# Probing BSM particles using inelastic nuclear scattering

#### Wei-Chih Huang Texas A&M University

In collaboration with Bhaskar Dutta, Jayden Newstead, and Vishvas Pandey

#### Outline

- 1. Overview
- 2. Lab produced dark matter
- 3. Ambient dark matter (WIMP, boosted DM)
- 4. Axion
- 5. Conclusion

B. Dutta, <u>W. Huang</u>, J. L. Newstead 2302.10250; to appear B. Dutta, <u>W. Huang</u>, J. L. Newstead and V. Pandey, PRD 106 (2022) 113006; B. Dutta, <u>W. Huang</u>, D. Kim, J. Newstead, J. Pouk, to appear

### Overview

Detector **Direct detection** N nuclear recoin

Any particle to search

 $\dot{\chi} + N \to \chi + N^*$  $N^* \to N + \gamma$ signal

For each of DM, WIMP, and axion

- a. Theories and models
- b. Benchmark experiments
- c. Results

# Light dark matter in stopped pion experiment

Pros

- Lower background
- Little to none threshold effect

Cons

- Lower signal
- More calculations



Q: Why not elastic?

A: Elastic has high signal rates but also high background (keV nuclear recoil)

$$\frac{d\sigma_{\rm el}^{DM}}{dE_r} = \frac{e^2 \epsilon^2 g_D^2 Z^2}{4\pi (E_\chi^2 - m_\chi^2) (2m_N E_r + m_{A'}^2)^2} F^2(E_r) \\ \times \left[ 2E_\chi^2 m_N \left( 1 - \frac{E_r}{E_\chi} - \frac{m_N E_r}{2E_\chi^2} \right) + E_r^2 m_N \right]$$

#### Multipole expansion

Nuclear response function  $M_{JM}(q\vec{x}_i) \equiv j_J(qx_i)Y_{JM}(\Omega_{x_i})$ 

where  $Y_{JM}$  is Bessel spherical harmonics

$$\begin{aligned} \frac{d\sigma_{\text{inel}}^{DM}}{dE_{r}} &= \frac{2e^{2}\epsilon^{2}g_{D}^{2}E'_{\chi}^{2}}{p_{\chi}p'_{\chi}(2m_{N}E_{r}+m_{A'}^{2})^{2}}\frac{m_{N}}{2\pi}\frac{4\pi}{2J+1} \left\{ \sum_{J \geqslant 1, spin} \left[ \frac{1}{2}(\vec{l} \cdot \vec{l}^{*}-l_{3}l_{3}^{*})\left(|\langle J_{f}||\hat{\mathcal{T}}_{J}^{mag}||J_{i}\rangle|^{2}+|\langle J_{f}||\hat{\mathcal{T}}_{J}^{el}||J_{i}\rangle|^{2} \right) \right] \\ &+ \sum_{J \geqslant 0, spin} \left[ l_{0}l_{0}^{*}|\langle J_{f}||\hat{\mathcal{M}}_{J}||J_{i}\rangle|^{2}+l_{3}l_{3}^{*}|\langle J_{f}||\hat{\mathcal{L}}_{J}||J_{i}\rangle|^{2}-2l_{3}l_{0}^{*}Re\left(\langle J_{f}||\hat{\mathcal{L}}_{J}||J_{i}\rangle\langle J_{f}||\hat{\mathcal{M}}_{J}||J_{i}\rangle^{*}\right) \right] \right\} \end{aligned}$$

J. D. Walecka, 2004; W. Haxton, et al., 0706.2210

#### Nuclear Shell Model Code: BIGSTICK



It takes a long time and needs tons of RAM and CPU Is there a shortcut?

# Long Wavelength Limit

$$\begin{split} \hat{\mathcal{M}}_{JM}(q) &= \frac{q^J}{(2J+1)!!} \int d^3 x x^J Y_{JM} \hat{\mathcal{J}}_0(\mathbf{x}) \\ \hat{\mathcal{L}}_{JM}(q) &= \frac{-iq^{J-1}}{(2J+1)!!} \int d^3 x x^J Y_{JM} \nabla \cdot \hat{\mathcal{J}}(\mathbf{x}) \\ \hat{\mathcal{T}}_{JM}^{el}(q) &= -i \frac{q^{J-1}}{(2J+1)!!} \left(\frac{J+1}{J}\right)^{1/2} \int d^3 x x^J Y_{JM} \nabla \cdot \hat{\mathcal{J}}(\mathbf{x}) \\ \hat{\mathcal{T}}_{JM}^{mag}(q) &= i \frac{q^J}{(2J+1)!!} \left(\frac{J+1}{J}\right)^{1/2} \int d^3 x \left[\frac{1}{J+1} \mathbf{r} \times \hat{\mathcal{J}}(\mathbf{x})\right] \cdot \nabla x^J Y_{JM} \end{split}$$

The surviving multipoles are  $\hat{\mathcal{M}}_{00}, \hat{\mathcal{L}}_{1M}, \hat{\mathcal{T}}_{1M}^{el}$ .

$$\hat{\mathcal{M}}_{00} = \frac{1}{\sqrt{4\pi}} F_1 \sum_{i=1}^{A} \hat{FT} \left(\sim \hat{\tau}\right)$$

Fermi doesn't contribute to inelastic scattering because it's even-even operator. It only exists in elastic scattering

 $\hat{\mathcal{T}}_{1M}^{el} = \sqrt{2}\hat{\mathcal{L}}_{1M} = \frac{i}{\sqrt{6\pi}}G_A \sum_{i=1}^{A}\hat{GT} \left(\sim \hat{\sigma}\hat{\tau}\right)$ 

Is GT (Gamow Teller) the shortcut?

