}, \quad d\left(\alpha^{p} \cup \beta^{q}\right)=d \alpha^{p} \cup \beta^{q}+(-1)^{p} \alpha^{p} \cup d \beta^{q}
\end{gathered}
$$

(cup products break lattice rotational invariance)

New ingredient: higher cup products

Unlike \wedge product, \cup is not graded commutative Instead: $\quad \alpha \cup \beta=\beta \cup \alpha+d\left(\alpha \cup_{1} \beta\right)+d \alpha \cup_{1} \beta+\alpha \cup_{1} d \beta$

$$
\alpha^{p} \cup_{i} \beta^{q}=\left(\alpha \cup_{i} \beta\right)^{p+q-i}
$$

On simplicial complexes in algebraic topology (Steenrod, '47)
On the hypercubic lattice only constructed recently (Chen, Tata '21)

Lattice action

$$
S(a, n, \varphi)=\sum_{c} \frac{i k}{4 \pi} a \cup d a-\frac{i k}{2}(a \cup n+n \cup a)-\frac{i k}{2} a \cup \cup_{1} d n+i \varphi \cup d n
$$

Large gauge invariance and level quantization

$$
S(a, n, \varphi)=\sum_{c} \frac{i k}{\begin{array}{c}
\pi \\
\text { naive } \\
\text { natticice } \\
\text { action }
\end{array}} a \cup d a-\frac{i k}{2}(a \cup n+n \cup a)-\frac{i k}{2} a \cup_{1} \text { terms which ensure } d n+i \varphi \cup d n
$$

Large gauge transformation: $a \rightarrow a+2 \pi m, n \rightarrow n+d m$:

$$
\begin{aligned}
& \delta S=-i k \pi \sum_{c}(m \cup d m\left.+m \cup n+n \cup m+m \cup_{1} d n\right) \\
& \in k \pi i \mathbb{Z}
\end{aligned}
$$

Level quantization: $k \in 2 \mathbb{Z}$
(odd levels require more ingredients)

Electric charge of monopoles

$$
\sum_{c} \frac{i k}{4 \pi} a \cup d a-\frac{i k}{2}(a \cup n+n \cup a)-\frac{i k}{2} a \cup_{1} d n+i \varphi \cup d n
$$

First two terms only invariant under $a \rightarrow a+d \lambda$ if $d n=0$:
Modified Villain formulation: integrating out φ removes monopoles

Keep φ explicitly if we assign it gauge charge: $\varphi \rightarrow \varphi-k \lambda$
\Longrightarrow Monopole operators have electric charge k :

$$
\mathcal{M} \rightarrow e^{-i k \lambda} \mathcal{M}
$$

Staggered symmetry and zero modes

Action is invariant under staggered shifts $a_{\ell} \rightarrow a_{\ell}+\epsilon_{\ell}$

'zero modes' noticed in the older literature
View as symmetry: which operators are charged? which are neutral?

Selection rules for Wilson loops

Start with an ordinary Wilson loop: $\langle W(C)\rangle=\int D[$ fields $] e^{i \sum_{\ell \in C} a_{\ell}} e^{-S}$
choose staggered shift to cross C

Wilson loops of any size identically vanish: $\langle W(C)\rangle=0$
acts like a gauge redundancy: projects out operators

Selection rules for Wilson loops

Insert a second Wilson loop slightly displaced:

Doubled Wilson loops are neutral and survive!
(these are the only operators that survive)

Wilson loops are ribbons

$$
U(1)_{k} \mathrm{CS} \text { theory has } \mathbb{Z}_{k} 1 \text {-form symmetry: }
$$

$$
a \rightarrow a+\frac{2 \pi}{k} \omega, d \omega=0
$$

Wilson lines are the charged operators

$$
\langle W\rangle \rightarrow e^{\frac{2 \pi i}{k}}\langle W\rangle
$$

Doubled Wilson loops have twice the minimal charge at long distances:

