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● Introduction of Light Front ϕ4 Theory 
● Discretized light-cone quantization (DLCQ)
● What kind of non-perturbative structure can we get?
● Critical coupling in continuum limit, the challenge in 

classical calculation
● Variational quantum eigensolver (VQE)



Scalar ϕ4 Theory

● The simplest interacting quantum field theory that displays spontaneous 
symmetry breaking which is the same underlying mechanism of Higgs 
mechanism

𝝁2>0 (Symmetric phase)
𝝁2<0 (Broken symmetry phase)   

● has various non-perturbative structures (e.g. kinks, Instantons, solitons, …)

● is a testbed for new methods since it has been studied a lot so that it is 
convenient to make a comparison between methods
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Discretized light-cone quantization (DLCQ)
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H. C. Pauli and S. J. Brodsky, PRD 32, 1993 (1985), T. Eller, H. C. Pauli, and S. J. Brodsky, PRD 35, 1493 (1987),
 A. Harindranath and J. P. Vary, PRD 36, 1141 (1987)
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n=1,2,3,... for periodic boundary condition (PBC); 
n=1/2, 3/2, 5/2, … for anti-periodic boundary condition (APBC).

APBC naturally excludes  the zero mode, while PBC contains the zero mode. 
We use PBC omitting the zero mode, based on  the discussion [1] that the 
zero mode does not have significant effect on the critical coupling at infinite 
resolution. The role of zero mode will be deferred to future explorations.

[1] J. S. Rozowsky and C. B. Thorn, PRL 85, 1614 (2000)
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Discretized light-cone quantization (DLCQ)
H. C. Pauli and S. J. Brodsky, PRD 32, 1993 (1985), T. Eller, H. C. Pauli, and S. J. Brodsky, PRD 35, 1493 (1987),

 A. Harindranath and J. P. Vary, PRD 36, 1141 (1987)



The gauge invariant symmetry energy momentum tensor

The invariant mass
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Discretized light-cone quantization (DLCQ)
H. C. Pauli and S. J. Brodsky, PRD 32, 1993 (1985), T. Eller, H. C. Pauli, and S. J. Brodsky, PRD 35, 1493 (1987),

 A. Harindranath and J. P. Vary, PRD 36, 1141 (1987)



● The Hamiltonian exhibits ϕ → -ϕ symmetry, so the even and 
odd particle sectors are decoupled.

● In the broken symmetric phase: ϕ = 0 is unstable, the two 
minima at ϕ = ± v break the global symmetry (spontaneous 
symmetry breaking, i.e. SSB)

● Kinks (topological excitations) at the broken symmetry phase
● The states in the even and odd particle sector might become 

degenerate in the continuum limit.
● The ground state at weak coupling of the symmetric phase is 

dominated by single-particle state carrying the full 
momentum (no co-moving particles).

● The ground state at weak coupling of the broken symmetry 
phase is dominated by the maximum number of particles 
having the lowest allowed momentum (maximize the number 
of co-moving particles).

Symmetric phase  𝝁2>0 Broken symmetry phase   𝝁2<0

✅

✅
✅
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Hamiltonian of (1+1) ϕ4 theory in DLCQ
 A. Harindranath and J. P. Vary, PRD 36, 1141 (1987)

n=1,2,3,... for periodic boundary condition (PBC); 
n=1/2, 3/2, 5/2, … for anti-periodic boundary condition (APBC).
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Eigenvalue problem
Many body states are represented by Fock-space basis
for m1 quanta with n1 units of momentum and so on.

Symmetric phase, K=16 Symmetric phase odd particle sector, K=16Broken symmetry phase
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D. Chakrabarti, A. Harindranath, and J. P. Vary, PRD 71, 125012 (2005)



Kinks in (1+1) ϕ4 theory using DLCQ
D. Chakrabarti, A. Harindranath, L. Martinovic, J. P. Vary, PLB 582, 196-202 (2004), 
D. Chakrabarti, A. Harindranath, and J. P. Vary, PRD 71, 125012 (2005)

Kink Kink-antikink-kink

Broken symmetry phase. Fourier transform to coordinate space ϕc 
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M. Lizunova, J. van Wezel, SciPost Phys. Lect. Notes 
23 (2021)

https://arxiv.org/search/hep-th?searchtype=author&query=Chakrabarti%2C+D
https://arxiv.org/search/hep-th?searchtype=author&query=Martinovic%2C+L


Symmetric phase  𝝁2>0 Broken symmetry phase   𝝁2<0

● The Hamiltonian exhibits ϕ → -ϕ symmetry, so the even and 
odd particle sectors are decoupled.

● In the broken symmetric phase: ϕ = 0 is unstable, the two 
minima at ϕ = ± v break the global symmetry (spontaneous 
symmetry breaking, i.e. SSB)

● Kinks (topological excitations) at the broken symmetry phase
● The states in the even and odd particle sector might become 

degenerate in the continuum limit.
● The ground state at weak coupling of the symmetric phase is 

dominated by single-particle state carrying the full 
momentum (no co-moving particles).

● The ground state at weak coupling of the broken symmetry 
phase is dominated by the maximum number of particles 
having the lowest allowed momentum (maximize the number 
of co-moving particles).