## Strength and Multipole in BIGSTICK

BIGSTICK can calculate the strength of a given operator

$$\left| (\Psi_f : J_f || \hat{\mathcal{O}}_J || \Psi_i J_i) \right|^2$$

|           | Strength                                 | Multipole                                   |
|-----------|------------------------------------------|---------------------------------------------|
| Time      | Short                                    | Long                                        |
| RAM & CPU | Light                                    | Heavy                                       |
| Output    | Less detailed<br>The strength and energy | Comprehensive<br>Density matrix -> strength |

Multipole has energy, spin, isospin, and density matrix Strength only has energy, strength



### **Cross Section in Long Wavelength Limit**



#### **DM-Nucleus Scattering: Elastic vs Inelastic**

$$\begin{aligned} \frac{d\sigma_{\rm el}^{DM}}{dE_r} &= \frac{e^2 \epsilon^2 g_D^2 Z^2}{4\pi (E_\chi^2 - m_\chi^2)(2m_N E_r + m_{A'}^2)^2} F^2(E_r) \\ \times & \left[ 2E_\chi^2 m_N \left( 1 - \frac{E_r}{E_\chi} - \frac{m_N E_r}{2E_\chi^2} \right) + E_r^2 m_N \right] \\ \frac{d\sigma_{inel}^{DM}}{d\cos\theta} &= \frac{2e^2 \epsilon^2 g_D^2 E'_\chi^2}{(2m_N E_r + m_{A'}^2)^2} \frac{1}{2\pi} \frac{4\pi}{2J+1} \\ & \times \sum_{s_i,s_f} \vec{l} \cdot \vec{l}^* \frac{g_A^2}{12\pi} |\langle J_f || \sum_{i=1}^A \frac{1}{2} \hat{\sigma}_i \hat{\tau}_0 || J_i \rangle|^2 \end{aligned}$$

For Ar40

$$\left(\frac{Inelastic}{Elastic}\right)_{signal} = 10^{-2} - 10^{-1}$$
$$\left(\frac{Inelastic}{Elastic}\right)_{bkg} = 10^{-4} - 10^{-3}$$

#### Inelastic search can be better



#### **Inelastic DM-Nucleus Scattering**

Cross section has the same form for fermion and scalar DM, only difference is the current  $l_{\mu} = \bar{\chi} \gamma^{\mu} \chi$ .

$$\frac{d\sigma_{inel}^{DM}}{d\cos\theta} = \frac{2e^2\epsilon^2 g_D^2 E'_{\chi}^2}{(2m_N E_r + m_{A'}^2)^2} \frac{1}{2\pi} \frac{4\pi}{2J+1} \times \sum_{s_i,s_f} \vec{l} \cdot \vec{l}^* \frac{g_A^2}{12\pi} |\langle J_f|| \sum_{i=1}^A \frac{1}{2} \hat{\sigma}_i \hat{\tau}_0 ||J_i\rangle|^2$$

Fermion 
$$\mathcal{L}_f \supset g_D A'_\mu \bar{\chi} \gamma^\mu \chi + e \epsilon Q_q A'_\mu \bar{q} \gamma^\mu q$$
  
 $\sum_{s_i, s_f} \vec{l} \cdot \vec{l}^* = 3 - \frac{1}{E_\chi E'_\chi} \left[ \frac{1}{2} \left( p_\chi^2 + p'_\chi^2 - 2m_N E_r \right) + \frac{3m_\chi^2}{4} \right]$   
Scalar  $\mathcal{L}_s \supset |D_\mu \phi|^2 + e \epsilon Q_q A'_\mu \bar{q} \gamma^\mu q$   
 $\vec{l} \cdot \vec{l}^* = \frac{1}{2E_\chi E'_\chi} \left( p_\chi^2 + p'_\chi^2 - 2m_N E_r \right)$ 

### **Experiments and Detectors**









CAPTAIN = "Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos"

#### Why Nal and CCM? They have large detector mass

| - | Experiment           | $E_{\rm beam}$ | POT                  | Target | Detector: |         |          |               |                  |
|---|----------------------|----------------|----------------------|--------|-----------|---------|----------|---------------|------------------|
|   | and p                | [GeV]          | $[\mathrm{yr}^{-1}]$ |        | target    | mass    | distance | angle         | $E_r^{ m th}$    |
|   | COHERENT             | 1              | $1.5 \times 10^{23}$ | Hg     | CsI[Na]   | 14.6 kg | 19.3 m   | 90°           | 6.5  keV         |
|   |                      |                |                      |        | NaI[Tl]   | 185  kg | 22 m     | $120^{\circ}$ | 900  keV         |
|   |                      |                |                      |        | NaI[T1]   | 3500 kg | 22 m     | $120^{\circ}$ | $\sim few \ keV$ |
| 1 | $\operatorname{CCM}$ | 0.8            | $1.0 	imes 10^{22}$  | W      | Ar        | 7 t     | 20 m     | $90^{\circ}$  | 25  keV          |

### DM Flux in CCM

#### $A' ightarrow \chi ar{\chi}$ Decay in < O(-10) ns





# **Prompt Window**



### Background

| Detector        | Bkg estimation* |
|-----------------|-----------------|
| COHERENT<br>Nal | ~O(100)         |
| ССМ             | ~O(100)         |

