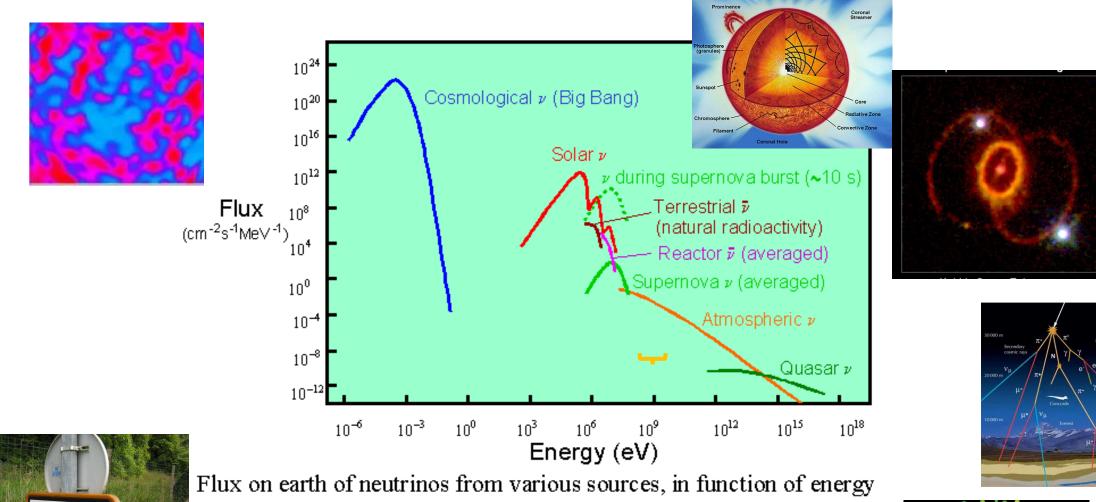
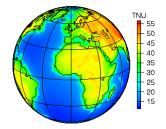


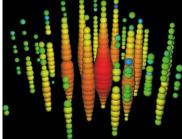
Elastic and Inelastic neutrino-nucleus scattering in

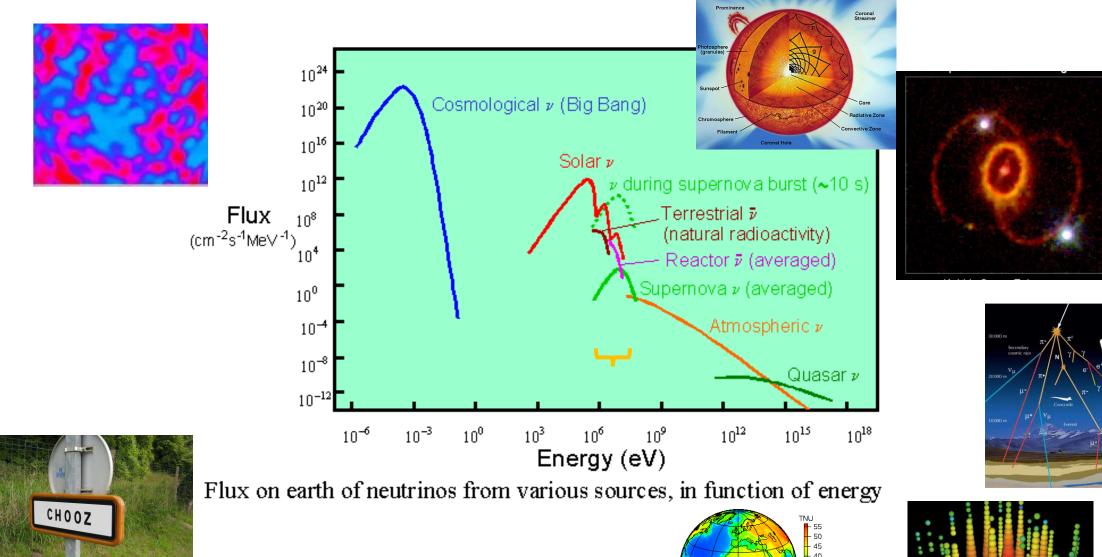
the 10s of MeV energy range

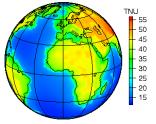
Natalie Jachowicz, K. Niewczas, A. Nikolakopoulos, V. Pandey, P. Vancraeyveld, N. Van Dessel, K. Vantournhout

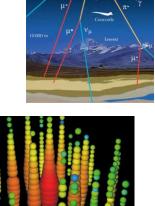


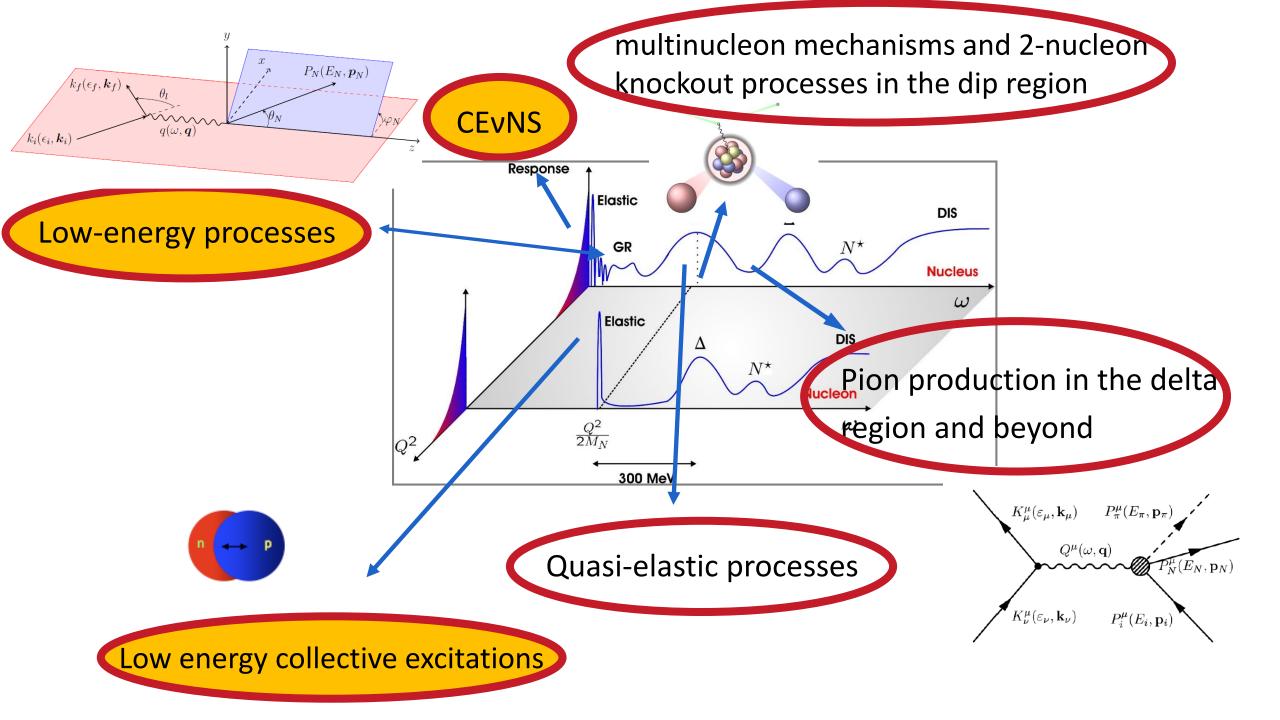












What can we learn from low energy neutrinos ?

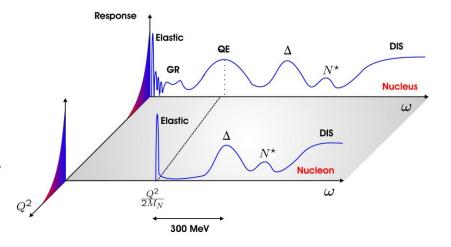
- Nuclear structure information
- Electroweak tests
- Neutrino oscillations
- Astrophysical neutrinos : a.o. core-collapse supernovae
- Neutrinonucleosynthesis
- BSM physics

How can we learn from these neutrinos?

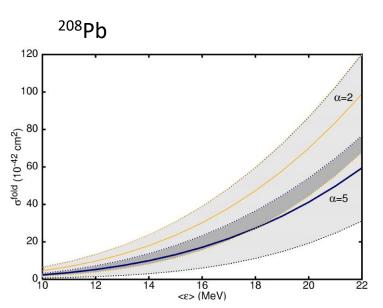
- Study their interactions : theory + experiment
- Detect them
 - Neutrino-electron scattering
 - Neutrino-hadron scattering

Neutrino-hadron scattering ?

- •little experimental data is available
 - small cross sections
 - (almost) no monochromatic neutrino beams



	$B(GT^{-})$
HF+CRPA	8.8
GXPF1J	9.5
DD-ME2	11.3
SGII	12.3
SLy5	14.0
Exp.	9.9 ± 2.5



<u>Uncertainties</u> :

- one has to rely on theoretical predictions,
- uncertainties induced by model dependence
- and more fundamental uncertainties ...

N.J. et al, PRC66, 065501 (2002) ; E. Kolbe et al, PRC63, 025802 (2001) ; J. Engel et al, PRD67, 013005 (2001)

TABLE II. The total $^{56}{\rm Fe}$ B(GT $^-)$ strength, tabulated for various models from Ref. $[\underline{36}].$

	$\langle \sigma_{DAR} \rangle ~(10^{-42} {\rm cm}^2)$
HF+CRPA	212.9
G–Matrix QRPA 35	173.5
Phenomenological [47]	214
Hybrid 29	240
Hybrid 36	259
RHB+RQRPA 36	263
LFG+RPA 38	277
QRPA <u>64</u>	352
Exp. (KARMEN) 30	$256\pm108\pm43$

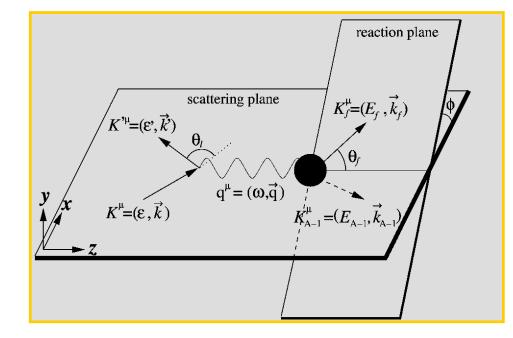
TABLE I. The total charged–current (ν_e , ⁵⁶Fe) cross section value, folded with a DAR electron neutrino spectrum, tabulated for various models.

INT Seattle, April 17 2023

Modeling low-energy inelastic neutrino-nucleus scattering

$$\frac{d^2\sigma}{d\Omega\,d\omega} = (2\pi)^4 \, k_f \varepsilon_f \, \sum_{s_f, s_i} \, \frac{1}{2J_i + 1} \, \sum_{M_f, M_i} \, \left| \left\langle f \left| \hat{H}_W \right| i \right\rangle \right|^2$$

$$\widehat{H}_{W} = \frac{G}{\sqrt{2}} \int d\vec{x} \, \hat{j}_{\mu,lepton}(\vec{x}) \, \hat{j}^{\mu,hadron}(\vec{x})$$



Hadron current

$$J^{\mu} = F_1(Q^2)\gamma^{\mu} + i\frac{\kappa}{2M_N}F_2(Q^2)\sigma^{\mu\nu}q_{\nu} + G_A(Q^2)\gamma^{\mu}\gamma_5 + \frac{1}{2M_N}G_P(Q^2)q^{\mu}\gamma_5$$

