Paul Hoyer

University of Helsinki

Unraveling the Proton Mass (13-17 June) INT Seattle (remotely)

Paul Hoyer
University of Helsinki

Unraveling the Proton Mass (13-17 June) INT Seattle (remotely)

• The origin of mass \longleftrightarrow The Λ_{QCD} confinement scale: Not in \mathcal{L}_{QCD}

Paul Hoyer University of Helsinki

Unraveling the Proton Mass (13-17 June) INT Seattle (remotely)

- The origin of mass \longleftrightarrow The Λ_{QCD} confinement scale: Not in \mathcal{L}_{QCD}
- Solving the equations of motion requires boundary conditions

Paul Hoyer University of Helsinki

Unraveling the Proton Mass (13-17 June) INT Seattle (remotely)

- The origin of mass \longleftrightarrow The Λ_{QCD} confinement scale: Not in \mathcal{L}_{QCD}
- Solving the equations of motion requires boundary conditions
- Perturbative S-matrix: No Λ_{QCD} in the free quark & gluon states Feynman diagrams give no confinement

Paul Hoyer University of Helsinki

Unraveling the Proton Mass (13-17 June) INT Seattle (remotely)

- The origin of mass \longleftrightarrow The Λ_{QCD} confinement scale: Not in \mathcal{L}_{QCD}
- Solving the equations of motion requires boundary conditions
- Perturbative S-matrix: No Λ_{QCD} in the free quark & gluon states Feynman diagrams give no confinement
- Can we input Λ_{QCD} in a boundary condition on the gluon field?

Yes: Poincaré invariance allows a single parameter Λ

Paul Hoyer University of Helsinki

Unraveling the Proton Mass (13-17 June) INT Seattle (remotely)

- The origin of mass \longleftrightarrow The Λ_{QCD} confinement scale: Not in \mathcal{L}_{QCD}
- Solving the equations of motion requires boundary conditions
- Perturbative S-matrix: No Λ_{QCD} in the free quark & gluon states Feynman diagrams give no confinement
- Can we input Λ_{QCD} in a boundary condition on the gluon field? Yes: Poincaré invariance allows a single parameter Λ
- Implies confinement, and a universal vacuum energy density $\propto \Lambda^4$

The QCD scale from a boundary condition

The QCD equations of motion do not involve the Λ_{QCD} scale. This is illustrated by Gauss' law for an electric charge:

$$-\nabla^2 A^0(t, \boldsymbol{x}) = e \,\delta(\boldsymbol{x}) \qquad \Longrightarrow \qquad A^0(t, \boldsymbol{x}) = \frac{e}{4\pi |\boldsymbol{x}|}$$

The 1/r dependence follows from dimensional analysis: $[A^0] = [1/r] = \text{GeV}$

The QCD scale from a boundary condition

The QCD equations of motion do not involve the Λ_{QCD} scale. This is illustrated by Gauss' law for an electric charge:

$$-\nabla^2 A^0(t, \boldsymbol{x}) = e \, \delta(\boldsymbol{x}) \qquad \Longrightarrow \qquad A^0(t, \boldsymbol{x}) = \frac{e}{4\pi |\boldsymbol{x}|}$$

The 1/r dependence follows from dimensional analysis: $[A^0] = [1/r] = \text{GeV}$

The "Cornell potential" for heavy quarkonia does involve the QCD confinement scale

$$V(r) = V'r - \frac{4}{3} \frac{\alpha_s}{r}$$

The scale $[V'] = GeV^2$ can arise from the dimensionless equations of motion only due to a boundary condition.

