Non-invertible symmetries and Goldstone modes

Nabil Iqbal

Durham University

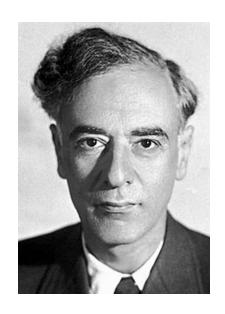
2211.09570

with Iñaki García-Etxebarria

The (old) Landau paradigm

What is the Landau paradigm?

- Phases of matter are classified by their patterns of broken and unbroken symmetries.
- 2. Critical points between phases can be studied by universal theories of the "order parameter".



This works spectacularly well for many phases of matter, and is the foundation of textbook many-body physics.

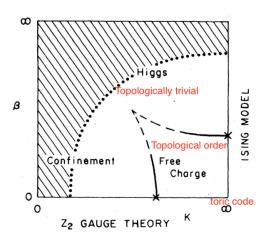
However....

Beyond the (old) Landau paradigm

Much modern work involves phases and transitions between them that do not fit into this paradigm, e.g.

- 1. Massless QED! (the focus of this talk).
- Topological order (many other talks in this workshop).
- Many others... (deconfined criticality; (non)-Fermi liquids; etc. etc...)

Can we do better?

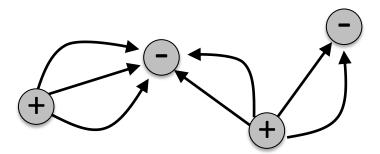


Symmetries of QED

In this talk, I'll discuss some new ways to think about a very familiar system: massless QED.

$$S = \int d^4x \left[-\frac{1}{g^2} F^2 + \bar{\psi} \left(\partial \!\!\!/ + A \!\!\!/ \right) \psi \right]$$

Consists of massless fermions interacting via electric fields.



What are the symmetries, exactly?

Symmetries of QED

First, let us consider freezing EM; view A as an external gauge field.

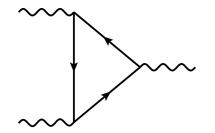
$$S = \int d^4x \left[-\frac{1}{g^2} F^2 + \bar{\psi} \left(\partial \!\!\!/ + A \!\!\!/ \right) \psi \right]$$

Global symmetries are very well-understood:

$$j_V^{\mu} = \bar{\psi}\gamma^{\mu}\psi$$
$$j_A^{\mu} = \bar{\psi}\gamma^{\mu}\gamma^5\psi$$

$$\partial_{\mu}j_{V}^{\mu}=0$$

$$\partial_{\mu}j_{A}^{\mu} = \frac{1}{4\pi^{2}}F \wedge F$$



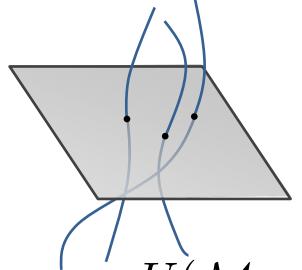
't Hooft anomaly: operator on RHS is a fixed external source. What about dynamical EM?

Generalizations of symmetry

To understand this, let's review ordinary 1-index currents first:

$$\nabla_{\mu} j^{\mu} = 0 \qquad d \star j = 0$$

An ordinary current counts particles; "catch them all" by integrating on a co-dimension 1 subspace:



$$Q = \int_{\mathcal{M}_{d-1}} \star j$$

Defines a U(1)-valued topological codimension-1 surface operator.

$$U(\mathcal{M}_{d-1}) = \exp(i\alpha Q(\mathcal{M}_{d-1}))$$

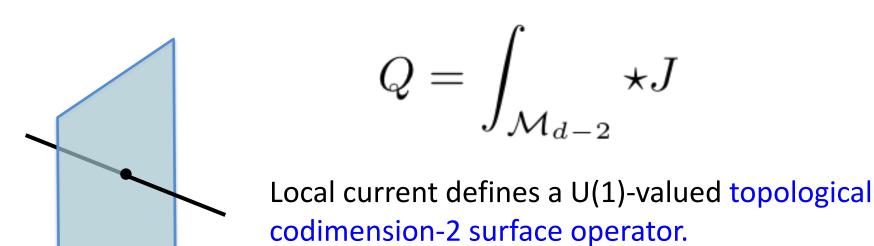
(Fancy way to talk about "conserved charge"; call this a 0-form symmetry)

Higher form symmetries

Now a 2-index current (Gaiotto, Kapustin, Seiberg, Willet):

$$\nabla_{\mu}J^{\mu\nu} = 0 \qquad d \star J = 0$$

A 2-index current counts strings; as they don't end in space or time, "catch them all" by integrating on a co-dimension 2 subspace:



 $U(\mathcal{M}_{d-2}) = \exp(i\alpha Q(\mathcal{M}_{d-2}))$

This is called a 1-form symmetry.