\*1/100 Background reduction applied

Nal (COHERENT) is ongoing, we assumed similar background as CCM CCM Collaboration, A. A. Aguilar-Arevalo et al., 2022

Rescale the GT strength (0.162) to be consistent with the experiment

W. Tornow et al., 2210.14316

Baishan's calculation on many (~30) multipole states shows that GT indeed works Baishan Hu, to be appear



### Background

| Detector | Bkg estimation |
|----------|----------------|
| PIP2BD   | ~700           |

~GeV beam 100t LAr 4.95e23 POT total Proposed beam dump experiment at Fermilab Bkg is scaled from CCM by relative POT ratio



M. Toups et al., 2203.08079

# **Sensitivities Plot**

Dashed is our calculation

 $g_D = \sqrt{2\pi}$ 

$$\sigma_{\text{elastic}} \sim 1/(2m_N E_r + m_{A'}^2)^2$$
  
 $\approx 1/(2m_N E_r)^2 \text{ if } m_{A'}^2 < 2m_N E_r$ 

Er~O(10) keV causes the flatness in the sensitivity curve for elastic nuclear scattering



#### **Sensitivities Plot**

#### Dashed is our calculation

 $m_{A'}/m_{\chi} \approx 2$ 

#### COHERENT Collaboration, 2205.12414; A. A. Aguilar-Arevalo et al, 2109.14146



#### WIMP & Ambient DM

#### Interaction and cross section

$$\mathcal{L} \supset g_D A'_\mu \bar{\chi} \gamma^\mu \chi + e \epsilon Q_q A'_\mu \bar{q} \gamma^\mu q$$
 Same as light DM

$$\frac{d\sigma_{inel}^{DM}}{d\cos\theta} = \frac{2e^2\epsilon^2 g_D^2 E_{\chi}' p_{\chi}'}{(2m_N E_r + m_{A'}^2)^2} \frac{1}{2\pi} \frac{4\pi}{2J+1} \times \frac{r_{\chi}}{\sum_{s_i,s_f}} \vec{l} \cdot \vec{l}^* \frac{g_A^2}{12\pi} |\langle J_f|| \sum_{i=1}^A \frac{1}{2} \hat{\sigma_i} \hat{\tau_0} ||J_i\rangle|^2$$

A correction factor due to large mass of DM

$$r_{\chi} = \left[1 + \frac{E_{\chi}}{m_N} \left(1 - \cos\theta\right)\right]^{-1}$$
$$r_{\chi} \to 1 \text{ if } m_N \gg m_{\chi}$$

# Experiments





| Experiment | Material      | Geometry                     |
|------------|---------------|------------------------------|
| HyperK     | 188kton water | 78m tall, 74m diameter       |
| DUNE       | 40kton Ar40   | L: 65.8m, W: 18.9m, H: 17.8m |

### **BIGSTICK GT strength**



### Backgrounds

M. Honda et al., PRD 92, 023004, 2015; Yoichiro Suzuki, 2000

$$\nu + N \rightarrow \nu + N^{*}$$

$$N^{*} \rightarrow N + \gamma$$
Inelastic neutrino scattering  $\sigma_{\nu}^{GT} \approx \frac{G_{f}^{2}g_{A}^{2}}{\pi(2J+1)}(E_{\nu} - \Delta E)^{2} \left| \left\langle J_{f} \right\| \sum_{i=1}^{A} \frac{1}{2} \hat{\sigma}_{i} \hat{\tau}_{0} \left\| J_{i} \right\rangle \right|^{2}$ 

$$\frac{10^{9}}{10^{9}} \int_{\frac{10^{9}}{10^{9}}} \frac{10^{9}}{10^{9}} \int_{\frac{10^{9}}{10^{9}}} \frac{1$$

### **Sensitivities Plot**

Ambient WIMP Boosted DM



WIMP 90% sensitivity ( $m_{A'} = 1$ GeV, 3 years run time)

#### Axion

### Interaction

$$\mathcal{L}_{\text{int}} \supset \frac{\partial_{\mu}a}{f_a} \bar{N} \gamma^{\mu} \gamma^5 N - \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$g_{ann} = \frac{1}{f_a}$$

$$a \text{ is axion (pseudoscalar)}$$

$$g_{ann} \text{ and } g_{a\gamma\gamma} \text{ have dimension } E^{-1}$$

 $\Delta_1 = \text{deexcitation energy} \ll m_N$  (source/production)  $\Delta_2 = \text{excitation energy} \ll m_N$  (absorption/detection)



Coupling

 $g_{ann}$ 

 $g_{a\gamma\gamma}$ 

#### Production

Nuclear deexcitation  $N^* \to N + \gamma/a$ Primakoff  $\gamma + e^-/N \to a + e^-/N$ Detection

Nuclear absorption  $a + N \to N^* \to N + \gamma$  $g_{ann}$ Inverse Primakoff  $a + N \to \gamma + N$  $g_{a\gamma\gamma}$ Decay  $a \to 2\gamma$  $g_{a\gamma\gamma}$ 