Lepton tensor

$$l_{\alpha\beta} \equiv \sum_{s,s'} [\overline{u}_l \gamma_\alpha (1-\gamma_5) u_l]^{\dagger} [\overline{u}_\nu \gamma_\beta (1-\gamma_5) u_\nu]$$

$$\begin{split} \vec{J}_{V}^{\alpha}\left(\vec{x}\right) &= \vec{J}_{convection}^{\alpha}\left(\vec{x}\right) + \vec{J}_{magnetization}^{\alpha}\left(\vec{x}\right) \\ \text{with} & \vec{J}_{c}^{\alpha}\left(\vec{x}\right) = \frac{1}{2Mi} \sum_{i=1}^{A} G_{E}^{i,\alpha} \left[\delta\left(\vec{x} - \vec{x}_{i}\right) \overrightarrow{\nabla}_{i} - \overleftarrow{\nabla}_{i} \delta\left(\vec{x} - \vec{x}_{i}\right)\right], \\ \vec{J}_{m}^{\alpha}\left(\vec{x}\right) &= \frac{1}{2M} \sum_{i=1}^{A} G_{M}^{i,\alpha} \overrightarrow{\nabla} \times \vec{\sigma}_{i} \delta\left(\vec{x} - \vec{x}_{i}\right), \\ \vec{J}_{A}^{\alpha}\left(\vec{x}\right) &= \sum_{i=1}^{A} G_{A}^{i,\alpha} \vec{\sigma}_{i} \delta\left(\vec{x} - \vec{x}_{i}\right), \\ J_{V}^{0,\alpha}\left(\vec{x}\right) &= \rho_{V}^{\alpha}\left(\vec{x}\right) &= \sum_{i=1}^{A} G_{E}^{i,\alpha} \delta\left(\vec{x} - \vec{x}_{i}\right), \\ J_{A}^{0,\alpha}\left(\vec{x}\right) &= \rho_{A}^{\alpha}\left(\vec{x}\right) &= \frac{1}{2Mi} \sum_{i=1}^{A} G_{A}^{i,\alpha} \vec{\sigma}_{i} \cdot \left[\delta\left(\vec{x} - \vec{x}_{i}\right) \overrightarrow{\nabla}_{i} - \overleftarrow{\nabla}_{i} \delta\left(\vec{x} - \vec{x}_{i}\right)\right] \\ J_{P}^{0,\alpha}\left(\vec{x}\right) &= \rho_{P}^{\alpha}\left(\vec{x}\right) &= \frac{m_{\mu}}{2M} \sum_{i=1}^{A} G_{P}^{i,\alpha} \vec{\nabla} \cdot \vec{\sigma}_{i} \delta\left(\vec{x} - \vec{x}_{i}\right) \end{split}$$

for NC reactions

$$G_E^{V,o} = \left(\frac{1}{2} - \sin^2 \theta_W\right) \tau_3 - \sin^2 \theta_W,$$

$$G_M^{V,o} = \left(\frac{1}{2} - \sin^2 \theta_W\right) (\mu_p - \mu_n) \tau_3 - \sin^2 \theta_W (\mu_p + \mu_n)$$

$$G^{A,0} = g_a \frac{\tau_3}{2} = -\frac{1.262}{2} \tau_3$$

for CC reactions

$$\begin{array}{rcl}
G_E^{V,\pm} &=& \tau_{\pm} \\
G_M^{V,\pm} &=& (\mu_p - \mu_n) \ \tau_{\pm} \\
G^{A,\pm} &=& g_a \ \tau_{\pm} = -1.262 \ \tau_{\pm}
\end{array}$$

 $G = (1 + Q^2/M^2)^{-2}$ Q² dependence : dipole or BBBA parametrization :

$$\left(\frac{d^2\sigma}{d\omega d\Omega}\right)_{\nu} = \frac{G_F^2 \cos^2\theta_c}{(4\pi)^2} \left(\frac{2}{2J_i+1}\right) \varepsilon_f \kappa_f \left(\zeta^2 \left(Z',\varepsilon_f,|q|\right)\right) \left[\sum_{J=0}^{\infty} \sigma_{CL,\nu}^J + \sum_{J=1}^{\infty} \sigma_{T,\nu}^J\right]$$

$$\sigma_{CL,\nu}^J = \left[v_{\nu}^{\mathcal{M}} R_{\nu}^{\mathcal{M}} + v_{\nu}^{\mathcal{L}} R_{\nu}^{\mathcal{L}} + 2 v_{\nu}^{\mathcal{ML}} R_{\nu}^{\mathcal{ML}} \right],$$

$$\sigma_{T,\nu}^{J} = \left[v_{\nu}^{T} R_{\nu}^{T} \pm 2 \ v_{\nu}^{TT} R_{\nu}^{TT} \right],$$

$$\begin{pmatrix} \frac{d^2\sigma}{d\omega d\Omega} \end{pmatrix}_{\nu} = \frac{G_{F}^2 \cos^2 \theta_c}{(4\pi)^2} \left(\frac{2}{2J_i + 1} \right) \varepsilon_f \kappa \zeta^2 \left(Z', \varepsilon_f, |q| \right) \left[\sum_{J=0}^{\infty} \sigma_{CL,\nu}^J + \sum_{J=1}^{\infty} \sigma_{T,\nu}^J \right]$$

$$v_{\nu}^{\mathcal{M}} = \left[1 + \frac{\kappa_f}{\varepsilon_f} \cos \theta - \frac{2\varepsilon_i \varepsilon_f}{|\vec{q}|^2} \left(\frac{\kappa_f}{\varepsilon_f} \right)^2 \sin^2 \theta \right],$$

$$v_{\nu}^{\mathcal{M}\mathcal{L}} = \left[\frac{\omega}{|\vec{q}|} \left(1 + \frac{\kappa_f}{\varepsilon_f} \cos \theta \right) + \frac{m_i^2}{\varepsilon_f |\vec{q}|} \right],$$

$$v_{\nu}^{\mathcal{M}\mathcal{L}} = \left[\frac{\omega}{|\vec{q}|} \left(1 + \frac{\kappa_f}{\varepsilon_f} \cos \theta \right) + \frac{m_i^2}{\varepsilon_f |\vec{q}|} \right],$$

$$v_{\nu}^{\mathcal{T}} = \left[1 - \frac{\kappa_f}{\varepsilon_f} \cos \theta + \frac{\varepsilon_i \varepsilon_f}{|\vec{q}|^2} \left(\frac{\kappa_f}{\varepsilon_f} \right)^2 \sin^2 \theta \right],$$

$$v_{\nu}^{TT} = \left[\frac{\varepsilon_i + \varepsilon_f}{|\vec{q}|} \left(1 - \frac{\kappa_f}{\varepsilon_f} \cos \theta \right) - \frac{m_i^2}{\varepsilon_f |\vec{q}|} \right],$$

$$R_{\nu}^{TT} = \left[\frac{\varepsilon_i + \varepsilon_f}{|\vec{q}|} \left(1 - \frac{\kappa_f}{\varepsilon_f} \cos \theta \right) - \frac{m_i^2}{\varepsilon_f |\vec{q}|} \right],$$

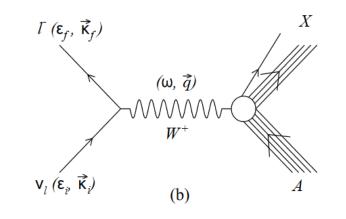
$$R_{\nu}^{TT} = \left[\frac{\varepsilon_i + \varepsilon_f}{|\vec{q}|} \left(1 - \frac{\kappa_f}{\varepsilon_f} \cos \theta \right) - \frac{m_i^2}{\varepsilon_f |\vec{q}|} \right],$$

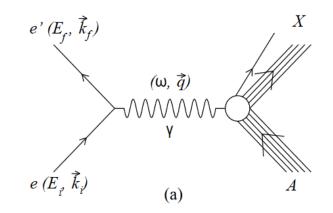
$$\widehat{\mathcal{M}}_{JM}(\kappa) = \int dec{x} \left[j_J \; (\kappa r) \; Y^M_J \; (\Omega_x)
ight] \; \hat{J}_0(ec{x}) \; \; ,$$

$$\widehat{\mathcal{L}}_{JM}(\kappa) = \frac{i}{\kappa} \int d\vec{x} \left[\vec{\nabla} \left(j_J \left(\kappa r \right) Y_J^M \left(\Omega_x \right) \right) \right] \cdot \hat{\vec{J}}(\vec{x}) ,$$

$$\widehat{\mathcal{J}}_{JM}^{el}(\kappa) = \frac{1}{\kappa} \int d\vec{x} \left[\vec{\nabla} \times \left(j_J \left(\kappa r \right) \, \vec{\mathcal{Y}}_{J,J}^M \left(\Omega_x \right) \right) \right] \cdot \hat{\vec{J}}(\vec{x}) \ ,$$

$$\widehat{\mathcal{J}}_{JM}^{mag}(\kappa) = \int d\vec{x} \left[j_J (\kappa r) \ \vec{\mathcal{Y}}_{J,J}^M (\Omega_x) \right] \cdot \widehat{\vec{J}}(\vec{x}) \ .$$





$$\widehat{\mathcal{M}}_{JM}(\kappa) = \int d\vec{x} \left[j_J \left(\kappa r \right) Y_J^M \left(\Omega_x \right) \right] \ \hat{J}_0(\vec{x}) \ ,$$

$$\widehat{\mathcal{L}}_{JM}(\kappa) = \frac{i}{\kappa} \int d\vec{x} \left[\vec{\nabla} \left(j_J \left(\kappa r \right) \, Y_J^M \left(\Omega_x \right) \right) \right] + \widehat{\vec{J}}(\vec{x}) \quad ,$$

$$\widehat{\mathcal{J}}_{JM}^{el}(\kappa) = \frac{1}{\kappa} \int d\vec{x} \left[\vec{\nabla} \times \left(j_J \left(\kappa r \right) \, \vec{\mathcal{Y}}_{J,J}^M \left(\Omega_x \right) \right) \right] + \widehat{\vec{J}}(\vec{x}) \ ,$$

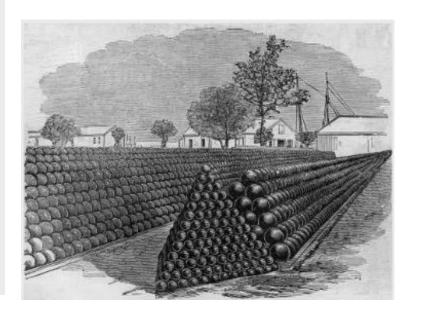
$$\widehat{\mathcal{J}}_{JM}^{mag}(\kappa) = \int d\vec{x} \left[j_J \; (\kappa r) \; \vec{\mathcal{Y}}_{J,J}^M \; (\Omega_x) \right] \; \cdot \; \widehat{\vec{J}}(\vec{x}) \; \; .$$

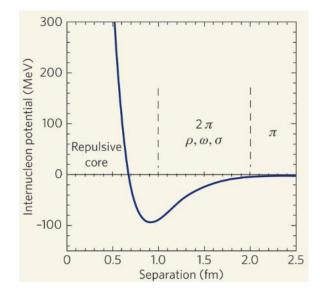
$$\begin{split} \langle a||\widehat{\mathcal{M}}_{J}^{Coul}\left[\widehat{\rho}_{V}\right]||b\rangle &= G_{E}(Q^{2}) \int \mathrm{d}r \ \langle a||\tau_{\pm}j_{J}(qr)Y_{J}(\Omega_{1})||b\rangle_{r} \\ \langle a||\widehat{\mathcal{M}}_{J}^{Coul}\left[\widehat{\rho}_{A}\right]||b\rangle &= \frac{G_{A}(Q^{2})}{2m_{N}i} \int \mathrm{d}r \ \langle a||\tau_{\pm}j_{J}(qr)Y_{J}(\Omega_{1}) \ \sigma_{1} \cdot \left(\overrightarrow{\nabla}_{1} - \overleftarrow{\nabla}_{1}\right)||b\rangle_{r} \\ \langle a||\widehat{\mathcal{O}}_{J}^{\lambda}\left[\widehat{J}_{conv}\right]||b\rangle &= \frac{G_{E}(Q^{2})}{2m_{N}i} \int \mathrm{d}r \ \langle a||\tau_{\pm}j_{J+\lambda}(qr) \\ &\times \left[Y_{J+\lambda}(\Omega_{1}) \otimes \left(\overrightarrow{\nabla}_{1} - \overleftarrow{\nabla}_{1}\right)\right]_{J}||b\rangle_{r} \\ \langle a||\widehat{\mathcal{O}}_{J}^{\lambda}\left[\widehat{J}_{magn}\right]||b\rangle &= i\sqrt{6}q\frac{G_{M}(Q^{2})}{2m_{N}} \int \mathrm{d}r \ \sum_{\eta=\pm 1}\sqrt{J+\lambda+\delta_{\eta,+1}} \\ &\times \begin{cases} J \ J+\lambda \ 1 \ J+\lambda+\eta \end{cases} \end{split}$$

 $\times \langle a || \tau_{\pm} j_{J+\lambda+\eta}(qr) \left[Y_{J+\lambda+\eta}(\Omega_{1}) \otimes \boldsymbol{\sigma}_{1} \right]_{J} || b \rangle_{r}$ $\langle a || \widehat{\mathcal{O}}_{J}^{\lambda} \left[\widehat{J}_{A} \right] || b \rangle = G_{A}(Q^{2}) \int \mathrm{d}r \, \langle a || \tau_{\pm} j_{J+\lambda}(qr) \left[Y_{J+\lambda}(\Omega_{1}) \otimes \boldsymbol{\sigma}_{1} \right]_{J} || b \rangle_{r}$