The QCD scale from a boundary condition

The QCD equations of motion do not involve the Λ_{QCD} scale. This is illustrated by Gauss' law for an electric charge:

$$-\nabla^2 A^0(t, \boldsymbol{x}) = e \, \delta(\boldsymbol{x}) \qquad \Longrightarrow \qquad A^0(t, \boldsymbol{x}) = \frac{e}{4\pi |\boldsymbol{x}|}$$

The 1/r dependence follows from dimensional analysis: $[A^0] = [1/r] = \text{GeV}$

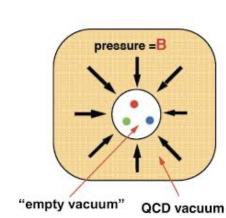
The "Cornell potential" for heavy quarkonia does involve the QCD confinement scale

$$V(r) = V'r - \frac{4}{3} \frac{\alpha_s}{r}$$

The scale $[V'] = GeV^2$ can arise from the dimensionless equations of motion only due to a boundary condition.

In QCD there is a boundary condition giving a universal energy density of the vacuum $\sim V^2$

The result reminds of the "bag model", but without a "bag"



The perturbative S-matrix

$$S_{fi} = {}_{out}\langle f, t \to \infty | \left\{ \operatorname{Texp} \left[-i \int_{-\infty}^{\infty} dt \, H_I(t) \right] \right\} | i, t \to -\infty \rangle_{in}$$

This defines the perturbative expansion around free *in* and *out* states.

The free gauge propagators have no scale. For photons in Coulomb gauge,

$$D^{00}(t, \boldsymbol{q}) = \frac{1}{\boldsymbol{q}^2} \implies D^{00}(t, \boldsymbol{x}) = \frac{1}{4\pi |\boldsymbol{x}|}$$

The perturbative S-matrix

$$S_{fi} = {}_{out}\langle f, t \to \infty | \left\{ \operatorname{Texp} \left[-i \int_{-\infty}^{\infty} dt \, H_I(t) \right] \right\} | i, t \to -\infty \rangle_{in}$$

This defines the perturbative expansion around free *in* and *out* states.

The free gauge propagators have no scale. For photons in Coulomb gauge,

$$D^{00}(t, \boldsymbol{q}) = \frac{1}{\boldsymbol{q}^2} \implies D^{00}(t, \boldsymbol{x}) = \frac{1}{4\pi |\boldsymbol{x}|}$$

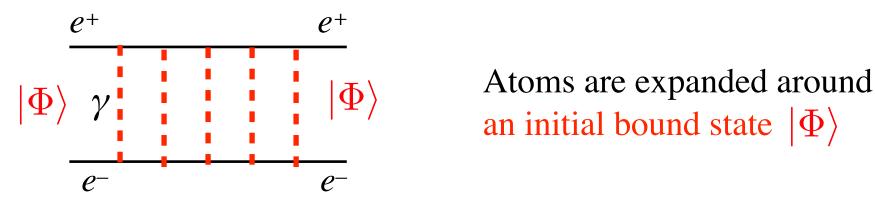
Bound states have a size (scale), and are orthogonal to free states:

No Feynman diagram has a bound state pole

Consider perturbative expansions for bound states

QED bound states: Atoms

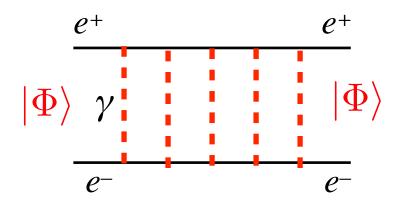
Positronium



The initial state is usually chosen to be a solution of the Schrödinger equation.

QED bound states: Atoms

Positronium



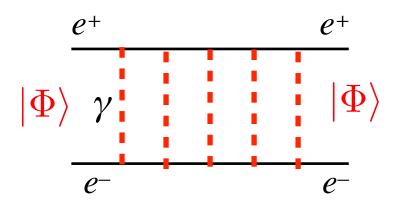
Atoms are expanded around an initial bound state $|\Phi\rangle$

The initial state is usually chosen to be a solution of the Schrödinger equation.