B. Dutta, <u>W. Huang</u>, J. Newstead

#### Production cross sections

Primakoff 
$$\frac{d\sigma_P^p}{d\cos\theta} = \frac{1}{4}g_{a\gamma\gamma}^2\alpha Z^2 F^2(t)\frac{|\vec{p}_a|^4\sin^2\theta}{t^2}$$

$$t = m_a^2 + E_\gamma (E_a - p_a \, \cos \theta)$$

|               | Channel                                               | $\mathrm{E}_{\gamma}$ | Transitions                                                                                       | $\Phi_{\gamma}$  |       |
|---------------|-------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------|------------------|-------|
|               |                                                       | $(\mathrm{keV})$      |                                                                                                   | $(fission^{-1})$ | (GCi) |
| Nuclear lines | $\mathrm{p}(\mathrm{n},\gamma)\mathrm{d}$             | 2230                  | Isovector M1                                                                                      | 0.25             | 0.61  |
| at tarnet     | $^{10}\mathrm{B}(\mathrm{n},lpha)^{7}\mathrm{Li}^{*}$ | 478                   | M1 $\left(\frac{1}{2}^{-}\right) \rightarrow \left(\frac{3}{2}^{-}\right)$                        | 0.28             | 0.68  |
| at larget     | $^{91}Y^{*}$                                          | 555                   | M4 $\left(\frac{9}{2}^+\right) \rightarrow \left(\frac{1}{2}^-\right)$                            | 0.024            | 0.058 |
|               | $^{97}\mathrm{Nb}^{*}$                                | 743                   | M4 $(\frac{\overline{1}}{2}^{-}) \rightarrow (\frac{\overline{9}}{2}^{+})$                        | 0.055            | 0.13  |
|               | $^{135}$ Xe <sup>*</sup>                              | 526                   | M4 $\left(\frac{\overline{11}}{2}^{-}\right) \rightarrow \left(\frac{\overline{3}}{2}^{+}\right)$ | 0.0097           | 0.023 |
|               | $^{137}\mathrm{Ba}^*$                                 | 662                   | M4 $\left(\frac{\overline{11}}{2}^{-}\right) \rightarrow \left(\frac{\overline{3}}{2}^{+}\right)$ | 0.0042           | 0.010 |
|               |                                                       |                       |                                                                                                   |                  |       |

#### **Detection cross sections**

$$\begin{split} \Gamma(a \to 2\gamma) &= \frac{g_{a\gamma\gamma}^2 m_a^3}{64\pi} & \text{Gamow Teller cross section} \\ \frac{d\sigma_{\text{invPri}}}{d\cos\theta} &= \frac{1}{2} g_{a\gamma}^2 \alpha Z^2 F^2(t) \frac{p_a^4 \sin^2\theta}{t^2} & \sigma_{\text{abs}}(E_a, \Delta_2) = \frac{g_A^2 \pi}{6(2J+1)} g_{ann}^2 \delta(E_a - E_r - \Delta_2) p_a |\langle J_f|| \sum_{i=1}^A \frac{1}{2} \hat{\sigma_i} \hat{\tau_0} ||J_i\rangle|^2 \\ \sigma_{\text{abs}} &= g_{ann}^2 2\pi \delta(E_a - E_r - \Delta_2) p_a \cdot F \end{split}$$

### M and E transitions



 $\begin{array}{c} J_i - J_f | \leq J \leq J_i \\ \pi = \pi_i \pi_f \end{array}$ 

$$\pi = (-1)^{I}$$
 for E transitions  
 $\pi = (-1)^{I+1}$  for M transitions  
multipolarity =  $2^{I}$ 



| 1 | $\pi_{\gamma}$ | Radiation type                | Label |
|---|----------------|-------------------------------|-------|
| 1 | -1             | Electric Dipole radiation     | E1    |
| 1 | +1             | Magnetic Dipole radiation     | M1    |
| 2 | -1             | Magnetic Quadrupole radiation | M2    |
| 2 | +1             | Electric Quadrupole radiation | E2    |
| 3 | -1             | Electric Octapole radiation   | E3    |
| 3 | +1             | Magnetic Octapole radiation   | M3    |

#### Nuclear deexcitation lines

| This table uses 2.                                      | 9GW pow          | er reactor, but we use                                                     |                                     |                    |                                      |
|---------------------------------------------------------|------------------|----------------------------------------------------------------------------|-------------------------------------|--------------------|--------------------------------------|
| 1MW, so scaling is                                      | s required       | 1Ci                                                                        | $= 3.7 \times 10^{10} \text{decay}$ | v per second       |                                      |
| Channel                                                 | $E_{\gamma}$     | Transitions                                                                | $\Phi_{\gamma}$                     | $1$ GCi $= 10^9$ C | i                                    |
|                                                         | $(\mathrm{keV})$ |                                                                            | $(fission^{-1})$                    | (GCi)              | BIGSTICK can calculate the           |
| $p(n,\gamma)d$                                          | 2230             | Isovector M1                                                               | 0.25                                | 0.61               | parameters of the branching ratio.   |
| $^{10}\mathrm{B}(\mathrm{n},\alpha)^{7}\mathrm{Li}^{*}$ | 478              | M1 $\left(\frac{1}{2}^{-}\right) \rightarrow \left(\frac{3}{2}^{-}\right)$ | 0.28                                | 0.68               | However                              |
| $91_{\mathbf{Y}^*}$                                     | 555              | $\frac{M4}{(\frac{9}{2}^+)} \rightarrow (\frac{1}{2}^-)$                   | 0.024                               | 0.058              | p/n orbits are different             |
| <u>97 Nb*</u>                                           | 743              | $M4(\frac{\tilde{1}}{2}) \rightarrow (\frac{\tilde{9}}{2})$                | 0.055                               | 0.13               | too many nucleons                    |
| $^{135}$ Xe <sup>*</sup>                                | 526              | M4 $\left(\frac{11}{2}\right) \rightarrow \left(\frac{3}{2}\right)$        | 0.0097                              | 0.023              |                                      |
| $^{137}\mathrm{Ba}^{*}$                                 | 662              | M4 $\left(\frac{1}{2}^{-}\right) \rightarrow \left(\frac{3}{2}^{+}\right)$ | 0.0042                              | 0.010              | TEXONO Collaboration, hep-ex/0609001 |
|                                                         |                  |                                                                            |                                     |                    |                                      |