A model for the nucleus

- Nuclear radius $pprox 1.2A^{rac{1}{3}}$ fm
- Nucleon is a diffuse system
 - Hard core (repulsion) \approx 0.5 fm
 - RMS charge radius from (e,e') = 0.897(18) fm
- $\blacktriangleright~0.07 \lesssim \text{NPF} \lesssim 0.42$
 - closest packing fraction of spheres pprox 0.74
 - packing fraction of Argon liquid pprox 0.032
 - \blacksquare packing fraction of Argon gas $pprox 3.75\cdot 10^{-5}$
- The nuclear medium is a rather dense quantum liquid





C. Colle, PhD, UGent 2017

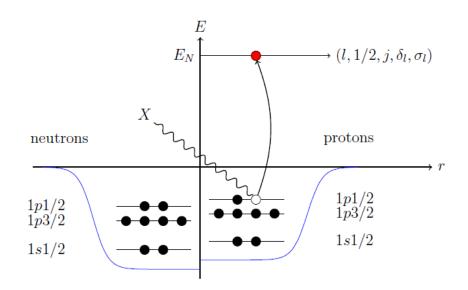
Packing fraction ~0.012

 → Identify the right degrees of freedom and main effects for each kinematic region
 → Identify the relevant corrections, correlations to be taken into account

INT Seattle, April 17 2023

N Jachowicz

A model for the nucleus

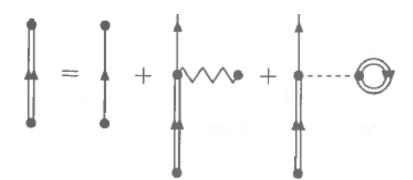


- •Starting point : mean-field nucleus with Hartree-Fock single-particle wave functions
- •Skyrme SkE2 force used to build the potential
- Pauli blocking
- binding

Hartree-Fock mean field

$$G^{HF}(\alpha,\beta;E) = G^{(0)}(\alpha,\beta;E) + \sum_{\gamma,\delta} G^{(0)}(\alpha,\gamma;E) \Sigma^{HF}(\gamma,\delta) G^{HF}(\delta,\beta;E)$$

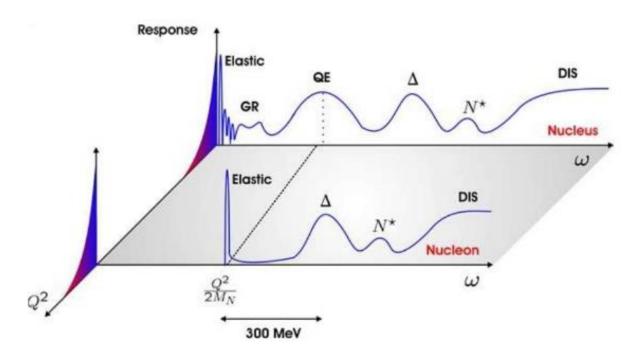
- Mean field already contains correlations !
- Nucleons feel the presence of the others through the averaged field

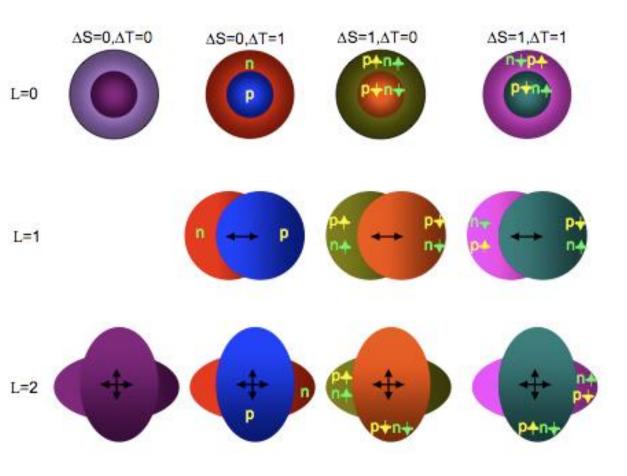


$$\Sigma^{HF}(\gamma, \delta; E) = -\langle \gamma | U | \delta \rangle - i \int \frac{dE'}{2\pi} \sum_{\mu\nu} \langle \gamma \mu | V | \delta \nu \rangle G^{HF}(\nu\mu; E')$$

Long-range RPA correlations

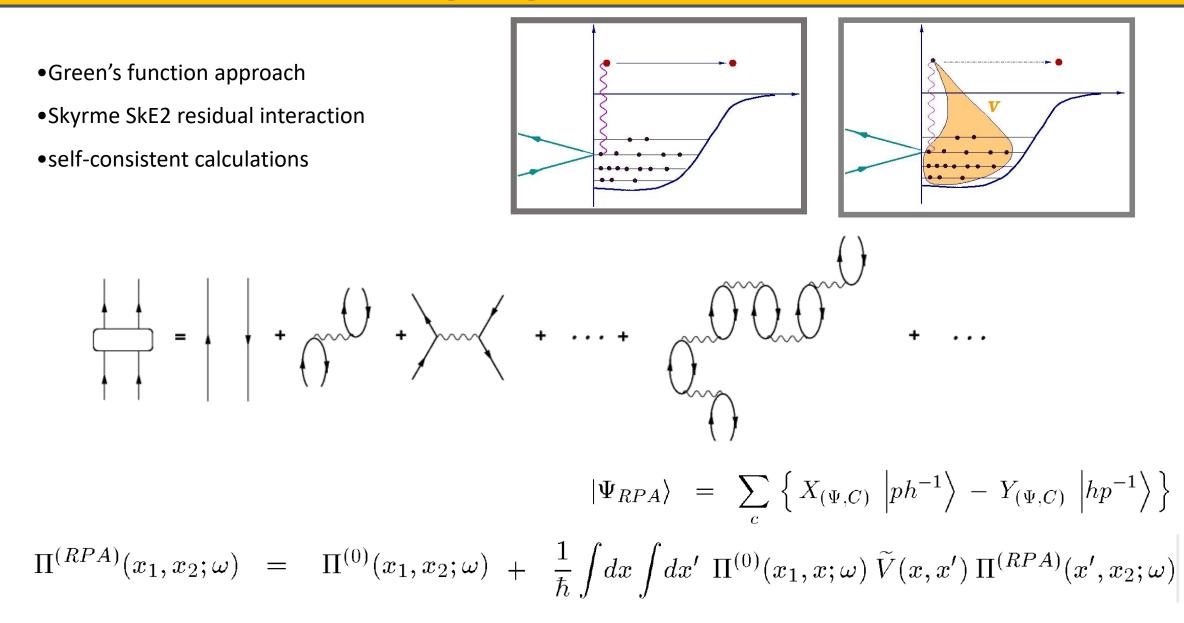
- Correlations over the whole size of the nucleus
- Redistribute the incoming energy transfer to the nucleus over all the nuclear constituents.
- They manifest themselves in collective excitations such as giant resonances





https://cyclotron.tamu.edu/research/nuclear-structure/

Long-range RPA correlations



Hartree-Fock-CRPA

Solving the RPA equations in coordinate space

$$\begin{split} |\Psi_{C}(E)\rangle &= \left| ph^{-1}(E) \right\rangle + \int dx_{1} \int dx_{2} \quad \tilde{V}(x_{1}, x_{2}) \\ &\sum_{c'} \mathcal{P} \int d\varepsilon_{p'} \left[\left. \frac{\psi_{h'}(x_{1})\psi_{p'}^{\dagger}(x_{1}, \varepsilon_{p'})}{E - \varepsilon_{p'h'}} \left| p'h'^{-1}(\varepsilon_{p'h'}) \right\rangle \right. \\ &\left. - \left. \frac{\psi_{h'}^{\dagger}(x_{1})\psi_{p'}(x_{1}, \varepsilon_{p'})}{E + \varepsilon_{p'h'}} \left| h'p'^{-1}(-\varepsilon_{p'h'}) \right\rangle \right] \left\langle \Psi_{0} \left| \hat{\psi}^{\dagger}(x_{2})\hat{\psi}(x_{2}) \right| \Psi_{C}(E) \right\rangle \end{split}$$

What we really need is transition densities :

$$\begin{split} \langle \Psi_{0} || X_{\eta J} || \Psi_{C}(J; E) \rangle_{r} &= - \langle h || X_{\eta J} || p(\varepsilon_{ph}) \rangle_{r} \\ &+ \sum_{\mu, \nu} \int dr_{1} \int dr_{2} \ U^{J}_{\mu\nu}(r_{1}, r_{2}) \ \mathcal{R} \left(R^{(0)}_{\eta\mu; J}(r, r_{1}; E) \right) \ \langle \Psi_{0} || X_{\nu J} || \Psi_{C}(J; E) \rangle_{r_{2}} \\ \int dr \int dr' \ R^{(0)}_{\eta\mu; JM}(r, r'; E) &= \frac{1}{\hbar} \int dx \int dx' \ X_{\eta JM}(x) \ \Pi^{(0)}(x, x'; \omega) \ X^{\dagger}_{\eta' JM}(x') \end{split}$$

So in the end we have to solve a set of coupled equations, that after discretizing on a mesh in coordinate space, translates into a matrix inversion :

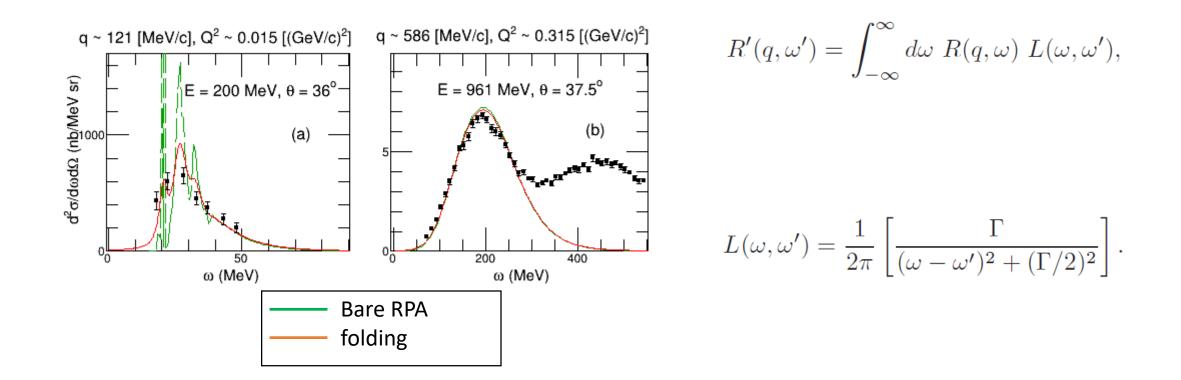
$$\rho_C^{RPA} = -\frac{1}{1-R U} \rho_C^{HF}$$

Hartree-Fock-CRPA

• Final state interactions :

-taken into account through the calculations of the wave function of the outgoing nucleon in the (real) nuclear potential generated using the Skyrme force

-influence of the spreading width of the particle states is implemented through a folding procedure



Hartree-Fock-CRPA

Uncorrected

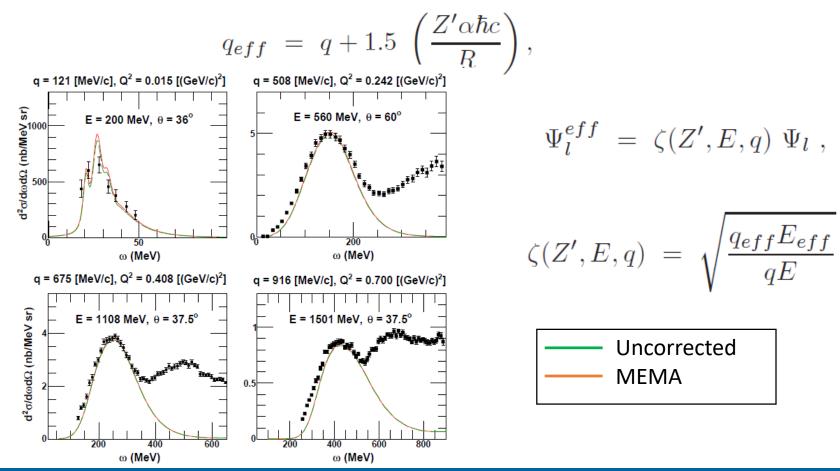
MEMA

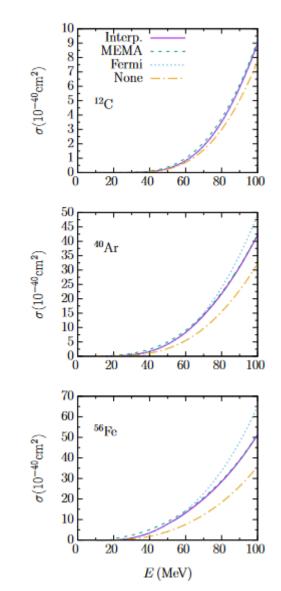
•Coulomb correction for the outgoing lepton in charged-current interactions :

