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Introduction

Progress in extracting PDFs and TMDs from lattice calculations

We propose a matching relation that allows for lattice calculations of double
parton distributions (DPDs)

PDFs TMDs DPDs
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Figure adapted from seminar by J. Gaunt



Motivation - What is double parton scattering?

Two hard scattering partons from each proton
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Higher-twist: DPS is suppressed by Λ2
QCD/Q

2 compared to SPS

▶ Then why worry about DPS?
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Motivation - Why is it interesting?

(1) Precision: Sizeable contribution in some kinematic regions

DPS competes with SPS in production of cc̄ pairs as CM energy increases
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Szczurek, Maciula (2012)



Motivation - Why is it interesting?

(2) Curiosity: Understanding the proton

DPDs probe correlations between partons
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Manohar, Waalewijn (2012)



What do we know about the distributions?

Constraints from experiment
▶ Only measurements on σeff with large disagreements → parton correlations

Model calculations
First moment on the lattice

▶ Only the lowest few moments are accessible on the lattice
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ATLAS
AFS (

√
s = 63 GeV, 4 jets, 1986)

UA2 (
√
s = 630 GeV, 4 jets, 1991)

CDF (
√
s = 1.8 TeV, 4 jets, 1993)

CDF (
√
s = 1.8 TeV, γ+ 3 jets, 1997)

DØ (
√
s = 1.96 TeV, γ+ 3 jets, 2010)

LHCb (
√
s = 7 TeV, J/ψΛ+

c , 2012)
LHCb (

√
s = 7 TeV, J/ψD+

s , 2012)
LHCb (

√
s = 7 TeV, J/ψD+, 2012)

LHCb (
√
s = 7 TeV, J/ψD0, 2012)

ATLAS (
√
s = 7 TeV, W+ 2 jets, 2013)

CMS (
√
s = 7 TeV, W+ 2 jets, 2014)

DØ (
√
s = 1.96 TeV, γ+ b/c + 2 jets, 2014)

DØ (
√
s = 1.96 TeV, γ+ 3 jets, 2014)

DØ (
√
s = 1.96 TeV, J/ψ + J/ψ, 2014)

ATLAS (
√
s = 8 TeV, Z + J/ψ, 2015)

LHCb (
√
s = 7&8 TeV, Υ(1S)D0,+, 2015)

DØ (
√
s = 1.96 TeV, J/ψ + Υ, 2016)

DØ (
√
s = 1.96 TeV, 2γ+ 2 jets, 2016)

ATLAS (
√
s = 7 TeV, 4 jets, 2016)

ATLAS (
√
s = 8 TeV, J/ψ + J/ψ, 2017)

CMS (
√
s = 8 TeV, Υ + Υ, 2017)

LHCb (
√
s = 13 TeV, J/ψ + J/ψ, 2017)

CMS (
√
s = 8 TeV, W±W±, 2018)

ATLAS (
√
s = 8 TeV, 4 leptons, 2018)

Motivation for extending LaMET to DPDs

Although DPDs play a significant role at the LHC, not much is known about them
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ATLAS Collaboration (2019)

Bali, Diehl, Gläßle, Schäfer, Zimmermann (2021)



Outline

Lightspeed introduction to double parton distributions
▶ Factorization and definitions

Lightcone correlators on the lattice
▶ Quick summary of the quasi-PDF approach
▶ Extension to TMDs

Extending LaMET to double parton distributions
▶ What do we need?
▶ Conjectured matching relation + 1-loop result

Outlook: how do we proceed from here?
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Conclusion

LaMET can (with some effort) be applied to double parton distributions



Lightspeed introducion to double parton scattering



Let’s get formal - Factorization

Cross section of DPS process factorizes as Hard ⊗ DPDs ⊗ Soft.

dσDPS =

(
4πα2Q2

q

3Ncs

)
1

q21q
2
2

∫
d2b⊥

×
{[

1Fqq
1Fq̄q̄ +

1F∆q∆q
1F∆q̄∆q̄ +

1Fqq̄
1Fq̄q +

1F∆q∆q̄
1F∆q̄∆q

]
11S

+ 2Nc

CF

[
8Fqq

8Fq̄q̄ +
8F∆q∆q

8F∆q̄∆q̄ +
8Fqq̄

8Fq̄q +
8F∆q∆q̄

8F∆q̄∆q

]
88S

+ interference terms
}

Many different color and spin structures
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Manohar, Waalewijn (2012)
Gaunt (2014)
Diehl, Gaunt, Ostermeier, Ploessl, Schäfer (2015)