Atomic wave functions $\Phi(\alpha)$ are non-polynomial (exponential) in $\alpha = e^2/4\pi$ Their higher order corrections $\Phi(\alpha)(1 + c_1\alpha + c_2\alpha^2...)$ depend on $\Phi(\alpha)$.

QED bound states: Atoms

Positronium



Atoms are expanded around an initial bound state $|\Phi\rangle$

The initial state is usually chosen to be a solution of the Schrödinger equation.

Atomic wave functions $\Phi(\alpha)$ are non-polynomial (exponential) in $\alpha = e^2/4\pi$ Their higher order corrections $\Phi(\alpha)(1 + c_1\alpha + c_2\alpha^2...)$ depend on $\Phi(\alpha)$.

The perturbative expansion for bound states is not unique, it depends on the choice of initial state.

Caswell & Lepage (1975)

Valence quark Fock states govern quantum numbers, even for highly relativistic constituents.

Valence quark Fock states govern quantum numbers, even for highly relativistic constituents.

Valence quantum numbers

n^{2s}	$s+1\ell_J$	J^{PC}	I = 1	$I = \frac{1}{2}$	I = 0	I = 0
			$uar{d},ar{u}d,$	$u\bar{s},d\bar{s};$	f'	f
			$\frac{1}{\sqrt{2}}(d\bar{d}-u\bar{u})$	$ar{d}s,ar{u}s$		
1^1	S_0	0-+	π	K	η	$\eta'(958)$
1^{3}	3S_1	1	ho(770)	$K^*(892)$	$\phi(1020)$	$\omega(782)$
1^{1}	P_1	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1415)$	$h_1(1170)$
1^{3}	$^{3}P_{0}$	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$
1^{3}	$^{3}P_{1}$	1^{++}	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$
1^{3}	$^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_2^st(1430)$	$f_2^\prime(1525)$	$f_2(1270)$
1^1	D_2	2^{-+}	$\pi_2(1670)$	$\overset{-}{K_2}(1770)^\dagger$	$\eta_2^-(1870)$	$\eta_2(1645)$
1^{3}	D_1	1	ho(1700)	$K^*(1680)^{\ddagger}$		$\omega(1650)$
1^{3}	D_2	$2^{}$		$K_2(1820)^\dagger$		
1^{3}	D_3	3	$ ho_3(1690)$	$K_3^*(1780)$	$\phi_3(1850)$	$\omega_3(1670)$
1^{3}	F_4	4^{++}	$a_4(1970)$	$K_4^st(2045)$	$f_4(2300)$	$f_4(2050)$
1^{3}	G_5	5	$ \rho_5(2350) $	$K_5^*(2380)$		
2^1	$-S_0$	0_{-+}	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$
2^{3}	3S_1	1	ho(1450)	$K^*(1410)^{\ddagger}$	$\phi(1680)$	$\omega(1420)$
2^{3}	$^{3}P_{1}$	1++	$a_1(1640)$			
$\frac{2^{3}}{2}$	$^{3}P_{2}$	2++	$a_2(1700)$	$K_2^*(1980)$	$f_2(1950)$	$f_2(1640)$

Particle Data Group

Valence quark Fock states govern quantum numbers, even for highly relativistic constituents.