Symmetries of QED I

Now consider the situation where A is dynamical.

$$S = \int d^4x \left[-\frac{1}{g^2} F^2 + \bar{\psi} \left(\partial \!\!\!/ + A \!\!\!/ \right) \psi \right]$$

Vector current is gauged; no longer a global symmetry.

$$j_V^{\mu} = \bar{\psi}\gamma^{\mu}\psi \qquad \partial_{\mu}j_V^{\mu} = 0$$

New 1-form global symmetry associated with conservation of magnetic flux.

$$J^{\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} \qquad \nabla_{\mu} J^{\mu\nu} = 0$$

No magnetic monopoles means that magnetic field lines don't end. $J^{\mu\nu}$ counts magnetic flux density. (e.g. 4d photon is a Goldstone mode!)

Symmetries of QED II

$$S = \int d^4x \left[-\frac{1}{g^2} F^2 + \bar{\psi} \left(\partial \!\!\!/ + A \!\!\!/ \right) \psi \right]$$

How about the axial current?

$$j_A^{\mu} = \bar{\psi}\gamma^{\mu}\gamma^5\psi$$

$$\partial_{\mu}j_{A}^{\mu} = \frac{1}{4\pi^{2}}F \wedge F = -\frac{1}{4\pi^{2}}J \wedge J$$

Now the right hand side of the anomaly equation is an operator, not a fixed source; it appears that the current is simply not conserved?

True situation is somewhat more subtle...

Symmetries of QED II

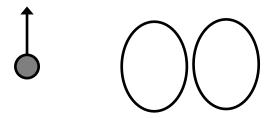
Summary of symmetries in massless QED:

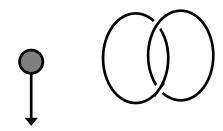
$$\partial_{\mu}J^{\mu\nu} = 0$$

$$\partial_{\mu}j_{A}^{\mu} = -\frac{1}{4\pi^{2}}J \wedge J$$

1-form symmetry for magnetic flux conservation.

Non-conservation of axial charge given in terms of 2-form current.



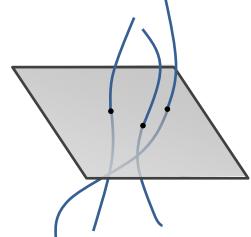


Right way to think about this was explained recently in terms of non-invertible symmetry (Choi, Lam, Shao; Cordova, Ohmori).

Non-invertible symmetry in QED

No conserved gauge-invariant current. Conserved charge?

$$Q(\mathcal{M}_3) = \int_{\mathcal{M}_3} \left(\star j_A - \frac{1}{4\pi^2} A \wedge dA \right)$$



Try and make a topological surface operator like before:

$$U(\mathcal{M}_3) = \exp\left(i\alpha Q(\mathcal{M}_3)\right)$$

This is gauge-invariant under small gauge transformations, but not large ones, unless α is 2π integer – but then the operator is always 1.

Feels like there is no useful conserved charge...

Non-invertible symmetry in QED

Try to make fractional $\alpha = 2\pi / N$:

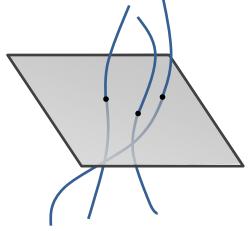
$$\frac{2\pi}{N}Q(\mathcal{M}_3) = \frac{2\pi}{N} \int_{\mathcal{M}_3} \left(\star j_A - \frac{1}{4\pi^2} A \wedge dA \right)$$

Idea (Choi et al; Cordova et. al): let's introduce a new dynamical field a defined only on the defect! Then we can write:

$$\frac{2\pi}{N}Q(\mathcal{M}_3) = \int_{\mathcal{M}_3} \left(\frac{2\pi}{N} \star j_A - \frac{N}{4\pi} a \wedge da + \frac{1}{2\pi} a \wedge dA \right)$$

"Integrating out a" gives us the top line: but now everything is gauge-invariant for integer N!

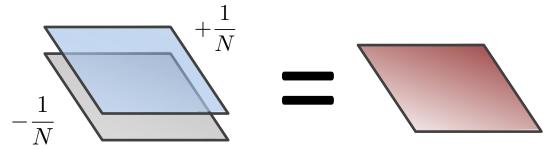
Constructed a topological charge operator, at the cost of introducing a new field a.



Some remarks

$$\frac{2\pi}{N}Q(\mathcal{M}_3) = \int_{\mathcal{M}_3} \left(\frac{2\pi}{N} \star j_A - \frac{N}{4\pi}a \wedge da + \frac{1}{2\pi}a \wedge dA\right)$$
$$\psi \to e^{\frac{2\pi i}{N}\gamma^5}\psi$$

- Replace axial phase rotation 1/N with any rational number by using a slightly fancier TQFT. Correct way to think about axial symmetry in QED.
- Called non-invertible symmetry (much recent work!), as it has no inverse; acting with the opposite charge doesn't give a trivial operator.



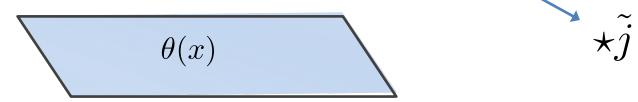
- No local conserved current! But the topological operators are useful: selection rules, constraints on effective actions, etc.
- Opens up many doors: what is the phase structure of these symmetries? Is there a Goldstone theorem? Can we do hydrodynamics? Etc. etc.