# Branching ratio

#### F. T. Avignone III, et al., PRD.37.618, 1988

|                                                                                                                                                                                                                                                                                                         |                                              |                                         |                                                     | gs = 0                                                                                                                                            | gs = 1                                                                                                                                         |                                                                                                                                          |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Nucleus                                                                                                                                                                                                                                                                                                 | transition                                   | ΔE [keV]                                | J                                                   | n (exp)                                                                                                                                           | n (BIGSTICK)                                                                                                                                   | beta                                                                                                                                     | eta                                                                                  |
| Li7                                                                                                                                                                                                                                                                                                     | M1                                           | 478                                     | 1/2- => 3/2-                                        | 1 => 0                                                                                                                                            | 2 => 1                                                                                                                                         | 1                                                                                                                                        | -3.4 * 10^-3                                                                         |
| Xe135                                                                                                                                                                                                                                                                                                   | M4                                           | 526                                     | 11/2- => 3/2+                                       | 2 => 0                                                                                                                                            |                                                                                                                                                |                                                                                                                                          |                                                                                      |
| Ba137                                                                                                                                                                                                                                                                                                   | M4                                           | 662                                     | 11/2- => 3/2+                                       | 2 => 0                                                                                                                                            |                                                                                                                                                |                                                                                                                                          |                                                                                      |
| $\left(\frac{\Gamma_a}{\Gamma_{\gamma}}\right)_{\rm MJ} = \frac{1}{\pi\alpha} \frac{1}{1+\delta^2} \frac{J}{J+1} \left(\frac{ \vec{p}_a }{ \vec{p}_{\gamma} }\right)^{2J+1} \frac{g_{ann}(\text{at left}) = g_{ann}(\text{in 1st slide}) \times GeV}{g_{ann}(\text{at left}) \text{ is dimensionless}}$ |                                              |                                         |                                                     |                                                                                                                                                   |                                                                                                                                                |                                                                                                                                          |                                                                                      |
| ×                                                                                                                                                                                                                                                                                                       | $\left(\frac{g_{ann}}{(\mu_0 - 1/2)}\right)$ | $\frac{(1+\beta)}{(2)\beta+\mu_1-\eta}$ | $\left(\frac{1}{\delta}\right)^2, \delta \approx 0$ | $\beta = \frac{\left\langle J_f \right  \left  \sum_{i=1}^{A} \sigma_i \right }{\left\langle J_f \right  \left  \sum_{i=1}^{A} \sigma_i \right }$ | $\frac{\boldsymbol{\sigma}(i) \left  \left  \boldsymbol{J}_i \right\rangle}{i \tau_3(i) \left  \left  \boldsymbol{J}_i \right\rangle} \right.$ | $\eta = -\frac{\left\langle J_f \right  \left  \sum_{i=1}^{A} l \right }{\left\langle J_f \right  \left  \sum_{i=1}^{A} \sigma \right }$ | $\frac{(i)\tau_{3}(i)}{(i)\tau_{3}(i)} \begin{vmatrix} J_{i} \\ J_{i} \end{vmatrix}$ |

$$\frac{p+n \to D+\gamma/a}{\Gamma_{\gamma}}(pn \to d\gamma) = \frac{1}{2\pi\alpha} \left(\frac{p_a}{p_{\gamma}}\right)^3 \left(\frac{g_{ann}^1}{\mu_1}\right)^2 \text{ equivalently } \delta = \beta = \eta = 0, J = 1$$

#### **Experiments**

- Beam dump: CCM, IsoDAR, PIP2BD, ...
- Reactor: MINER at Texas A&M

#### MINER Mitchell Institute Neutrino Experiment at Reactor



# MINER CsI detector

Background reduction: 10% Exposure: 1 year Detector threshold: 50 keV

| Name | Mass [kg] | Area [m^2] | Length [m] | Distance [m] |
|------|-----------|------------|------------|--------------|
| 1x1  | 3.547     | 0.0155     | 0.0508     | 4            |
| 3x3  | 31.923    | 0.0464     | 0.1524     | 4            |



Detectors array Blue: 3x3 Red: 1x1

## MINER Background and photon flux

Window cuts on background cut 1: 0.45-1.25 MeV cut 2: 3.18-4.79 MeV



#### **BIGSTICK GT strength and cross section**



# Nuclear lines in PIP2BD



There are too many nuclei, but most of them are not matched with experiment data. Ni60 seems to be the best match



#### Source: nuclear deexcitation **Detection: nuclear absorption**

#### \*axions don't decay



#### PIP2BD

100t LAr, 1yr exposure 1e23 total POT 100 bkg reduction

#### Lines:

- Ni60 9.38MeV (800MeV beam, shielded target)
- N15 5.266MeV (2GeV beam, C target)

#### **MINER**

32kg Csl, 1yr exposure No bkg reduction

#### Lines:

- Li7 478keV
- pn 2230keV

# Source: primakoff AND/OR nuclear Detection: inv. primakoff, decay, absorption



#### IsoDAR

8e24 POT per 5 yr 2.26kton liquid scintillator 17 meter away from target

| Nucleus | Energy in MeV | Type | β      | $\eta$  |
|---------|---------------|------|--------|---------|
| Fe57    | 7.606         | M1   | 0.7071 | -0.3111 |
| Li8     | 1.009         | M1   | 1      | -0.0260 |
| Li8     | 2.053         | M1   | 1      | -0.1034 |
| 015     | 5.281         | M2   | 1      | 0.5     |