✓ Low energies : Fermi function

$$F(Z',E) = \frac{2\pi\eta}{1 - e^{-2\pi\eta}} \qquad \eta \sim \mp Z' \alpha$$

✓ High energies : modified effective momentum approximation (J. Engel, PRC57,2004

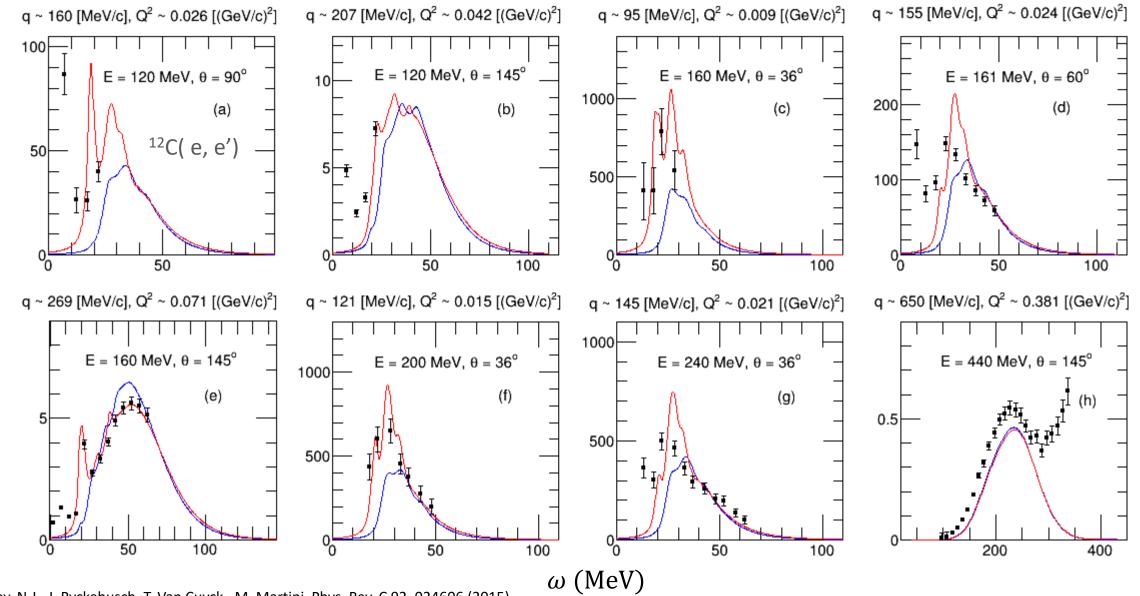




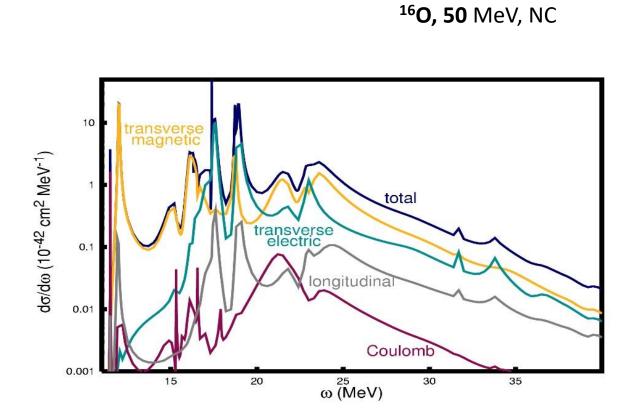
INT Seattle, April 17 2023

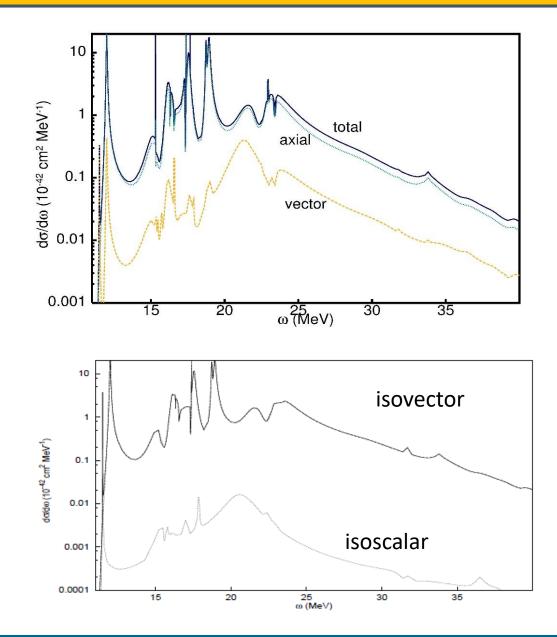
N Jachowicz

Comparison with electron scattering data

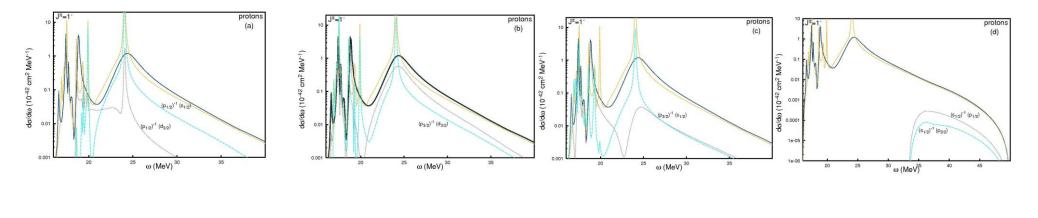


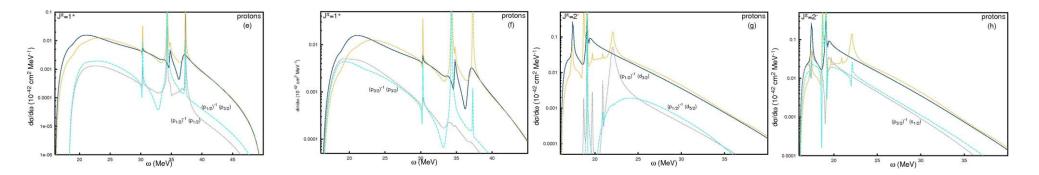
V. Pandey, N.J., J. Ryckebusch, T. Van Cuyck , M. Martini, Phys. Rev. C 92, 024606 (2015)