Another way

Another way to construct a topological charge operator (I. García-Etxebarria, NI; A. Karasik):

$$U_{\alpha}(\mathcal{M}_3) = \int [d\theta] \exp\left(i\alpha \int_{\mathcal{M}_3} \left(\star j_A - \frac{1}{4\pi^2} (A - d\theta) \wedge dA\right)\right)$$

Introduce a compact scalar field θ on the defect:



Still topological and non-invertible; difference with previous construction:

- There is now a gauge-invariant local current operator defined on the defect.
- Relatedly: symmetry transformation now labeled by arbitrary U(1) phase.
- This version will let us prove an analogue of Goldstone's theorem.

Goldstone's theorem I

Let's first formulate Goldstone's theorem for ordinary symmetries in Euclidean path-integral language (Hofman, NI).

Ward identity for U(1) current:

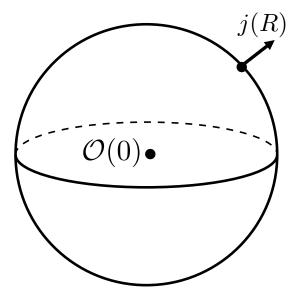
$$d \star j(x)\mathcal{O}(0) = iq\delta^{(4)}(x)\mathcal{O}(0)$$

Integrate both sides over interior of S³.

$$\int_{S^3} \star j(R)\mathcal{O}(0) = iq\mathcal{O}(0)$$

$$\langle j(R)\mathcal{O}(0)\rangle \sim \frac{iq\langle \mathcal{O}\rangle}{R^3}$$

If vev of charged operator is nonzero, must be a power-law correlation in theory; this is Goldstone mode.



Goldstone's theorem II: non-invertible

Let's now formulate Goldstone's theorem for these non-invertible symmetries.

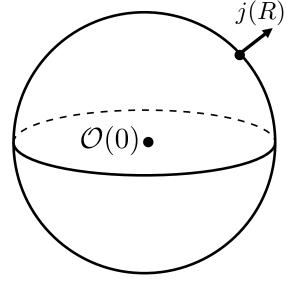
Wrap the operator with the charge defect:

$$U_{\alpha}(S^3)O(0) = e^{iq\alpha}O(0)$$

Take a derivative with respect to symmetry parameter:

$$\int_{S^3} \star \tilde{j}(R)\mathcal{O}(0) = iq\mathcal{O}(0)$$

$$\langle \tilde{j}(R)\mathcal{O}(0)\rangle_c \sim \frac{iq\langle \mathcal{O}\rangle}{R^3}$$



Proof is essentially the same (except current operator is localized on defect). We have Goldstone mode.

Axion effective theory

What is the low-energy theory of the Goldstone mode? Axion theory:

$$S[\phi, A] = \int \left(\frac{1}{2\gamma^2}d\phi^2 + \frac{1}{4g^2}F^2 + i\phi F \wedge F + \cdots\right)$$

"Why" is this theory massless?

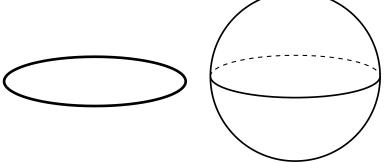
Often some words about "no U(1) instantons"; from our point of view, it is massless because it is the Goldstone mode of a spontaneously broken non-invertible symmetry.

(Same words apply in application to massless QCD: why is pion massless despite anomaly? Also protects masslessness of many fields in string theory.).

Behavior in non-zero flux sector

Interesting things happen when there is nontrivial topology. E.g consider $R \times S^2 \times S^1$ with defect wrapping $S^2 \times S^1$. There are sectors

with flux on S²:



$$\int_{S^2} F = 2\pi n$$

$$U_{\alpha}(\mathcal{M}_3) = \int [d\theta] \exp\left(i\alpha \int_{\mathcal{M}_3} \left(\star j_A - \frac{1}{4\pi^2} (A - d\theta) \wedge dA\right)\right)$$

Sum over windings of Θ results in projector of flux! (Example of noninvertibility).

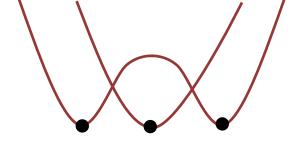
$$\sum_{w} \exp\left(\frac{i\alpha wn}{2}\right) \sim \delta_{n,0}$$

Future directions:

Physical applications of higher-form and non-invertible symmetries are still in their infancy. Basic questions are open:

Which systems have these symmetries? (Much recent study! See Yuya's talk!) When is there a Goldstone theorem?

What is the phase structure? Phase transitions and critical phenomena?

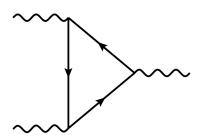


For QED: can we reformulate chiral magnetohydrodynamics with these non-invertible symmetries as a guiding principle? (Das, NI, Poovuttikul).

What is the new Landau paradigm built around these new symmetries?

Summary

- Non-invertible symmetry is a new way to think about systems with an ABJ anomaly.
- There is a Goldstone theorem for (some of) these non-invertible symmetries.
- A new non-invertible Landau paradigm?



The End