L. Waites et al., 2207.13659

# Conclusion

- We calculate the inelastic cross-section and event rates for DM/WIMP/axion nucleus scattering.
- Gamow-Teller transitions in long wavelength limit dominate the cross section.
- With inelastic scattering, we explore new region on the parameter space.
- We can remove most of the neutrino background efficiently with prompt timing cut in DM search in beam dump experiments

#### Next steps

- Search in MicroBoone and SBND
- Apply efficiency to have better estimation of the search

### Backup slides

#### The shaded region in DM sensitivities plots



### Multipole expansion (Standard Model)

Current-current interaction in Hamiltonian

$$\langle f | \hat{H}_{W} | i \rangle = -\frac{G}{\sqrt{2}} l_{\mu} \int d^{3}x \, e^{-i\mathbf{q} \cdot \mathbf{x}} \langle f | \hat{\mathcal{J}}_{\mu}(\mathbf{x}) | i \rangle$$

$$= -\frac{G}{\sqrt{2}} \int d^{3}x \, e^{-i\mathbf{q} \cdot \mathbf{x}} \langle f | \hat{\mathcal{J}}_{\mu}(\mathbf{x}) | i \rangle$$

$$= -\frac{G}{\sqrt{2}} \int d^{3}x \, e^{-i\mathbf{q} \cdot \mathbf{x}} [\mathbf{l} \cdot \mathcal{J}(\mathbf{x})_{f\,i} - l_{0}\mathcal{J}_{0}(\mathbf{x})_{f\,i}]$$

$$e^{\dagger}_{\mathbf{q}\lambda} e^{-i\mathbf{q} \cdot \mathbf{x}} = -\sum_{J \ge 1}^{\infty} \sqrt{2\pi(2J+1)}(-i)^{J} \left\{ \lambda j_{J}(\kappa x) \mathcal{Y}_{JJ_{1}}^{\lambda} + \frac{1}{\kappa} \nabla \times \left[ j_{J}(\kappa x) \mathcal{Y}_{JJ_{1}}^{\lambda} \right] \right\}$$

$$; \text{ for } \lambda = \pm 1$$

$$e^{\dagger}_{\mathbf{q}0} e^{-i\mathbf{q} \cdot \mathbf{x}} = \frac{i}{\kappa} \sum_{J \ge 0}^{\infty} \sqrt{4\pi(2J+1)}(-i)^{J} \nabla [j_{J}(\kappa x)Y_{J0}]$$

J. D. Walecka, 2004

0

#### Multipole expansion (Standard Model)

$$\begin{split} \langle f | \hat{H}_{\mathrm{W}} | i \rangle &= \frac{-G}{\sqrt{2}} \langle f | \left\{ -\sum_{J \ge 1} \sqrt{2\pi (2J+1)} (-i)^J \sum_{\lambda = \pm 1} l_\lambda \left[ \lambda \hat{T}_{J-\lambda}^{\mathrm{mag}}(\kappa) + \hat{T}_{J-\lambda}^{\mathrm{el}}(\kappa) \right] \right. \\ &+ \sum_{J \ge 0} \sqrt{4\pi (2J+1)} (-i)^J \left[ l_3 \hat{\mathcal{L}}_{J0}(\kappa) - l_0 \hat{\mathcal{M}}_{J0}(\kappa) \right] \right\} | i \rangle \end{split}$$

1

Multipole Operators

$$\hat{\mathcal{M}}_{JM}(\kappa) \equiv \hat{M}_{JM} + \hat{M}_{JM}^5 = \int d^3x [j_J(\kappa x)Y_{JM}(\Omega_x)]\hat{\mathcal{J}}_0(\mathbf{x})$$

$$\hat{\mathcal{L}}_{JM}(\kappa) \equiv \hat{\mathcal{L}}_{JM} + \hat{\mathcal{L}}_{JM}^5 = \frac{i}{\kappa} \int d^3x \{\nabla [j_J(\kappa x)Y_{JM}(\Omega_x)]\} \cdot \hat{\mathcal{J}}(\mathbf{x})$$

$$\hat{\mathcal{T}}_{JM}^{el}(\kappa) \equiv \hat{\mathcal{T}}_{JM}^{el} + \hat{\mathcal{T}}_{JM}^{el5} = \frac{1}{\kappa} \int d^3x [\nabla \times j_J(\kappa x)\mathcal{Y}_{JJ1}^M(\Omega_x)] \cdot \hat{\mathcal{J}}(\mathbf{x})$$

$$\hat{\mathcal{T}}_{JM}^{mag}(\kappa) \equiv \hat{\mathcal{T}}_{JM}^{mag5} + \hat{\mathcal{T}}_{JM}^{mag5} = \int d^3x [j_J(\kappa x)\mathcal{Y}_{JJ1}^M(\Omega_x)] \cdot \hat{\mathcal{J}}(\mathbf{x})$$