Valence quantum numbers

$n^{2s+1}\ell_J$	J^{PC}	I = 1	$I = \frac{1}{2}$	I = 0	I = 0
		$uar{d}, \ ar{u}d,$	$u\bar{s},d\bar{s};$	f'	f
		$\frac{1}{\sqrt{2}}(d\bar{d}-u\bar{u})$	$ar{d}s,ar{u}s$		
$-1^{1}S_{0}$	0-+	π	K	$\overline{\eta}$	$\eta'(958)$
$1^{3}S_{1}$	1	ho(770)	$K^*(892)$	$\phi(1020)$	$\omega(782)$
$1^{1}P_{1}$	1+-	$b_1(1235)$	$K_{1B}{}^{\dagger}$	$h_1(1415)$	$h_1(1170)$
$1^{3}P_{0}$	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$
$1^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$
$1^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_2^st(1430)$	$f_2^\prime(1525)$	$f_2(1270)$
$1^{1}D_{2}$	2^{-+}	$\pi_2(1670)$	$\overset{-}{K_2}(1770)^\dagger$	$\eta_2^-(1870)$	$\eta_2(1645)$
$1^{3}D_{1}$	1	ho(1700)	$K^*(1680)^{\ddagger}$		$\omega(1650)$
$1^{3}D_{2}$	$2^{}$		$K_2(1820)^\dagger$		
$1^{3}D_{3}$	3	$ ho_3(1690)$	$K_3^*(1780)$	$\phi_3(1850)$	$\omega_3(1670)$
$1^{3}F_{4}$	4^{++}	$a_4(1970)$	$K_4^st(2045)$	$f_4(2300)$	$f_4(2050)$
$1^{3}G_{5}$	5	$ \rho_5(2350) $	$K_5^*(2380)$		
$2^{1}S_{0}$	0^{-+}	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$
$2^{3}S_{1}$	1	ho(1450)	$K^*(1410)^{\ddagger}$	$\phi(1680)$	$\omega(1420)$
$2^{3}P_{1}$	1++	$a_1(1640)$			
$2^{3}P_{2}$	2^{++}	$a_2(1700)$	$K_2^*(1980)$	$f_2(1950)$	$f_2(1640)$

Particle Data Group

Mesons have a sizeable current $q\bar{q}$ Fock component

Valence quark Fock states govern quantum numbers, even for highly relativistic constituents.

Valence quantum numbers

$n^{2s+1}\ell$	\mathcal{L}_J J^{PC}	I = 1	$I = \frac{1}{2}$	I = 0	I = 0
		$u\bar{d}, \bar{u}d,$	$u\bar{s},d\bar{s};$	f'	f
		$\frac{1}{\sqrt{2}}(d\bar{d} - u\bar{u})$	$\bar{d}s,\bar{u}s$		
$1^{1}S_{0}$	0_{-+}	π	\boldsymbol{K}	η	$\eta'(958)$
$1^{3}S_{1}$	1	ho(770)	$K^*(892)$	$\phi(1020)$	$\omega(782)$
$1^{1}P_{1}$	1+-	$b_1(1235)$	$K_{1B}{}^{\dagger}$	$h_1(1415)$	$h_1(1170)$
$1^{3}P_{0}$	0++	$a_0(1450)$	$K_0^st(1430)$	$f_0(1710)$	$f_0(1370)$
$1^{3}P_{1}$	1++	$a_1(1260)$	$K_{1A}{}^{\dagger}$	$f_1(1420)$	$f_1(1285)$
$1^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_2^st(1430)$	$f_2^\prime(1525)$	$f_2(1270)$
$1^{1}D_{2}$	2^{-+}	$\pi_2(1670)$	$\overset{-}{K_2}(1770)^\dagger$	$\eta_2^-(1870)$	$\eta_2(1645)$
$1^{3}D_{1}$	1	ho(1700)	$K^*(1680)^{\ddagger}$		$\omega(1650)$
$1^{3}D_{2}$	$2^{}$		$K_2(1820)^\dagger$		
$1^{3}D_{3}$	3	$ ho_3(1690)$	$K_3^*(1780)$	$\phi_3(1850)$	$\omega_3(1670)$
$1^{3}F_{4}$	4^{++}	$a_4(1970)$	$K_4^st(2045)$	$f_4(2300)$	$f_4(2050)$
$1^{3}G_{5}$	5	$ \rho_5(2350) $	$K_5^*(2380)$		
$2^{1}S_{0}$	0_{-+}	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$
$2^{3}S_{1}$	1	ho(1450)	$K^*(1410)^{\ddagger}$	$\phi(1680)$	$\omega(1420)$
$2^{3}P_{1}$	1++	$a_1(1640)$			
$2^{3}P_{2}$	2++	$a_2(1700)$	$K_2^*(1980)$	$f_2(1950)$	$f_2(1640)$

