Vortices in U(1) Dark photon

Junwu Huang Perimeter Institute Aug, 2022 @ UW

Will East, Junwu Huang, 2206.12432

Dark photon

• Dark photon Okun 1982, Holdom 1985

$$\mathcal{S} = \int d^4 x \left(-\frac{1}{4} F^{'\mu\nu} F_{\mu\nu}' - \frac{1}{2} m_{A'}^2 A_{\mu}' A^{'\mu} + \epsilon F^{\mu\nu} F_{\mu\nu}' \right)$$

• Dark photon dark matter

Ann Nelson and Jakub Scholtz, 2011

Suggest: Dark photon in the Stueckelberg limit can be non-thermal dark matter

Dark photon dark matter

- Dark photon
- Dark photon dark matter
- Production mechanisms for dark photon field
 - Inflationary production

Graham, Mardon, Rajendran, 2015

- Axion-dark photon conversion Agrawal & Dror & Co & Bastero-Gil et al, 2018
- Blackhole superradiance

Baryakhtar, Lasenby, Teo, 2017

• Two stream instability...

Mardon (Talk) & Lasenby 2020

Mass range

Two stream instability

Axion-dark photon conversion

Interactions

Two stream instability

Axion-dark photon conversion

Superradiance Inflationary production 10⁻¹²eV eV

Interaction & Mass

• Abelian Higgs model:

$$\mathcal{S} = \int d^4 x \left[\frac{1}{2} \left| D'_{\mu} \Phi \right|^2 - \frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} - \frac{\lambda}{4} \left(|\Phi|^2 - v^2 \right)^2 \right],$$

• Stuckelberg limit:

 $m_{\Phi}^2/m_{A'}^2 = \lambda/g_D^2 \to \infty$ Heavy higgs, light dark photon

• Break down field strength?

Schwinger-ish: $E_c \sim B_c \sim m_\Phi^2/g_D = \lambda^{1/2} v^2 \times (\lambda/g_D^2)^{1/2}$

Summary: This picture is incomplete

The String Photiverse has strings too

• Abelian Higgs model:

$$\mathcal{S} = \int d^4 x \left[\frac{1}{2} \left| D'_{\mu} \Phi \right|^2 - \frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} - \frac{\lambda}{4} \left(|\Phi|^2 - v^2 \right)^2 \right],$$

• Vortices/strings

$$\mathcal{S} = -\mu \int dt dl \sqrt{\gamma} + \text{interactions...}$$

I will demonstrate that these long/heavy defects are more likely to be produced in U(1) dark photon

Vortex dynamics

Depleting Dark Photon

Vortices depletes U(1) dark photon dark matter

Vortex phenomenology

Vortex Formation

Vortex melting (DM)

Depleting Dark Photon

Vortex ejection (SR)

Vortex formation in Dark photon

Inflationary production

• Nambu-Goto

$$\mathcal{S} = -\mu \int dt dl \sqrt{\gamma} + \dots$$
 with $\mu = \pi v^2 \log[\lambda/g_D^2]$

• String production rate

 $\Gamma \sim \exp[-\mu/H_I^2]$

Basu, Guth, Vilenkin 1991

• String production when

$$g_D = \frac{m_{A'}}{v} \ge \frac{m_{A'}}{H_I} = 2 \times 10^{-22} \left(\frac{m_{A'}}{eV}\right)^{5/4}$$

Using $\Omega_{A'} = \Omega_{DM} \times \sqrt{\frac{m_{A'}}{6 \times 10^{-6} eV}} \left(\frac{H_I}{10^{14} GeV}\right)^2$

Graham, Mardon, Rajendran, 2015

Transverse mode

Detour (Superconductors)

Landau Ginzburg model

• Superconductors $\Phi = ee$

$$F = \int d^{3}x \left[\frac{1}{2} \left| D_{i} \Phi \right|^{2} - \frac{\lambda}{4} \left(\left| \Phi \right|^{2} - v^{2} \right)^{2} - B^{2} \right],$$

Type I ($\lambda < e^{2}$)
Meissner Effect:

$$B < B_{c}$$

$$B > B_{c}$$

$$B > B_{c}$$

Landau Ginzburg model

• Superconductors $\Phi = ee$

$$F = \int d^{3}x \left[\frac{1}{2} \left| D_{i} \Phi \right|^{2} - \frac{\lambda}{4} \left(\left| \Phi \right|^{2} - v^{2} \right)^{2} - B^{2} \right],$$