J. D. Walecka, 2004

#### Multipole operator and response function

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \text{Multipole} \\ \text{Operators} \end{array} & \begin{array}{l} \text{Response} \\ \text{functions} \end{array} \\ \mathcal{M} = \mathcal{M}_{LM} + \mathcal{M}_{LM}^{5} = \left\{ F_{1}^{N} M_{L}^{M} + \frac{\mathbf{q}^{2}}{4m_{N}^{2}} (F_{1}^{N} + 2F_{2}^{N}) (\Phi_{L}^{''M} - \frac{1}{2}M_{LM}) \right\} + \left\{ -i\frac{|\mathbf{q}|}{m_{N}} G_{A}^{N} \left[ \Omega_{L}^{M} + \frac{1}{2} \Sigma_{L}^{''M} \right] \right\} \\ \mathcal{L} = \mathcal{L}_{LM} + \mathcal{L}_{LM}^{5} = \left\{ \frac{q^{0}}{|\mathbf{q}|} \mathcal{M} \right\} + \left\{ i \left[ G_{A}^{N} (1 - \frac{\mathbf{q}^{2}}{8m_{N}^{2}}) - \frac{\mathbf{q}^{2}}{4m_{N}^{2}} G_{P}^{N} \right] \Sigma_{L}^{''M} \right\} \\ \mathcal{T}^{el} = \mathcal{T}_{LM}^{el} + \mathcal{L}_{LM}^{el5} = \left\{ \frac{|\mathbf{q}|}{m_{N}} \left[ F_{1}^{N} \Delta_{L}^{'M} + \frac{F_{1}^{N} + F_{2}^{N}}{2} \Sigma_{L}^{M} \right] \right\} + \left\{ i G_{A}^{N} (1 - \frac{\mathbf{q}^{2}}{8m_{N}^{2}}) \Sigma_{L}^{'M} \right\} \\ \mathcal{T}^{mag} = \mathcal{T}_{LM}^{mag} + \mathcal{L}_{LM}^{mag5} = \left\{ -i\frac{|\mathbf{q}|}{m_{N}} \left[ F_{1}^{N} \Delta_{L}^{M} - \frac{F_{1}^{N} + F_{2}^{N}}{2} \Sigma_{L}^{'M} \right] \right\} + \left\{ G_{A}^{N} (1 - \frac{\mathbf{q}^{2}}{8m_{N}^{2}}) \Sigma_{L}^{M} \right\} \end{array}$$

### Multipole expansion (Standard Model)

 $\frac{1}{(2J_i+1)} \sum_{M} \sum_{M} |\langle f | \hat{H}_{W} | i \rangle|^2 = \frac{G^2}{2} \frac{4\pi}{(2J_i+1)} \times$  $\left\{\sum_{I > 1} \left[\frac{1}{2} (\mathbf{l} \cdot \mathbf{l}^* - l_3 l_3^*) \left( |\langle J_f| | \hat{T}_J^{\mathrm{mag}} | |J_i \rangle|^2 + |\langle J_f| | \hat{T}_J^{\mathrm{el}} | |J_i \rangle|^2 \right)\right.$  $-\frac{i}{2}(\mathbf{l}\times\mathbf{l}^*)_3\left(2\operatorname{Re}\langle J_f||\hat{T}_J^{\mathrm{mag}}||J_i\rangle\langle J_f||\hat{T}_J^{\mathrm{el}}||J_i\rangle^*\right)\right|$  $+\sum_{I>0} \left[ l_3 l_3^* |\langle J_f || \hat{\mathcal{L}}_J || J_i \rangle|^2 + l_0 l_0^* |\langle J_f || \hat{\mathcal{M}}_J || J_i \rangle|^2 \right]$  $-2\operatorname{Re}\left(l_{3}l_{0}^{*}\langle J_{f}||\hat{\mathcal{L}}_{J}||J_{i}\rangle\langle J_{f}||\hat{\mathcal{M}}_{J}||J_{i}\rangle^{*}\right)\right] \bigg\}$  $\left(\frac{d\sigma}{d\Omega}\right)_{\nu}^{\text{BRL}} = \frac{G^2 \varepsilon^2}{2\pi^2} \frac{4\pi}{2J_i + 1} \left\{\cos^2 \frac{\theta}{2} \sum_{J=0}^{\infty} |\langle J_f| |\hat{\mathcal{M}}_J - \frac{q_0}{|\mathbf{q}|} \hat{\mathcal{L}}_J ||J_i\rangle|^2\right\}$ Cross  $+ \left| \frac{q_{\mu}^2}{2\mathbf{q}^2} \cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2} \right| \sum_{J=1}^{\infty} \left[ |\langle J_f| |\hat{T}_J^{\text{mag}}| |J_i\rangle|^2 + |\langle J_f| |\hat{T}_J^{\text{el}}| |J_i\rangle|^2 \right]$ section  $\mp \frac{\sin\theta/2}{|\mathbf{q}|} \sqrt{q_{\mu}^{2} \cos^{2}\frac{\theta}{2} + \mathbf{q}^{2} \sin^{2}\frac{\theta}{2}} \sum_{i=1}^{\infty} 2\operatorname{Re}\left[\langle J_{f} || \hat{T}_{J}^{\mathrm{mag}} || J_{i} \rangle \langle J_{f} || \hat{T}_{J}^{\mathrm{el}} || J_{i} \rangle^{*}\right]$ 

See details at the book Theoretical Nuclear and Subnuclear Physics (2ed) by Walecka