Particle Data Group

Mesons have a sizeable current $q\bar{q}$ Fock component

E.g., pion decay:

$$\pi^{\scriptscriptstyle +} \stackrel{\mathsf{u}}{=} \stackrel{\mathsf{w}^{\scriptscriptstyle +}}{=} \stackrel{\mathsf{w}^{\scriptscriptstyle +}}{=} \stackrel{\mathsf{w}^{\scriptscriptstyle +}}{=} \stackrel{\mathsf{u}^{\scriptscriptstyle +}}{=} \stackrel{\mathsf{u}^{\scriptscriptstyle +}}{=} \stackrel{\mathsf{u}^{\scriptscriptstyle +}}{=} \stackrel{\mathsf{w}^{\scriptscriptstyle +}}{=} \stackrel{\mathsf{u}^{\scriptscriptstyle +}}{=} \stackrel{$$

occurs only via $|u\bar{d}\rangle$

Stan Brodsky

Valence quark Fock states govern quantum numbers, even for highly relativistic constituents.

Valence quantum numbers

	0.11.	DO				
7	$n^{2s+1}\ell_J$	J^{PC}	$I_{_} = 1$	$I = \frac{1}{2}$	I = 0	I = 0
			$uar{d},ar{u}d,$	$u\bar{s},d\bar{s};$	f'	f
			$\frac{1}{\sqrt{2}}(d\bar{d}-u\bar{u})$	$\bar{d}s,\bar{u}s$		
	$1^{1}S_{0}$	0_{-+}	π	K	η	$\eta'(958)$
	$1^{3}S_{1}$	1	ho(770)	$K^*(892)$	$\phi(1020)$	$\omega(782)$
	$1^{1}P_{1}$	1+-	$b_1(1235)$	$K_{1B}{}^{\dagger}$	$h_1(1415)$	$h_1(1170)$
	$1^{3}P_{0}$	0++	$a_0(1450)$	$K_0^st(1430)$	$f_0(1710)$	$f_0(1370)$
	$1^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$
	$1^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_2^st(1430)$	$f_2^{\prime}(1525)$	$f_2(1270)$
	$1^{1}D_{2}$	2^{-+}	$\pi_2(1670)$	$\overset{-}{K_2}(1770)^\dagger$	$\eta_2^-(1870)$	$\eta_2(1645)$
	$1^{3}D_{1}$	1	ho(1700)	$K^*(1680)^{\ddagger}$		$\omega(1650)$
	$1^{3}D_{2}$	$2^{}$		$K_2(1820)^\dagger$		
	$1^{3}D_{3}$	3	$ ho_3(1690)$	$K_3^*(1780)$	$\phi_3(1850)$	$\omega_3(1670)$
	$1^{3}F_{4}$	4^{++}	$a_4(1970)$	$K_4^st(2045)$	$f_4(2300)$	$f_4(2050)$
	$1^{3}G_{5}$	5	$ \rho_5(2350) $	$K_5^*(2380)$		
	$2^{1}S_{0}$	0^{-+}	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$
	$2^{3}S_{1}$	1	ho(1450)	$K^*(1410)^{\ddagger}$	$\phi(1680)$	$\omega(1420)$
	$2^{3}P_{1}$	1++	$a_1(1640)$			
	$2^{3}P_{2}$	2++	$a_2(1700)$	$K_2^*(1980)$	$f_2(1950)$	$f_2(1640)$

Particle Data Group

Mesons have a sizeable current $q\bar{q}$ Fock component

E.g., pion decay:

$$\pi^{+\frac{u}{d}} \xrightarrow{W^{+}} \stackrel{u^{+}}{\swarrow} \nu_{\mu}$$

occurs only via $|u\bar{d}\rangle$

Stan Brodsky

Assume:

Current quark Fock states

The relevance of valence states suggest a "Bound Fock" expansion

The relevance of valence states suggest a "Bound Fock" expansion

$$|Positronium\rangle = |e^+e^-\rangle + |e^+e^-\gamma\rangle + \dots$$

The relevance of valence states suggest a "Bound Fock" expansion

$$|Positronium\rangle = |e^+e^-\rangle + |e^+e^-\gamma\rangle + \dots$$

Each Fock state should be bound by an instantaneous potential.

E.g., for
$$|e^+e^-\rangle$$
 the potential is $V(r) = -\alpha/r$

The relevance of valence states suggest a "Bound Fock" expansion

$$|Positronium\rangle = |e^+e^-\rangle + |e^+e^-\gamma\rangle + \dots$$

Each Fock state should be bound by an instantaneous potential.

E.g., for
$$|e^+e^-\rangle$$
 the potential is $V(r) = -\alpha/r$

$$|Proton\rangle = |qqq\rangle + |qqqg\rangle + \dots$$

The relevance of valence states suggest a "Bound Fock" expansion

$$|Positronium\rangle = |e^+e^-\rangle + |e^+e^-\gamma\rangle + \dots$$

Each Fock state should be bound by an instantaneous potential.

E.g., for
$$|e^+e^-\rangle$$
 the potential is $V(r) = -\alpha/r$

$$|Proton\rangle = |qqq\rangle + |qqqg\rangle + \dots$$

Is there an instantaneous potential for the relativistic quarks of QCD?

Theories with a local action generally do not have instantaneous potentials:

Constituent velocities are bounded by the speed of light (causality)

The lack of $\partial_0 A^0$ and $\nabla \cdot A$ in \mathcal{L}_{QED} means that A^0 and A_L do not propagate

The lack of $\partial_0 A^0$ and $\nabla \cdot A$ in \mathcal{L}_{QED} means that A^0 and A_L do not propagate

Feynman gauge fixing: $\mathcal{L}_{GF} = (\partial_{\mu} A^{\mu})^2$ adds the missing terms

⇒ All gauge fields propagate, explicit Poincaré invariance

Convenient for scattering (Feynman diagrams)

The lack of $\partial_0 A^0$ and $\nabla \cdot A$ in \mathcal{L}_{QED} means that A^0 and A_L do not propagate

Feynman gauge fixing: $\mathcal{L}_{GF} = (\partial_{\mu} A^{\mu})^2$ adds the missing terms

⇒ All gauge fields propagate, explicit Poincaré invariance

Convenient for scattering (Feynman diagrams)

This hides the instantaneous potential

Instantaneously fixed gauges with rotational invariance:

$$\nabla \cdot A(t,x) = 0$$
 (Coulomb gauge)

$$A^0(t,x) = 0$$
 (Temporal gauge)

The lack of $\partial_0 A^0$ and $\nabla \cdot A$ in \mathcal{L}_{QED} means that A^0 and A_L do not propagate

Feynman gauge fixing: $\mathcal{L}_{GF} = (\partial_{\mu} A^{\mu})^2$ adds the missing terms

⇒ All gauge fields propagate, explicit Poincaré invariance

Convenient for scattering (Feynman diagrams)

This hides the instantaneous potential

Instantaneously fixed gauges with rotational invariance:

$$\nabla \cdot A(t,x) = 0$$
 (Coulomb gauge)

$$A^0(t,x) = 0$$
 (Temporal gauge)

Due to the absence of $\partial_0 A^0$ in \mathcal{L}_{QED} A^0 has no conjugate field