✅

✅
✅

✅
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Critical coupling in continuum limit
J. P. Vary, M. Huang, S. Jawadekar, M. Sharaf, A. Harindranath, and D. Chakrabarti

Phys. Rev. D 105, 016020 (2022)

Struggle in fitting (due to the lacking of higher K results): the fitting incorporates 
(and tested by the goodness of the fit) the assumption that the even particle 
ground state and the first excited state of the odd particle sector are duplicated 
by the odd particle ground state multiplied by a R(1/K) factor.
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Burkardt et al. (2016)

 Anand et al. (2017)

Symmetric phase



Critical coupling in continuum limit
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DLCQ (This work)
1.26
4.53
±
2.51

DLCQ (Harindranath and Vary (1987))
1.38
6.59
±
3.65

Light-front symmetric polynomials (Burkardt et al. (2016))
1.1
±
0.03
2.98
±
1.65

Quasiparse eigenvector (Lee et al. (2001))
–
2.5

Density matrix renormalization group (Sugihara (2004))
–
2.4954(4)

Lattice Monte Carlo (Schaich and Loinaz (2009))
–
2.70
+0
.
025

−
0
.
013

Lattice Monte Carlo (Bosetti et al. (2015))
–
2.79
±
0.02

Uniform matrix product (Milsted et al. (2013))
–
2.766(5)

Renormalized Hamiltonian truncation (Rychkov and Vitale (2015))
–
2.97(14)

However, this is not sufficient to conclude that the zero mode has no effect on the critical

coupling, because the uncertainty associated with both DLCQ and Light-front symmetric poly-

nomials are still rather large.
With better computational power by using parallel programming

high-performance computers in the future, we hope to obtain both the critical coupling and ∆ with

significantly improved precision leading to a conclusion of whether the zero mode plays an essential

role in the critical coupling of 1+1 dimensional
φ
4
theory.

The disagreement between equal-time and light-front critical coupling still needs to be investigated.



Resort to quantum computing?
• Classical computing hits the memory bound in non-perturbative field theory 

calculations with increasing resolution. Quantum computing is promising in reducing 
the memory consumption, as N configurations can be encoded by only log2N qubits 
in compact encoding [1].

• Demonstrate that transition in the (1+1) ϕ4 theory with discretized light-cone 
quantization (DLCQ) [2] in the strong coupling region can be observed by solving the 
ground state using the VQE quantum algorithm.

• DLCQ Hamiltonian formulation naturally fits the applications for quantum computing
[1] M. Kreshchuk, S. Jia, W. M. Kirby, G. Goldstein, J. P. Vary, and P. J. Love, “Simulating hadronic physics on noisy intermediate-scale 
quantum devices using basis light-front quantization,” Physical Review A, 103, 062601 (2021)

[2] J. P. Vary, M. Huang, S. Jawadekar, M. Sharaf, A. Harindranath, and D. Chakrabarti, “Critical coupling for two-dimensional ϕ4 theory in 
discretized light-cone quantization,” Physical Review D, 105, 016020 (2022)
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Variational Quantum Eigensolver (VQE) using IBM Qiskit

“TwoLocal” with 16 parameters as an ansatze for K = 
9 odd sector (Hamiltonian matrix of 16×16 dimension 
encoded by 4 qubits) ideal simulation (“statevector”)
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Symmetric phase  𝝁2>0 Broken symmetry phase   𝝁2<0

● The Hamiltonian exhibits ϕ → -ϕ symmetry, so the even and 
odd particle sectors are decoupled.

● In the broken symmetric phase: ϕ = 0 is unstable, the two 
minima at ϕ = ± v break the global symmetry (spontaneous 
symmetry breaking, i.e. SSB)

● Kinks (topological excitations) at the broken symmetry phase
● The states in the even and odd particle sector might become 

degenerate in the continuum limit.
● The ground state at weak coupling of the symmetric phase is 

dominated by single-particle state carrying the full 
momentum (no co-moving particles).

● The ground state at weak coupling of the broken symmetry 
phase is dominated by the maximum number of particles 
having the lowest allowed momentum (maximize the number 
of co-moving particles).

✅

✅
✅

✅

✅

✅
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Parton Distribution Function

Broken symmetry phase 

D. Chakrabarti, A. Harindranath, and J. P. Vary, PRD 71, 125012 (2005)
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classical, “statevector” and “qasm” simulations

Symmetric phase

Preliminary results



More on (1+1) ϕ4 theory 
● The Hamiltonian exhibits ϕ → -ϕ symmetry, so the even and odd particle sectors are decoupled.✅
● In the broken symmetric phase: ϕ = 0 is unstable, the two minima at ϕ = ± v break the global symmetry 

(spontaneous symmetry breaking, i.e. SSB)✅
● Kinks (topological excitations) at the broken symmetry phase✅
● The states in the even and odd particle sector might become degenerate in the continuum limit.✅
● The ground state at weak coupling of the symmetric phase is dominated by single-particle state carrying 

the full momentum (no co-moving particles).✅
● The ground state at weak coupling of the broken symmetry phase is dominated by the maximum 

number of particles having the lowest allowed momentum (maximize the number of co-moving 
particles).✅

● The role of zero mode with the periodic boundary condition❓
● Connection to the Ising model, extracting the critical exponent❓
● Symmetry restoring phase transition (kink condensation)❓
● Broken symmetry phase and symmetric phase have the same or different critical coupling❓
● Transformation between the equal-time critical coupling with the light-front critical coupling❓
● Other methods for solving (1+1) ϕ4 theory that can decrease the numerical calculation burden❓
● Other observables to calculate, such as the vacuum expectation value❓
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