#### Inel DM scattering cross section

#### Raw Discrete Strength Lines





#### Convolution Plots



#### Inelastic neutrino-nucleus scattering



#### Events

| Scattering                | Experiment | Elastic              | Inelastic             | Ratio                |
|---------------------------|------------|----------------------|-----------------------|----------------------|
| $\nu$ -40 Ar              | COHERENT   | $2.27 \times 10^{2}$ | 3.15                  | $7.21 \times 10$     |
| $\nu$ - <sup>40</sup> Ar  | CCM        | $1.91 \times 10^{4}$ | $2.65 \times 10^{2}$  | $7.21 \times 10$     |
| $\nu$ - <sup>133</sup> Cs | COHERENT   | $1.16 \times 10^{3}$ | $1.52 \times 10^{-2}$ | $7.65 \times 10^{3}$ |
| $\nu^{-127}$ I            | COHERENT   | $1.06 \times 10^{3}$ | $3.75 \times 10^{-1}$ | $2.81 \times 10^{3}$ |



### GT strength for neutrino scattering

30MeV nu energy



### GT strength for neutrino scattering

30MeV nu energy 150 keV width Gaussian



# BIGSTICK ground state to ground state comparing to Helm form factor

MPD = multipole decomposition



#### M lines from GEANT

#### 800MeV Be



2GeV Be



PIP2BD

| Nucleus | Energy [MeV] | per 10^5 POT |  |
|---------|--------------|--------------|--|
| Li7     | 0.435        | 465.8        |  |
| N15     | 2.29         | 3.974        |  |
| O16     | 2.774        | 13.836       |  |
| B10     | 1            | 21.675       |  |

800MeV C





#### 2GeV C

# PIP2BD

| $     \begin{array}{c cccccccccccccccccccccccccccccccc$                                                                        | Li7 0.435 887.041<br>N15 5.266 13.836<br>O16 2.774 13.836<br>B10 1 32.79<br>Gammas<br>$10^3 \int_{10^2}^{10^2} \int_{10^1}^{10^2} \int_{10^2}^{10^2} \int_{10^1}^{10^2} \int_{10^2}^{10^2} \int_{10^1}^{10^2} \int_{10^2}^{10^2} \int_{10^1}^{10^2} \int_{10^2}^{1$ |                    | Nucleus Energy [MeV] |                                              | per 10^5 POT                            |  |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|----------------------------------------------|-----------------------------------------|--|
| $     \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                    | N15 5.266 13.836<br>O16 2.774 13.836<br>B10 1 32.79<br>Gammas<br>$I_{10^3}^{10^3} = I_{10^2}^{10^2} = I_{10^2$                                                                                                                                                                                                                                                                                                                                                                                    |                    | Li7                  | 0.435                                        | 887.041                                 |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                         | O16 2.774 13.836<br>B10 1 32.79<br>Gammas<br>$U^7$ $U^7$                                                                                                                                                                                                                                                                                                                                                                                    |                    | N15                  | 5.266                                        | 13.836                                  |  |
| B10 1 32.79<br>Gammas 32.79                                                                                                    | B10 1 32.79<br>Gammas $10^{3}$ $10^{3}$ $10^{2}$ $10^{2}$ $10^{2}$ $10^{2}$ $10^{2}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$ $10^{1}$                                                                                                                                                                                                                                                                                                                                                                                            |                    | O16                  | 2.774                                        | 13.836                                  |  |
| $10^{3} \\ 10^{3} \\ 10^{2} \\ 10^{1} \\ 10^{1} \\ 10^{1} \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $ | Mi E2 E3 E3 $M_1$ E2                                                                                                                                                                                                                                                                                                                                                                                             |                    | B10                  | 1<br>Gammas                                  | 32.79                                   |  |
| F. [MeV]                                                                                                                       | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Events per 1e5 POT |                      | E2 MI E1 | U7 N15<br>O16 He6<br>N14 B10<br>C12 B11 |  |

#### **BIGSTICK** energy level and spin









<sup>127</sup>I (BIGSTICK)







(Exp)

 $^{133}Cs$  (Exp)

<sup>133</sup>Cs (BIGSTICK)

#### **BIGSTICK** nuclear magnetic moments

| 6                 |           |           | in keV |       |         |          |
|-------------------|-----------|-----------|--------|-------|---------|----------|
| Nucleus           | level $n$ | $J^{\pi}$ | $\mu$  | Expt. | $E_x$   | Expt.    |
| $^{127}I$         | 1         | $5/2^{+}$ | 3.851  | 2.813 | 0       | 0        |
|                   | 2         | $7/2^+$   | 3.007  | 2.54  | 37.44   | 57.61    |
|                   | 3         | $3/2^+$   | 0.9155 | 0.97  | 285.9   | 202.86   |
| <sup>133</sup> Cs | 1         | $7/2^{+}$ | 3.007  | 2.582 | 0       | 0        |
|                   | 2         | $5/2^{+}$ | 3.851  | 3.45  | 36.37   | 80.9979  |
|                   | 3         | $5/2^+$   | 2.5849 | 2.0   | 235.36  | 160.6101 |
| <sup>40</sup> Ar  | 1         | $0^{+}$   | 0      | N/A   | 0       | 0        |
|                   | 2         | $2^{+}$   | 0      | -0.04 | 1118.33 | 1460.85  |

#### Source: Li7 (M1 478keV) / pn (M1 2230keV) Detection: nuclear absorption



\*axions don't decay

MINER

Energy window: 0.45-1.25MeV Li7 is skipped because it doesn't have enough of bins

# Source: Ni60 9.38MeV / N15 5.266MeV Detection: nuclear absorption



PIP2BD

#### Source: primakoff Detection: inv. primakoff, decay, absorption

CsI 90% CL, 50 keV threshold, 10 bkg reduction rate, 3x3 setup

MINER



#### WIMP existing constraints