⇒ Canonical quantisation in Coulomb gauge requires Dirac constraints

Temporal gauge

No Dirac constraints in temporal gauge: $A^0 = \partial_0 A^0 = 0$

Canonical commutation relations, with $E^i = -\partial_0 A^i$, include E_L

$$[E^{i}(t, \boldsymbol{x}), A^{j}(t, \boldsymbol{y})] = i\delta^{ij}\delta(\boldsymbol{x} - \boldsymbol{y})$$

Temporal gauge

No Dirac constraints in temporal gauge: $A^0 = \partial_0 A^0 = 0$

Canonical commutation relations, with $E^i = -\partial_0 A^i$, include E_L

$$\left[E^{i}(t, \boldsymbol{x}), A^{j}(t, \boldsymbol{y})\right] = i\delta^{ij}\delta(\boldsymbol{x} - \boldsymbol{y})$$

 $A^0(t,x) = 0$ is preserved under time-independent gauge transformations, which are generated by the operator of "Gauss' law": Willemsen (1978)

$$\frac{\delta S_{QED}}{\delta A^0(x)} = \partial_i E^i(x) - e\psi^{\dagger}\psi(x)$$
 Does not vanish as an operator!

Temporal gauge

No Dirac constraints in temporal gauge: $A^0 = \partial_0 A^0 = 0$

Canonical commutation relations, with $E^i = -\partial_0 A^i$, include E_L

$$\left[E^{i}(t, \boldsymbol{x}), A^{j}(t, \boldsymbol{y})\right] = i\delta^{ij}\delta(\boldsymbol{x} - \boldsymbol{y})$$

 $A^0(t,x) = 0$ is preserved under time-independent gauge transformations, which are generated by the operator of "Gauss' law": Willemsen (1978)

$$\frac{\delta S_{QED}}{\delta A^0(x)} = \partial_i E^i(x) - e\psi^{\dagger}\psi(x)$$
 Does not vanish as an operator!

Physical states need to be invariant under all gauge transformations:

$$\frac{\delta \mathcal{S}_{QED}}{\delta A^0(x)} |phys\rangle = 0$$

Determines $\nabla \cdot \mathbf{E}_L$ from the fermion distribution

The classical, instantaneous field EL

$$\frac{\delta S_{QED}}{\delta A^0(x)} |phys\rangle = 0$$
 is not an operator relation, it is a constraint on $|phys\rangle$

$$\frac{\delta S_{QED}}{\delta A^0(x)} |0\rangle = 0$$
 implies $E_L = 0$ in the vacuum.

No particles are created.

In temporal gauge the electric field E_L acts like a classical field.

The classical, instantaneous field EL

$$\frac{\delta S_{QED}}{\delta A^0(x)} |phys\rangle = 0$$
 is not an operator relation, it is a constraint on $|phys\rangle$

$$\frac{\delta S_{QED}}{\delta A^0(x)} |0\rangle = 0$$
 implies $E_L = 0$ in the vacuum.

No particles are created.

In temporal gauge the electric field E_L acts like a classical field.

 E_L can bind e^+e^- Fock states strongly, without pair creation.

Temporal gauge allows valence dominance even of relativistic states.

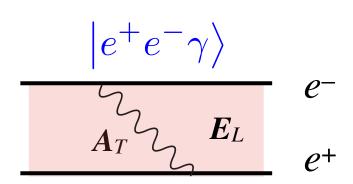
Contrast: In Coulomb gauge A^0 is a quantum field, which creates particles.

Bound Fock expansion for Positronium in $A^0=0$ gauge

The perturbative expansion in α is chosen to start from the $|e^+e^-\rangle$ Fock state, which is bound by its classical field E_L :

 $|e^+e^angle \ E_L \ e^+$

Higher order corrections include states with transverse photons and e^+e^- pairs, as determined by $H_{QED} | e^+e^- \rangle$



Bound Fock expansion for Positronium in $A^0=0$ gauge

The perturbative expansion in α is chosen to start from the $|e^+e^-\rangle$ Fock state, which is bound by its classical field E_L :

 $|e^+e^angle \ E_L \ e^+$

Higher order corrections include states with transverse photons and e^+e^- pairs, as determined by $H_{QED} | e^+e^- \rangle$

$$\begin{vmatrix} e^+e^-\gamma \rangle \\ A_T & E_L \\ e^+ \end{vmatrix}$$

Each Fock component of the bound state includes its particular instantaneous E_L field.