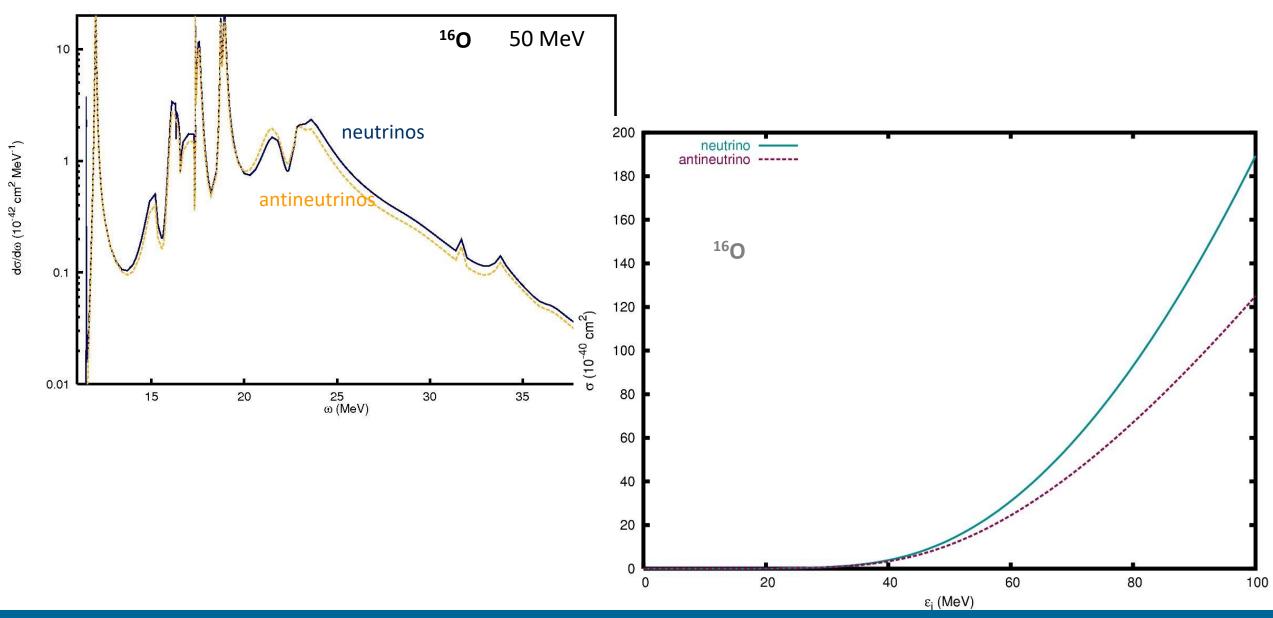




Contribution of different single-particle channels in ¹²C

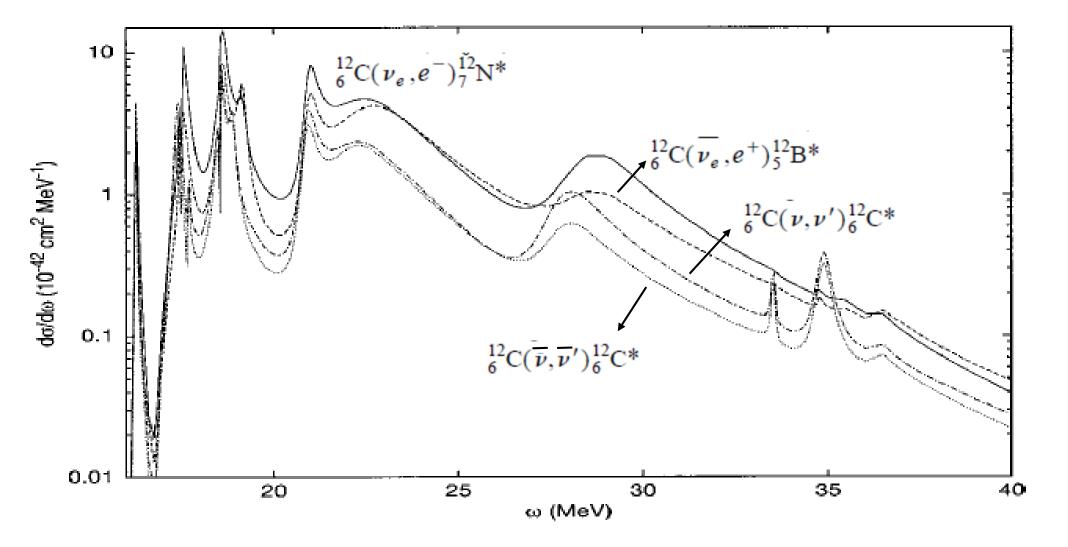






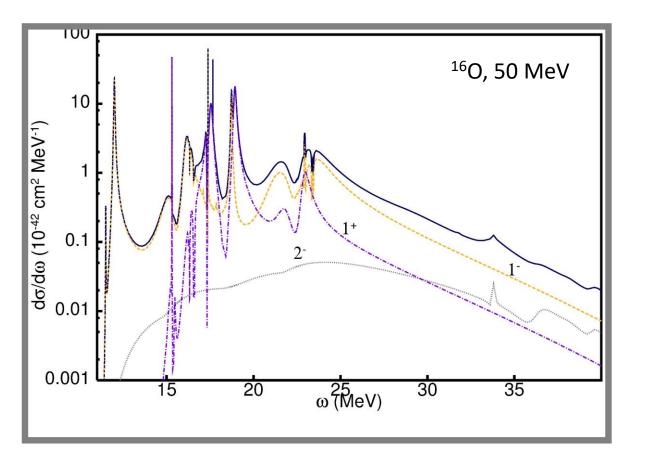
INT Seattle, April 17 2023

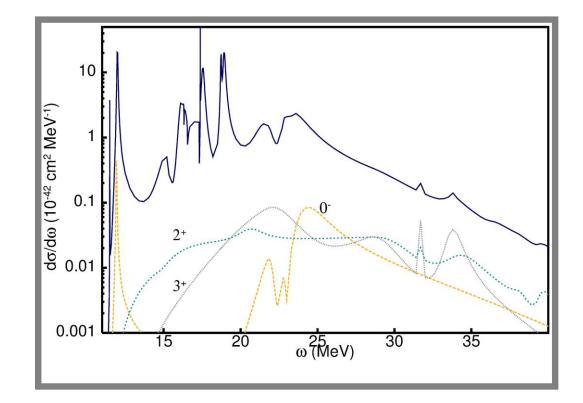
N Jachowicz



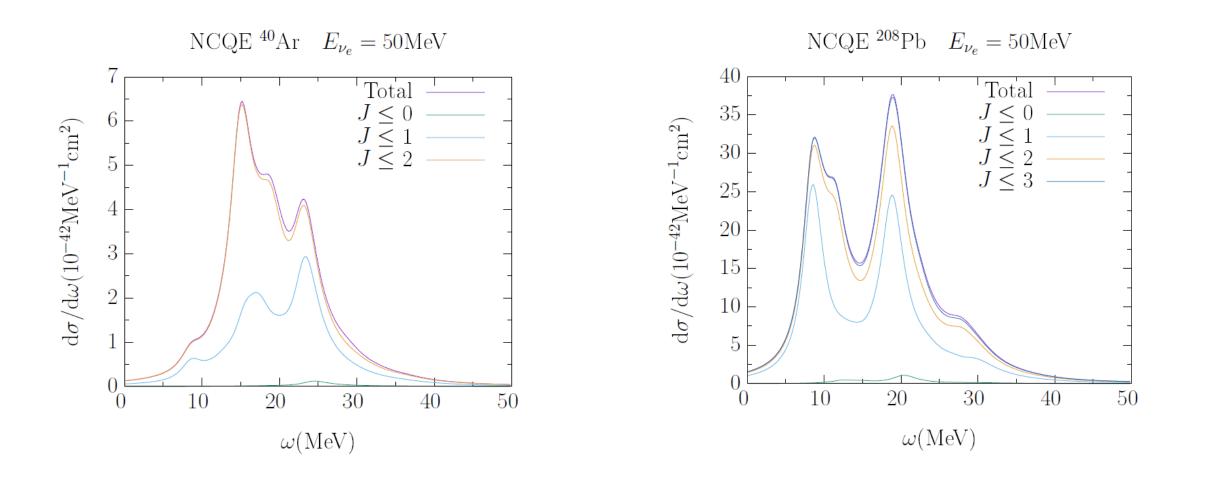
Multipole decomposition

Higher order multipoles important :

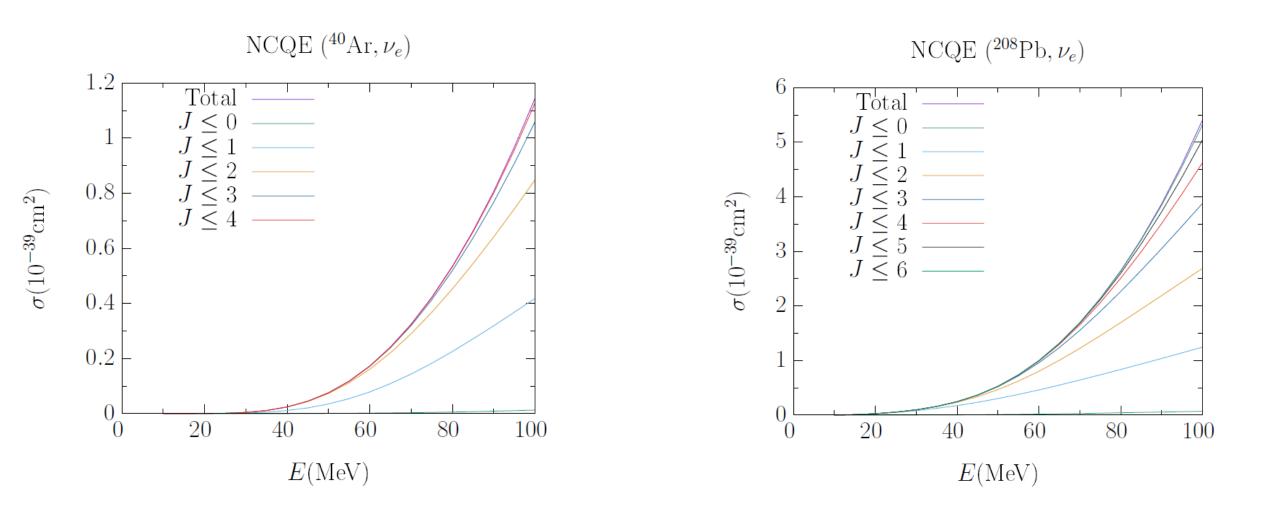




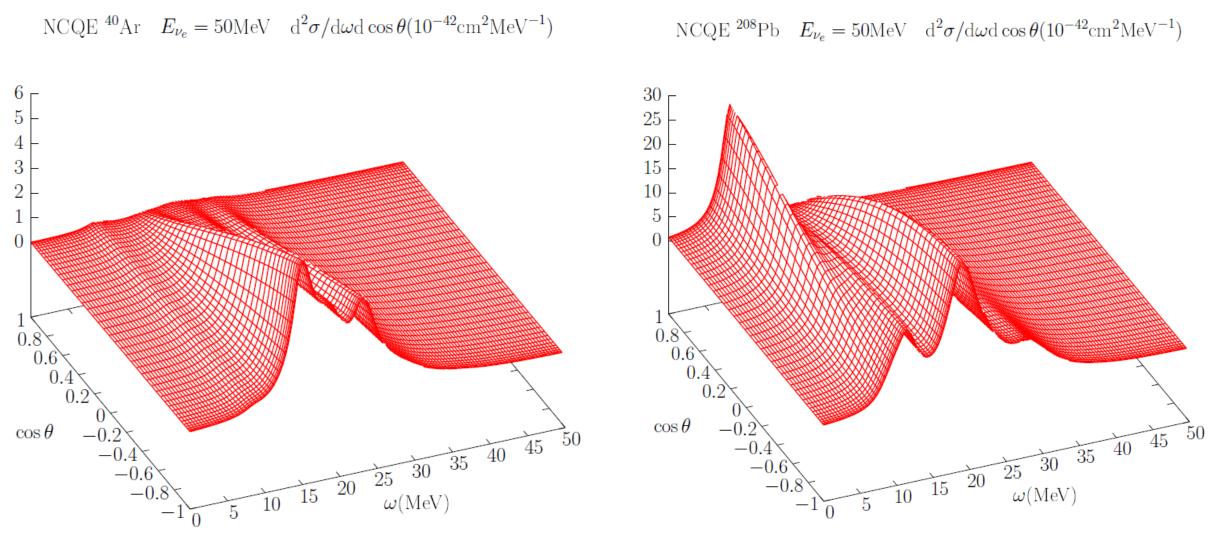
Multipole decomposition



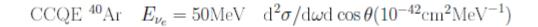
Multipole decomposition

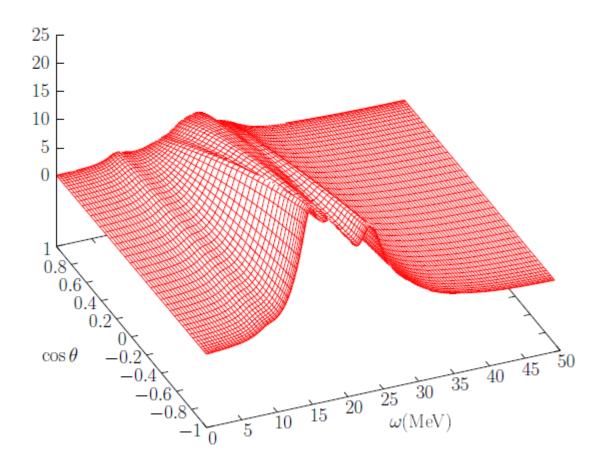


Angular dependence

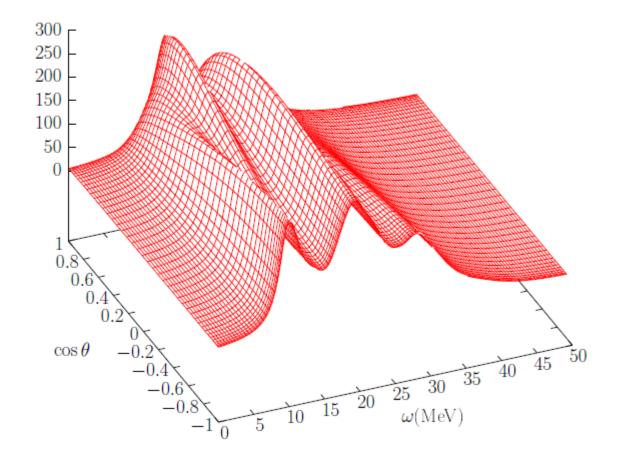


Angular dependence



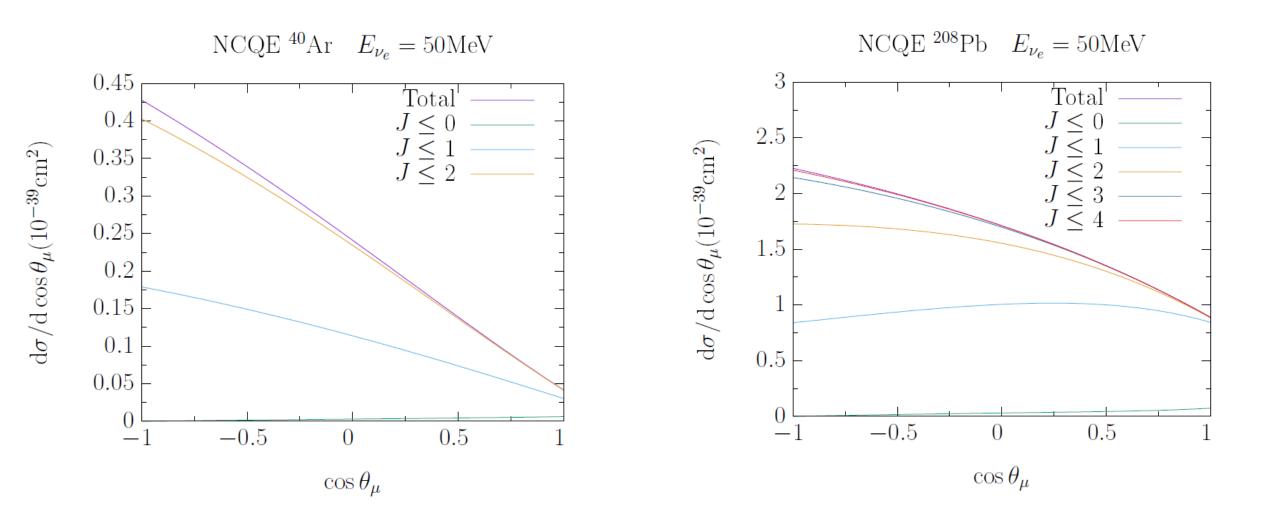


CCQE ²⁰⁸Pb $E_{\nu_e} = 50 \text{MeV} \text{ d}^2 \sigma / \text{d} \omega \text{d} \cos \theta (10^{-42} \text{cm}^2 \text{MeV}^{-1})$



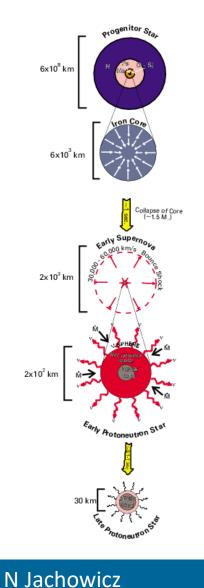
N Jachowicz

Angular dependence

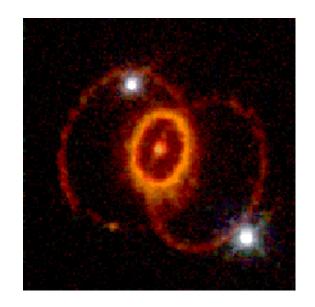


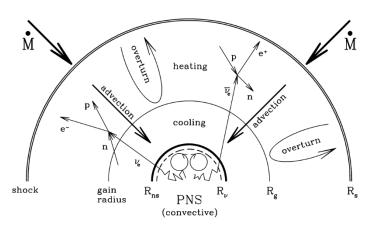
Supernovaneutrinos

Core-collapse supernova



- weak interactions are important
- neutrinos are produced in the neutronization processes characterizing the gravitational collapse
- neutrinos are responsible for the cooling of the proto-neutron star
- neutrinonucleosynthesis
- energy deposition by neutrinos might reheat the stalled shock wave and cause a delayed explosion
- terrestrial detection of supernova neutrinos