• Type I ($\lambda < e^{2}$)
Meissner Effect:

$$B < B_{c} B > B_{c}$$

$$B < B_{c1} \sim ev^{2}$$

Summary

- Critical fields (Type II)
 - B_{c1}: Governs vortex evolution
 - B_{sh}: Governs vortex formation
 - B_{c2}: Single particle production

ł	$B_{c2} \sim$	$\lambda v^2/e$
	$B_{\rm sh} \sim$	$\lambda^{1/2}v^2$
	$B_{c1} \sim$	ev^2

Summary

- Critical fields (Type II)
 - B_{c1}: Governs vortex evolution
 - B_{sh}: Governs vortex formation
 - B_{c2}: Single particle production
- The need for simulation
 - Coherent background Vs Meissner
 - Strings ending on superconductor edge
 - Time dependence
 - Electric field
 - Gravity...

2	B B _{c2}	~	$\lambda v^2/e$
	B _{sh}	\sim	$\lambda^{1/2}v^2$
	B _{c1}	~	ev^2

Vortex formation (simulation)

Vortex formation (SR)

Vortex formation (2D)

 $\sim 1/m_A$

Depleting dark photon dark matter

String interacting with E/B fields

In a background electric field, the strings wants to accelerate in directions *perpendicular* to the direction of the external electric field

The significance of B_{c1}

Background field:

$$\frac{d\vec{d}}{dl} \cdot \vec{E} \sim v^2 \log(\lambda/g_D^2)$$
$$\vec{E}_{c1} = g_D v^2 \log(\lambda/g_D^2)$$

When $E, B \gg E_{c1}, B_{c1}$, the gauge field fully determines the evolution of the vortex lines

Vortex evolution (SR)

Vortex Formation

A single vortex line *expands (accelerates)* and shrinks onto the Blackhole The energy density in the background field gets depleted

Vortex evolution (DPDM)

Vortex Formation

Vortex forms once the critical field is reached

The energy density in the dark photon *depletes*

Summary

Dark photon E-field makes strings faster, B-field makes strings longer, and they are both *gone*.

The melting phase transition and phenomenology

Vortex-vortex interactions

Vortex Lattice + Superheating => $O(\lambda/g_D^2)$ strings per patch

Melting: Decreasing long range order

Melting (3D)

Smaller loops are produced, string lengths increases and energy dissipated into GW and dark photon radiation

Dark photon dark matter

Vortex ejection (SR)

Boss Nova

Vortices are ejected from a solar mass BH SR cloud

 $10^3 \lesssim \lambda/g_D^2 < 10^{38}$

Length: $L_{\text{string}} \sim 10^3 \text{ km}$ Radius: $R_{\text{string}} \sim 10^2 \text{ km}$ Tension: $G\mu_{\text{string}} \sim 10^{-5} \left(\frac{10^3}{\lambda/g_D^2}\right)$ Number: $N_{\text{max}} \approx \frac{1}{\pi v^2 L_{\text{string}}} \int |E'|^2 dV \simeq \frac{1}{\alpha^2} \frac{\lambda}{g_D^2}$

String Loop-> GW, DP radiation... $h \simeq 4 \times 10^{-18} \left(\frac{\alpha}{0.3}\right)^3 \left(\frac{1000}{\lambda/g_D^2}\right)^{1/2} \left(\frac{10^{-12} \,\mathrm{eV}}{m_{A'}}\right) \left(\frac{10 \,\mathrm{kpc}}{d}\right)$

> We can see strings from BHs in our galaxy with GW in LIGO band

Conclusion

 $\begin{array}{c} (10^{0} \\ 10^{0} \\ (10^{0} \\ F^{0} \\ F$

Vortex Forms

Depletes Dark Photon Dark Matter

Boss Nova-> GW, String Loops (SR)

Thank you!

- The clockwork sector leads to a single U(1)' that couples more to Ψ than Φ in a technically natural model.
- It also couples to all the $\Phi_{i,i+1}$ more than to Φ .
- So the production of $\Phi_{N-1,N}$ vortex is not helped by having the whole clockwork sector.
- One needs a particular hierarchy of the vevs of the $\Phi_{N-1,N}$ fields to avoid string production of all the scalars and hence a hierarchy problem.