Let’s get formal - Definitions

DPDs can be expressed as hadronic lightcone correlators. For Fqq:

RFa1a2
= −πP+

∫
db−1
2π

db−2
2π

db−3
2π

e−ix1P
+b−1 e−ix2P

+b−2 eix1P
+b−3

× ⟨P |T †
[
ψ̄n(0

+, b−1 ,b⊥)Γa1
R1

]
i

[
ψ̄n(b

−
2 )Γa2

R2

]
j

× T
[
ψn(0

+, b−3 ,b⊥)
]
i

[
ψn(0)

]
j
|P ⟩

▶ different spin and color structures allowed

Soft factors can be written as vacuum matrix elements of Wilson loops

11S = 1 , 88S =
1

2NcCF
⟨0| tr

[
S
]
tr
[
S†

]
|0⟩ − 1

2NcCF

S : b⊥

t
z
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Diehl, Ostermeier, Schäfer (2011)
Manohar, Waalewijn (2012)
Diehl, Nagar (2019)



Lightcone correlators on the lattice



Summary of quasi-PDF approach

Lightcone-PDF is defined as hadronic lightcone correlator

▶ Cannot be calculated on the lattice directly

Quasi-PDF has same definition, but with space-like separated fields

▶ Can be calculated on the lattice

Boosting the quasi-PDF takes you closer to lightcone-PDF

The two differ by an order of non-commuting limits

▶ P z → ∞ and Λ → ∞

Asymptotic freedom of QCD guarantees that difference in order of limits is
perturbative

Quasi-PDFs can be matched perturbatively onto physical lightcone-PDFs
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Case study: TMDs

Rapidity divergences: regularize and subtract

▶ Physical and quasi-TMD defined in terms of beam and soft functions

f =
B√
S
, f̃ =

B̃√
S̃

Rapidity scale dependence

▶ Collins-Soper evolution

d

d log ζ
f(x, b⊥, µ, ζ) = γζ(b⊥, µ)f(x, b⊥, µ, ζ)

Rapidity scale dependence enters matching relation

f̃(x, b⊥, µ, ζ̃, xP̃
z) = C

(
xP̃ z, µ

)
exp

[
1

2
γζ(µ, b⊥) log

(
ζ̃

ζ

)]
f(x, b⊥, µ, ζ)
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Ji, Liu, Liu (2020)
Ebert, Schindler, Stewart, Zhao (2022)



Applying LaMET to double parton distributions



What do we need?

(1) Lattice calculable ingredients

▶ Replace lightcone correlators with
equal-time correlators

(2) Factorization formula relating
quasi- and lightcone-DPDs

▶ With TMD case as starting point

(3) Perturbative matching kernel

▶ Consistency check: does IR behaviour
match up?
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(1) Lattice calculable ingredients

Define quasi-DPD

RF̃a1a2
= −πP+

∫
dbz1
2π

dbz2
2π

dbz3
2π

eix1P
zbz1eix2P

zbz2e−ix1P
zbz3

× ⟨P |T †
[
ψ̄z(0,b⊥, b

z
1)Γ̃a1

R1

]
i

[
ψ̄z(b

z
2)Γ̃a2

R2

]
j

× T
[
ψn(0,b⊥, b

z
3)
]
i

[
ψn(0)

]
j
|P ⟩

Define quasi DPS soft function

88S̃ =
1

2NcCF
⟨0| tr

[
S̃
]
tr
[
S̃†

]
|0⟩ − 1

2NcCF

▶ where S̃ is the same Wilson loop as for the quasi-TMD

▶ Two sets of oppositely directed staples → not straightforward for lattice
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(2) Matching relation - where to start?

Ultraviolet and large rapidity behaviour are key

Matching relation encodes the difference in the UV and large rapidity behaviour

How do DPDs behave in the ultraviolet regime?

▶ Convolution in momentum fractions

▶ Mixing between color and spin structures

▶ Mixing between parton flavors

▶ Mixing with single PDFs (Fqq̄ mixes with fg)

What is the large rapidity behaviour of DPDs?