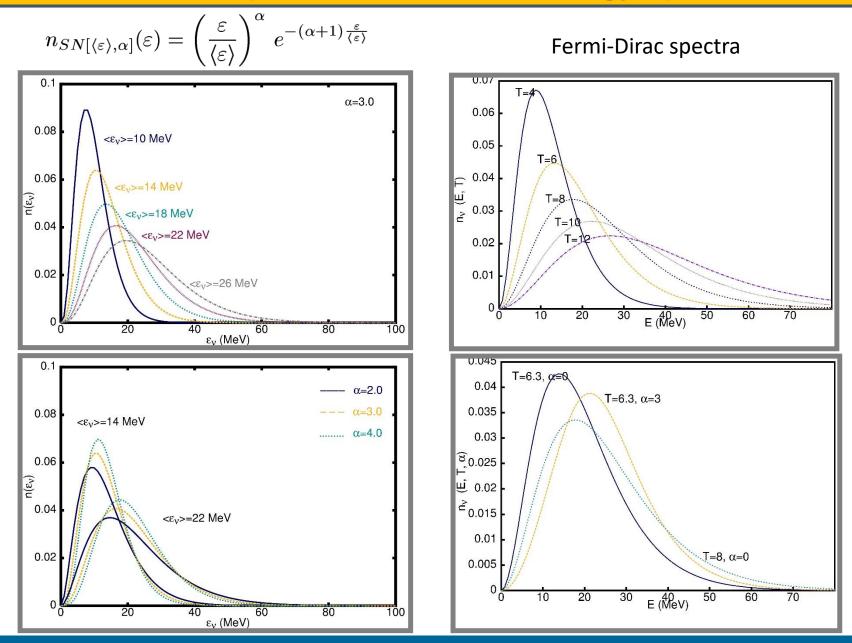




H.-T. Janka astro-ph/0008432

INT Seattle, April 17 2023

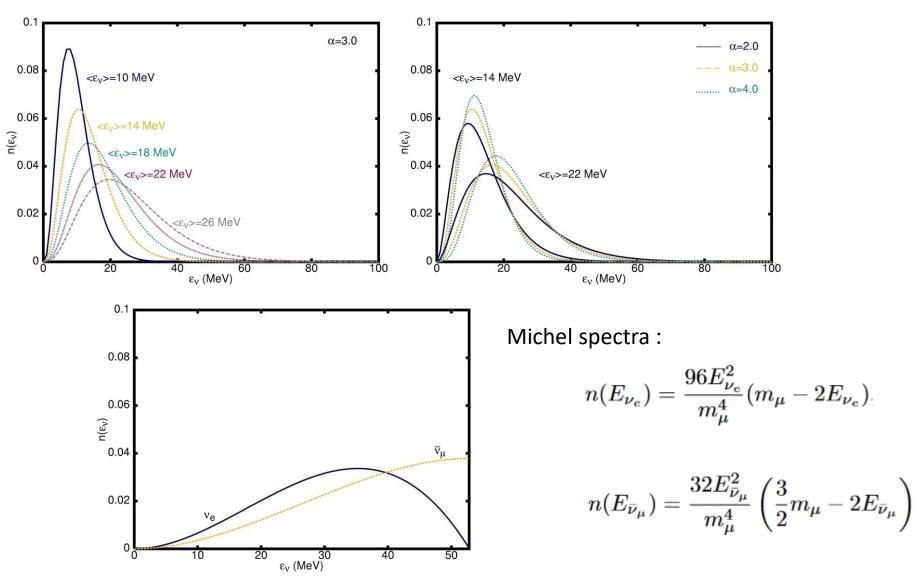
Supernovaneutrino : Energy spectra



N Jachowicz

INT Seattle, April 17 2023

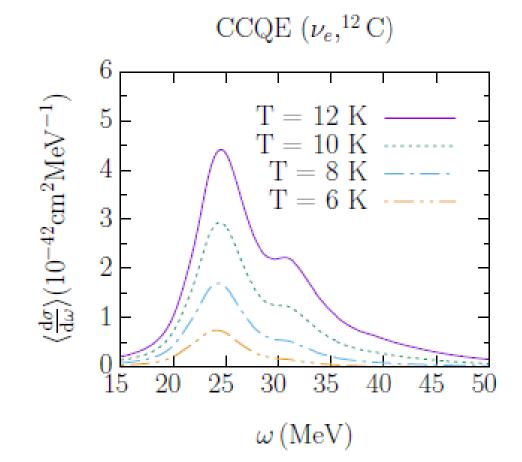
Supernova neutrino spectra :



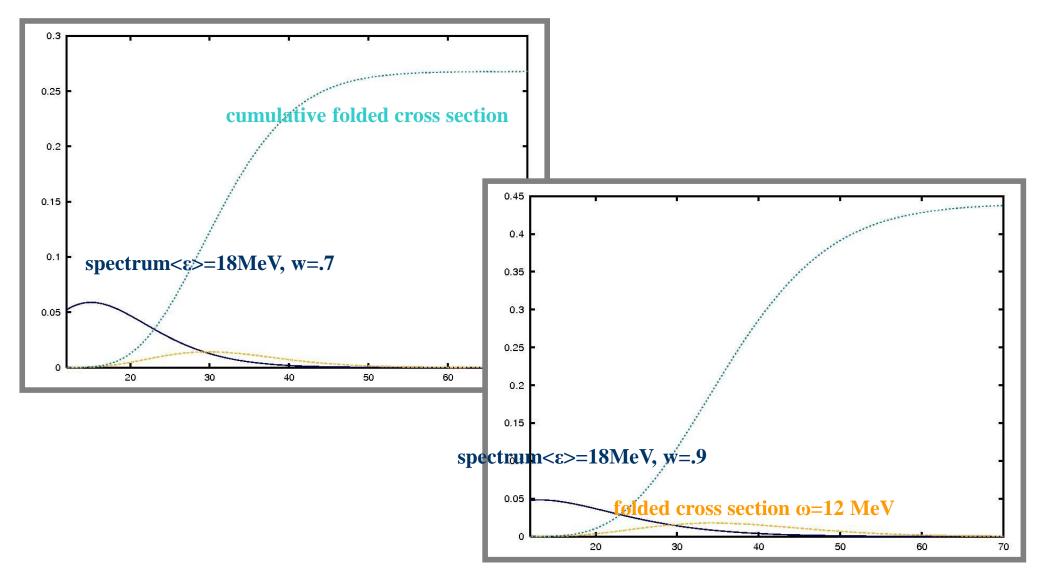
Supernovaneutrino cross sections

Folded cross sections supernova neutrino spectra :

 \rightarrow strong dependence on average energy of the spectrum



Cumulative folded cross sections:

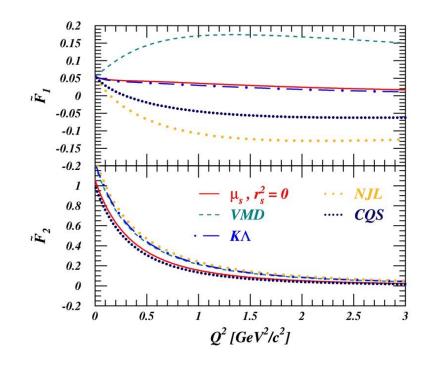


Strangeness

Axial form factor :

$$G_A(Q^2) = -rac{(au_3 g_A - g_A^s)}{2} G(Q^2), \quad g_A = 1.262$$

 $G(Q^2) = (1 + Q^2/M^2)^{-2}, \quad M = 1.032$



Model	$\mu_s(\mu_N)$	$r_s^2({\rm fm^2})$
VMD	-0.31	0.16
$K\Lambda$	-0.35	-0.007
NJL	-0.45	-0.17
CQS (K)	0.115	-0.095

Weak vector form factors :

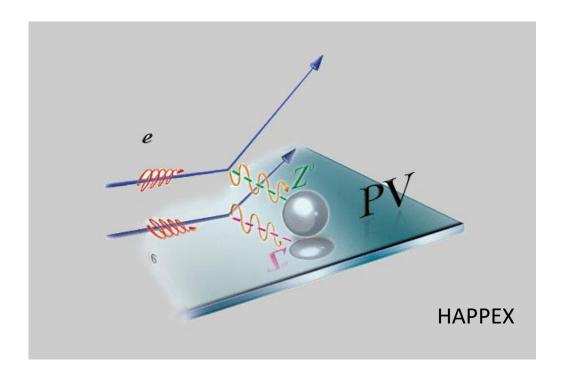
$$F_1^s = \frac{1}{6} \frac{-r_s^2 Q^2}{(1+Q^2/M_1^2)^2}, \qquad M_1 = 1.3$$

$$F_2^s = \frac{\mu_s}{(1+Q^2/M_2^2)^2}, \quad M_2 = 1.26$$

Parity violating electron scattering

Using polarized electrons, one gets access to parity violating electron scattering (HAPPEX, G0, SAMPLE, A4)

- Axial-vector interference terms
- Information about axial vector form factor
- Information about strangeness in the nucleon in the vector as well as axial sector
- Larger cross sections
- Prone to radiative corrections



Parity violating asymmetry :

$$A^{PV} = \frac{d\sigma_R - d\sigma_L}{d\sigma_R + d\sigma_L}$$

Strangeness

•strangeness contribution to the *weak vector formfactors* : Parity Violating Electron Scattering (Sample, HAPPEX, G0, ...)

Traditionally :

•strangeness contribution to the *axial current* : neutrino scattering

-vector current contributions are suppressed

-no radiative corrections

Strangeness

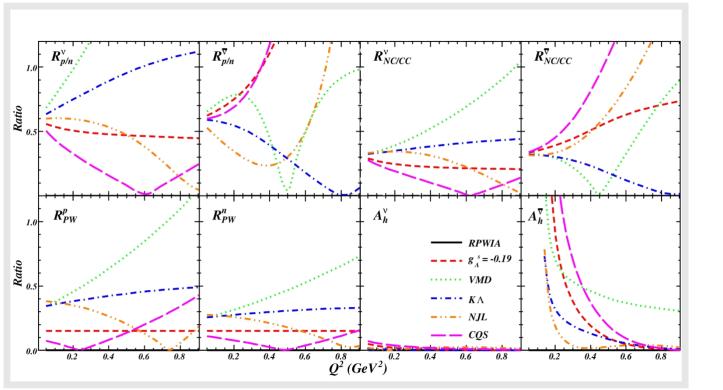
•strangeness contribution to the *weak vector formfactors* : Parity Violating Electron Scattering (Sample, HAPPEX, G0, ...)

Traditionally :

•strangeness contribution to the *axial current* : neutrino scattering

-vector current contributions are suppressed

-no radiative corrections



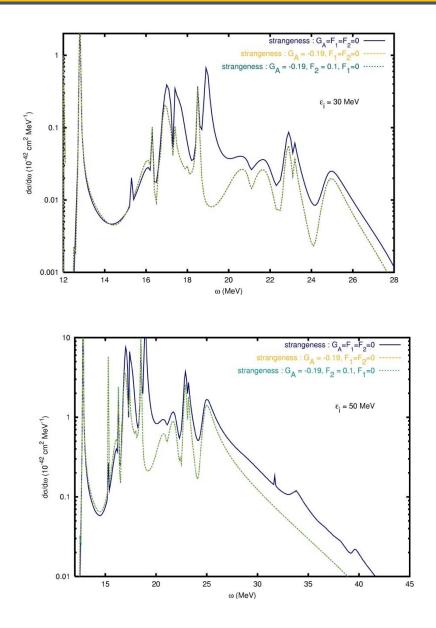
N.J., P. Vancraeyveld, P. Lava, J. Ryckebusch, PRC76, 055501 (2007).