Wilson loops are ribbons

$U(1)_{k} \mathrm{CS}$ theory has $\mathbb{Z}_{k} 1$-form symmetry:

$$
a \rightarrow a+\frac{2 \pi}{k} \omega, d \omega=0
$$

Wilson lines are the charged operators

$$
\langle W\rangle \rightarrow e^{\frac{2 \pi i}{k}}\langle W\rangle
$$

Minimal charge Wilson loops are ribbons: edges connected by a surface

\cup_{1} product is crucial:

$$
\begin{aligned}
\widehat{W}(\tilde{C}) & =\exp \left(\frac{i}{2} \sum_{c} a \cup \delta[\tilde{C}]\right) \\
& \times \exp \left(\frac{i}{2} \sum_{c} \delta[\tilde{C}] \cup a\right) \\
& \times \exp \left(i \pi \sum_{c} \delta[\tilde{C}] \cup_{1} n\right)
\end{aligned}
$$

Wilson loops are topological

Wilson lines are also the charge operators of the 1-form symmetry

2-form background gauge field
for 1-form symmetry: $B=\delta[\tilde{C}]$

Topological, framed
$\Leftrightarrow \quad$ Wilson loop on curve \tilde{C}

$$
B=\delta[\tilde{C}]
$$

background gauge transformations

$$
B \rightarrow B+d V
$$

$\Leftrightarrow \quad$ deformations of loop \tilde{C}

't Hooft anomaly

Under background gauge transformations

$$
B \rightarrow B+d V
$$

partition function transforms with phase

$$
\left\langle\widehat{W}(\tilde{C}) \widehat{W}\left(\tilde{C}^{\prime}\right)\right\rangle=e^{\frac{2 \pi i}{\epsilon}}\langle\widehat{W}(\tilde{C})\rangle\left\langle\widehat{W}\left(\tilde{C}^{\prime}\right)\right\rangle
$$

Topological spin

We can identify twisted Wilson loops by their anomalous phase:

'Topological spin' $s=\frac{1}{2 k}$ determined by self-linking number

Definition via 4d θ term

$$
\begin{aligned}
S_{\theta}=\sum_{h} \frac{i \theta}{8 \pi^{2}}(d a-2 \pi n) \cup(d a-2 \pi n) \quad \leftarrow \text { naive lattice version } \\
\text { of } F \wedge F
\end{aligned}
$$

$b=$ magnetic gauge field $=$ Lagrange multiplier removing monopoles

$$
\text { Witten effect: } b \rightarrow b-\frac{\theta}{2 \pi}(d \lambda+2 \pi m)
$$

Action density is gauge-invariant \Longrightarrow can consider a lattice X with boundary

$$
\left.S_{\theta=2 \pi k}(a, n, b=d \varphi)\right|_{X}=\left.S_{\mathrm{CS}}(a, n, \varphi)\right|_{\partial X}
$$

$$
\begin{aligned}
& \varphi \text { is a dyonic } \\
& \text { Higgs field }
\end{aligned}
$$

w/ fixed bulk lattice $X \simeq T^{2} \times D$ we must condense dyons in the bulk to reproduce all fluxes on boundary

Anomaly inflow

4d θ term with $\theta=2 \pi k$ is a SPT phase protected by 1-form symmetry
Partition function is $=1$ on a closed manifold without background fields, but:

$$
\begin{gathered}
S_{\theta=2 \pi k}(B)=\frac{2 \pi i}{2 k} \sum_{h} B \cup B+B \cup_{1} d B=\frac{2 \pi i}{2 k} \sum_{h} \mathcal{P}(B) \\
\mathcal{P}=\text { 'Pontryagin square' maps } H^{2}\left(M, \mathbb{Z}_{k}\right) \times H^{2}\left(M, \mathbb{Z}_{k}\right) \rightarrow H^{4}\left(M, \mathbb{Z}_{2 k}\right)
\end{gathered}
$$

Provides anomaly inflow for 't Hooft anomaly for 1-form symmetry

Summary:

We discretized $U(1)_{k}(k \in 2 \mathbb{Z})$ CS theory on a cubic spacetime lattice with global structure manifest:

- small/large gauge invariance and level quantization
- explicit monopole operators with electric charge
- \mathbb{Z}_{k} 1-form symmetry and 't Hooft anomaly
- framing of Wilson loops: natural observables are ribbons!
(bonus: new form of lattice theta term)

Future directions/questions

Villain Hamiltonians for CS
and $4 \mathrm{~d} \theta$ term
incorporate Villain variables
into Eliezer-Semenoff construction
formulate odd k theory
requires explicit spin structure dependence
apply to axion-Maxwell theory
edge modes on lattice with boundary

$$
\chi F \wedge F
$$

non-invertible defects using CS construction?
gravitational anomaly?
compare partition function with different choices of cup products

Monopole operators