▶ Regulate rapidity divergences using your favourite regulator and subtract
√
S

▶ Rapidity scale dependence described by Collins-Soper kernel

d

d log ζ
RF sub

a1a2
= 1

2
Rγζ(b⊥, µ)

R F sub
a1a2

ζ = 4x1x2(P
+)2
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Manohar, Waalewijn (2012)
Diehl, Nagar (2014)
Diehl, Gaunt (2016)
Diehl, Gaunt, Ploessl, Schäfer (2019)
Diehl, Gaunt, Ploessl (2021)



(2) Matching relation - educated guess

Conjecture: F̃ =perturbative kernel ⊗ rapidity evolution ⊗ F

RF̃ sub
a1a2

(x1, x2, b⊥, µ, ζ̃), P
z

=

∫
dy1
y1

dy2
y2

RR′
Ca1a2,a′

1a
′
2

(
x1
y1
,
x2
y2
,
(x1P

z)2

µ2
,
(x2P

z)2

µ2
,
ζ̃

µ2

)
× exp

[
1

2
R′
γζ(b⊥, µ) log

(
ζ̃

ζ

)]
R′
F sub
a′
1a

′
2
(x1, x2, b⊥, µ, ζ)

+mixing between flavors

+mixing with single PDFs

+O
(

1

x1,2b⊥P z
,

Λ2
QCD

(x1,2P z)2

)

Consistency check: IR agreement

Matching kernel must be free of infrared logarithms (log(b⊥µ))
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(3) Calculating the kernel: All diagrams
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(3) Calculating the kernel: Example

Take the difference between lightcone- and quasi- diagrams

∆example = −4πδ(1− x1)δ(1− x2)
[
1

ϵir
+ log

(
µ2b2

⊥
b20

)][
2 + log

(
δ2

p+1 p
+
2

)]
+ other terms

Infrared poles and logs spotted!
▶ These drop out when soft factor subtraction is performed and all diagrams are

combined
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What did we find?

No mixing of color and spin structures at one-loop
▶ Generalisation to higher orders expected, but not proven

Matching kernel of color-summed DPD greatly simplifies

1Ca1a2

(
x1
y1
,
x2
y2
,

µ

|y1|P z
,

µ

|y2|P z

)
?
= Ca1

(
x1
y1
,

µ

|y1|P z

)
Ca2

(
x2
y2
,

µ

|y2|P z

)

▶ True to higher orders? Maybe OPE can tell

Color-correlated kernel also simplifies

8C(1)
a1a2

=

(
1− N

2CF

)
1C(1)

a1a2
+ δ

(
1− x1

y1

)
δ
(
1− x2

y2

)
×Nc

[
2 log

(
ζ̃

µ2

)
− 1

2 log
2

(
(2y1P

z)2

µ2

)
− 1

2 log
2

(
(2y2P

z)2

µ2

)
− 5

2
+
π2

6

]

▶ Generalisation to higher orders?
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But most importantly . . .

No infrared logs at one-loop

Perturbative nature of matching kernel consistent with one-loop result
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How do we proceed from here?

Proof of factorization
▶ Proof on operator level is desired, but formalism

not available

Lattice calculable soft function
▶ Difficulties in constructing lattice calculable soft

function (two opposite light-like staples)

▶ Relate DPS reduced soft function to meson form
factor?

Putting it on the lattice
▶ Mixing and renormalization

Include mixing in the matching
▶ Mixing with flavors and mixing with single PDFs
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Conclusions



Conclusion

Achievement unlocked: formulating DPDs on the lattice

Successfully applied LaMET to DPDs, paving the way for lattice calculations of
double parton distributions.

Defined a lattice calculable quasi-DPD

Conjectured a matching relation

One-loop consistency check: no infrared logs

Some interesting findings:

▶ No mixing between color- and spin structures
▶ Relation to single-PDF matching kernel
▶ Relation between color-summed/correlated kernels
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Thank you for your attention!



Backup slides



Color structures

Color-summed DPD 1Fqq:

1Fqq = −πP+

∫
db−1
2π

db−2
2π

db−3
2π

e−ix1P
+b−1 e−ix2P

+b−2 eix1P
+b−3

× ⟨P |T †
[
ψ̄(0+, b−1 ,b⊥)γ

+W [b1 ← b3]
]
i

[
ψ̄(b−2 )γ

+W [b2 ← 0]
]
j

× T
[
ψ(0+, b−3 ,b⊥)

]
i

[
ψ(0)

]
j
|P ⟩

Color-correlated DPD 8Fqq:

8F̃qq = −TF
N

1F̃a1a2
− πP+

∫
b−1
2π

b−2
2π

b−3
2π

e−ix1P
+b−1 e−ix2P

+b−2 eix1P
+b−3

× ⟨P |
[
ψ̄(b1)W⊐

[
b1 ← 0

]
γ+

]
iα

[
ψ̄(b2)W⊐

[
b2 ← b3

]
γ+

]
jβ

× ψjα(b3)ψiβ(0) |P ⟩ ,
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Mixing with single-PDFs
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