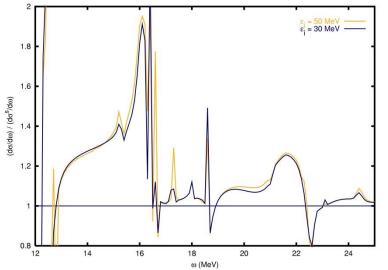
N Jachowicz

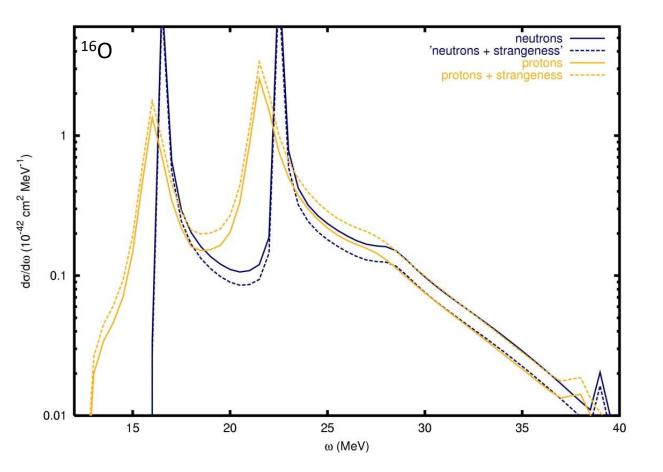
INT Seattle, April 17 2023

Influence of strangeness on neutrino cross sections

- Generally : net strangeness effect vanishes for isoscalar targets
- close to particle knockout threshold the influence becomes larger due to binding energy differences between protons and neutrons
- differential cross sections differ, energy of reaction products can be very different



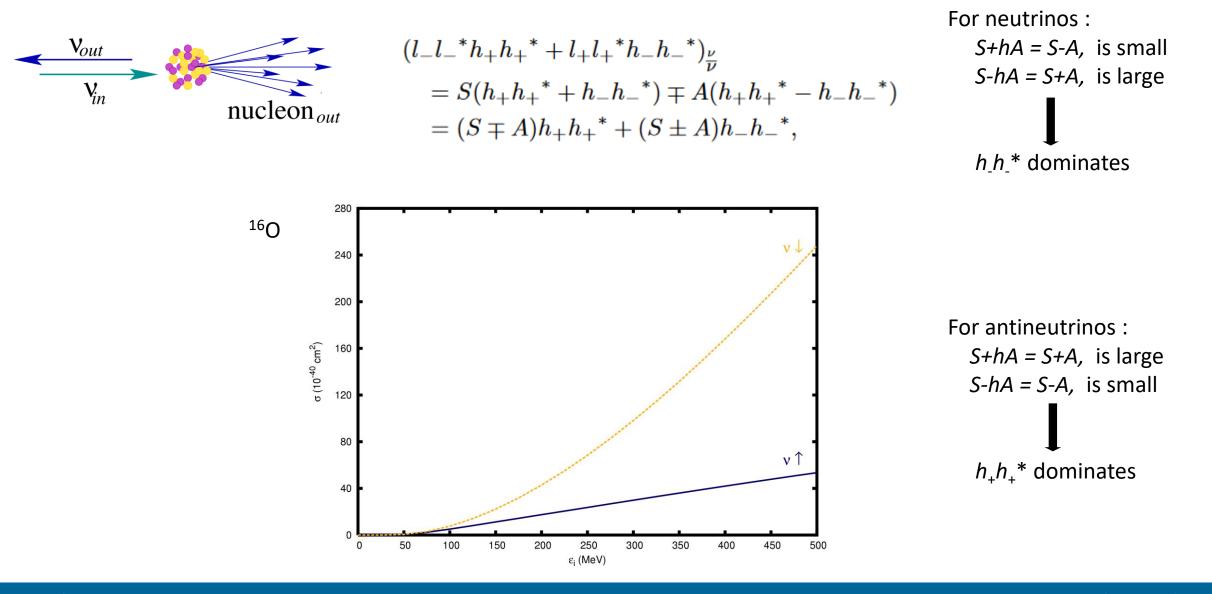




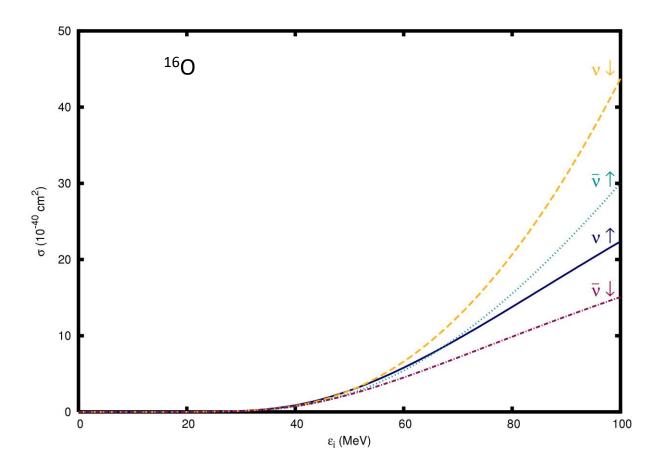
- •differences up to 20%
- opposite effect for protons and neutrons

Spin of the outgoing nucleon

Helicity dependence of the cross section:



Adding antineutrinos to the picture :

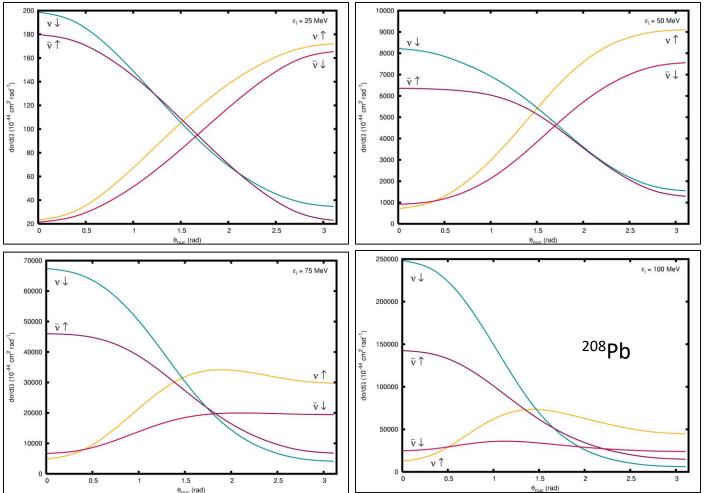


Neutrinos favor
'spin down' nucleon
knockout
Antineutrinos
mainly induce 'spin
up' knockout
reactions
Polarization
differences increase
with incoming
neutrino energies

N Jachowicz

Spin of the outgoing nucleon

The asymmetry and the dissimilarities between neutrinos and antineutrinos are most clear considering the angular cross section :

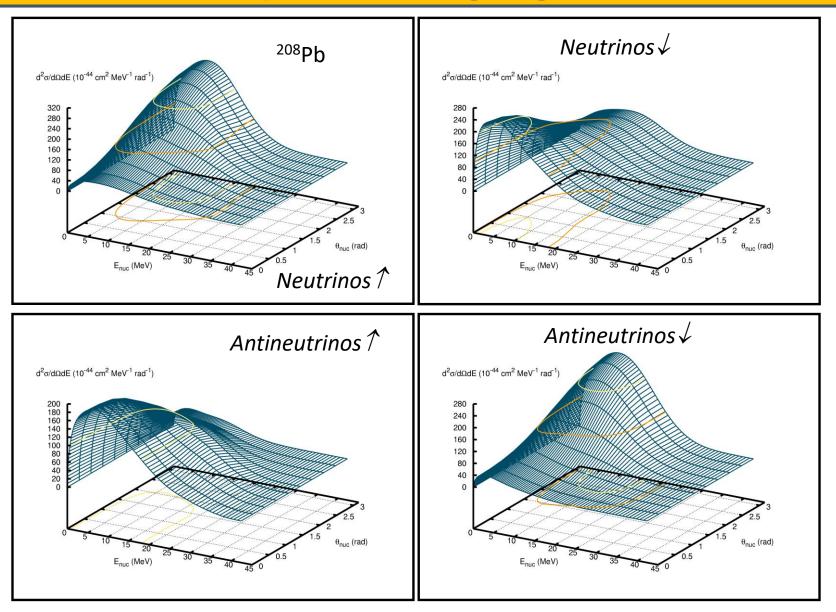


N Jachowicz

The asymmetry is most prominent for forward nucleon knockout, and remains large over a broad angular range.

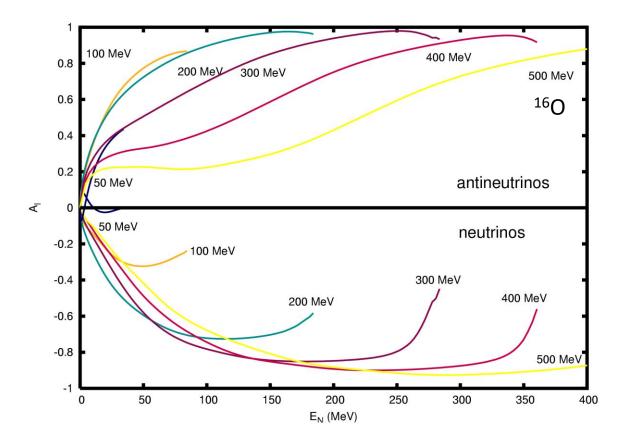
For the suppressed backward scattering reactions, the asymmetry is completely reversed

Spin of the outgoing nucleon



Polarization asymmetry

Longitudinal **polarization asymmetry** :



N Jachowicz

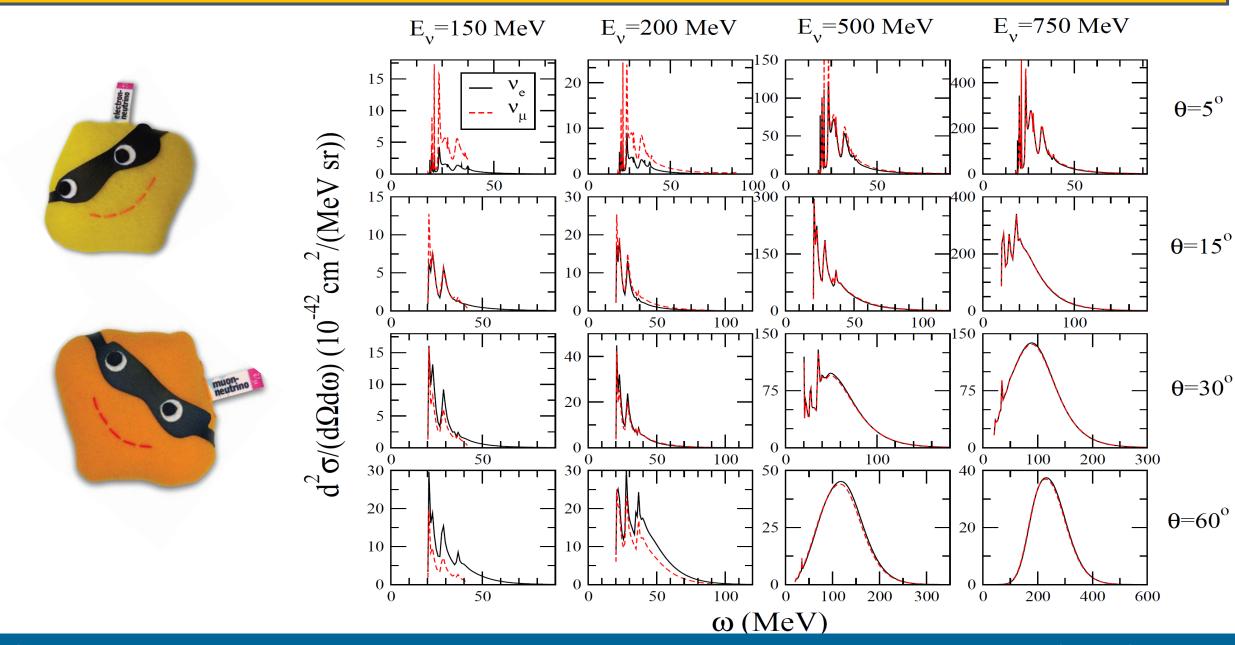
$$A_l = \frac{\sigma(s_N^l = \uparrow) - \sigma(s_N^l = \downarrow)}{\sigma(s_N^l = \uparrow) + \sigma(s_N^l = \downarrow)}$$

•For antineutrinos, A_l is large and positive

•For neutrinos, A₁ is large and negative

N. J., K. Vantournhout, J. Ryckebusch, K. Heyde, PRL 93, 082501 (2004) ; N. J. , K. Vantournhout, J. Ryckebusch, K. Heyde, PRC71, 034604 (2005).

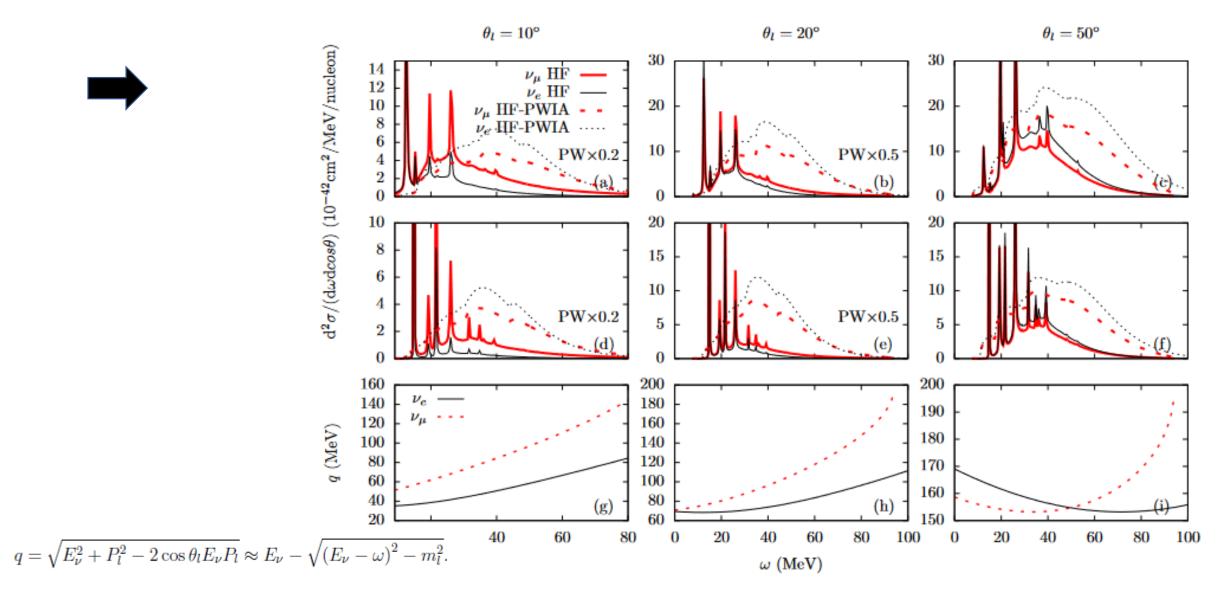
Electron vs muon neutrino CC cross sections



N Jachowicz

INT Seattle, April 17 2023

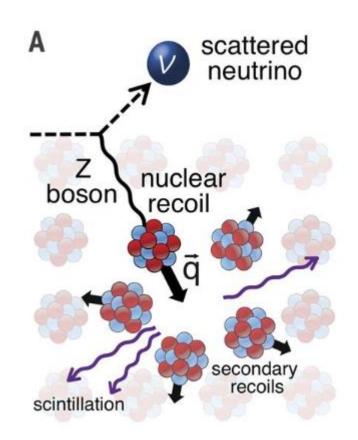
Electron vs muon neutrino CC cross sections



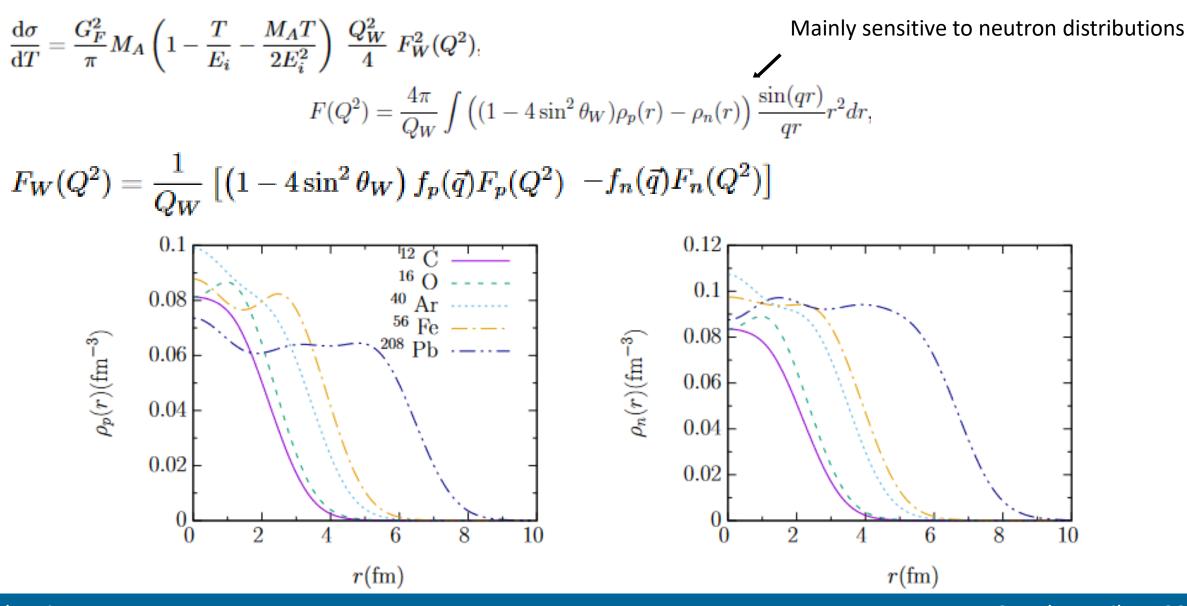
A. Nikolakopoulos, N.J, N. Van Dessel, K. Niewczas, R. Gonzalez-Jimenez, J.M. Udias, V. Pandey, Phys. Rev. Lett. 123, 052501 (2019)

INT Seattle, April 17 2023

Science, September 2017 : The First Observation of Coherent Elastic Neutrino Nucleus Scattering



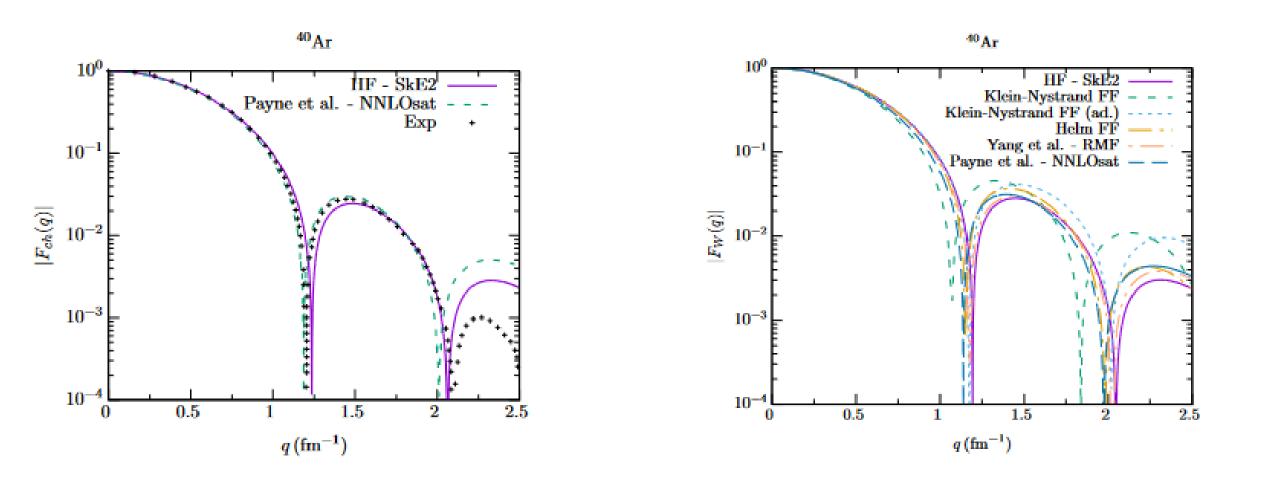
Coherent cross section as a function of nuclear recoil energy :



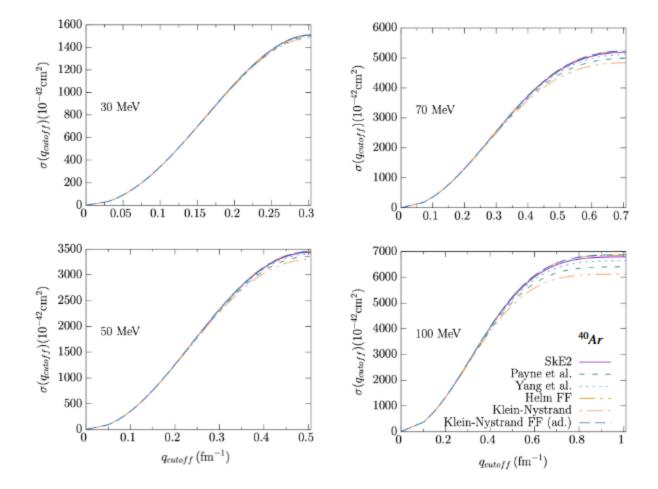
N Jachowicz

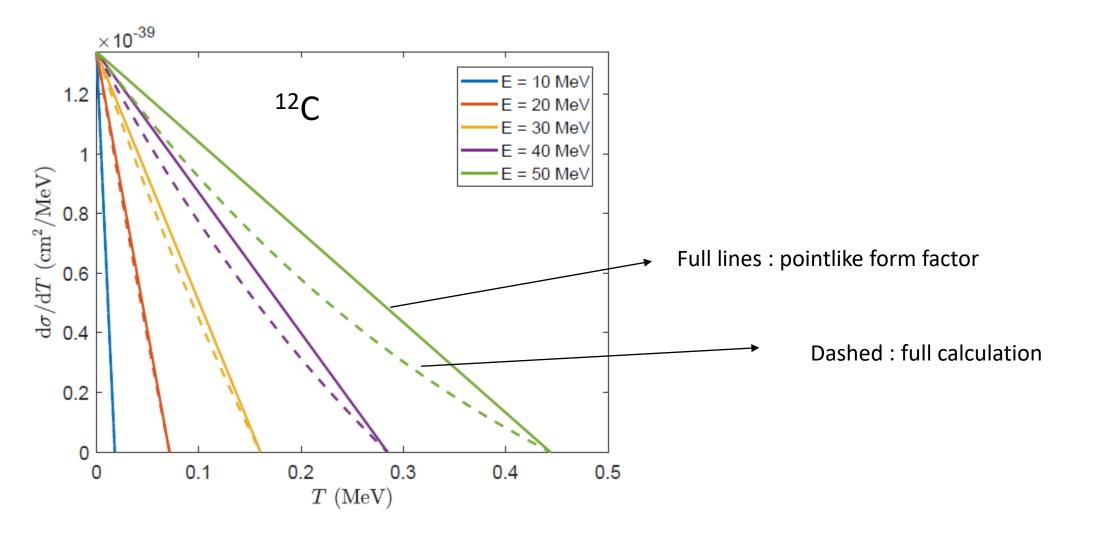
INT Seattle, April 17 2023

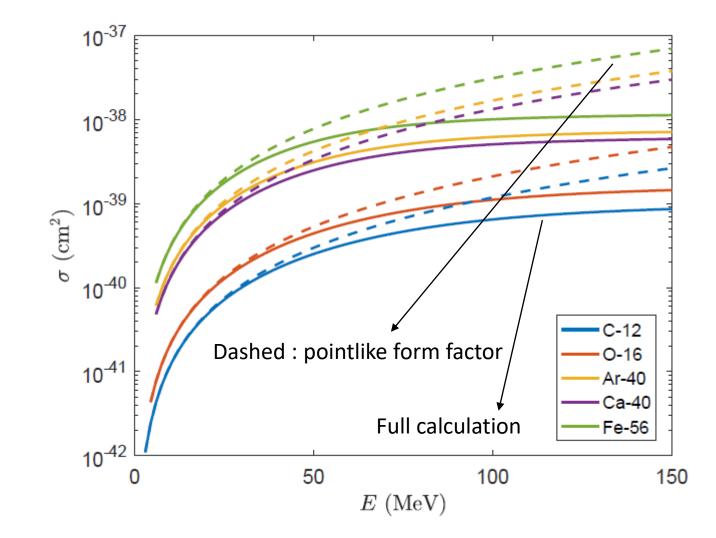
Weak form factor : Model comparison

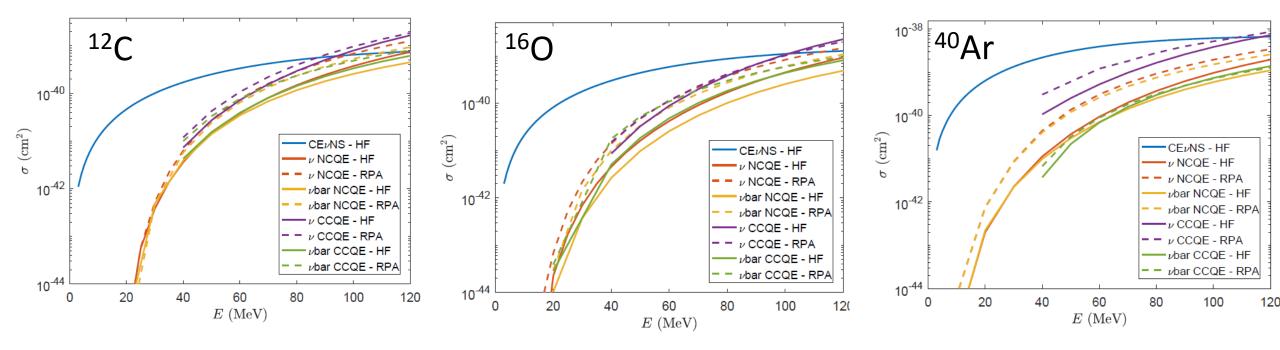


Weak form factor : Model comparison









- Strong mass dependence of coherent cross section
- Coherent process stronger than inelastic over a large kinematic range

N Jachowicz

Neutrino-nucleus scattering at low energies provides a very rich source of information about the weak interaction and nuclear structure effects, of interest for weak particle, nuclear as well as astrophysics !