This Fock expansion is valid in any frame, and is formally exact at $O(\alpha^{\infty})$.

Application to QCD

Global gauge invariance allows a classical gauge field for neutral atoms...

Global gauge invariance allows a classical gauge field for neutral atoms...

Positronium (QED)
$$e^{-(x_1)}$$

$$e^{-(x_1)}$$

External observers see a dipole field:

$$\boldsymbol{E}_L(\boldsymbol{x}) = -\frac{e}{4\pi} \, \boldsymbol{\nabla}_x \left(\frac{1}{|\boldsymbol{x} - \boldsymbol{x}_1|} - \frac{1}{|\boldsymbol{x} - \boldsymbol{x}_2|} \right)$$

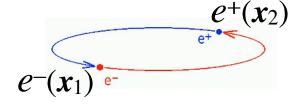
The electron is bound by a monopole field:

$$\boldsymbol{E}_L(\boldsymbol{x}_1) = \frac{e}{4\pi} \boldsymbol{\nabla} \frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|}$$

Global gauge invariance allows a classical gauge field for neutral atoms...

but color singlet hadrons cannot have a color octet gluon field.

Positronium (QED)



External observers see a dipole field:

$$\boldsymbol{E}_L(\boldsymbol{x}) = -\frac{e}{4\pi} \, \boldsymbol{\nabla}_x \left(\frac{1}{|\boldsymbol{x} - \boldsymbol{x}_1|} - \frac{1}{|\boldsymbol{x} - \boldsymbol{x}_2|} \right) \quad \boldsymbol{E}_L^a(\boldsymbol{x}) = 0 \quad \text{for all } \boldsymbol{x}$$

The electron is bound by a monopole field:

$$\boldsymbol{E}_L(\boldsymbol{x}_1) = \frac{e}{4\pi} \boldsymbol{\nabla} \frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|}$$

a color singlet

External observers see no field:

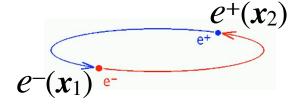
$$\boldsymbol{E}_L^a(\boldsymbol{x}) = 0$$
 for all \boldsymbol{x}

The blue quark sees the field

of the red and green quarks.
$$\boldsymbol{E}_L^a[\boldsymbol{x}_1;\,q_r(\boldsymbol{x}_2),q_g(\boldsymbol{x}_3)] \neq 0$$

Global gauge invariance allows a classical gauge field for neutral atoms... but color singlet hadrons cannot have a color octet gluon field.

Positronium (QED)



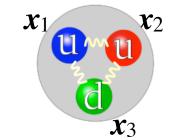
External observers see a dipole field:

$$\boldsymbol{E}_{L}(\boldsymbol{x}) = -\frac{e}{4\pi} \, \boldsymbol{\nabla}_{x} \left(\frac{1}{|\boldsymbol{x} - \boldsymbol{x}_{1}|} - \frac{1}{|\boldsymbol{x} - \boldsymbol{x}_{2}|} \right) \quad \boldsymbol{E}_{L}^{a}(\boldsymbol{x}) = 0 \quad \text{for all } \boldsymbol{x}$$

The electron is bound by a monopole field:

$$\boldsymbol{E}_L(\boldsymbol{x}_1) = \frac{e}{4\pi} \boldsymbol{\nabla} \frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|}$$

Proton (QCD) is a color singlet



External observers see no field:

$$\boldsymbol{E}_L^a(\boldsymbol{x}) = 0$$
 for all \boldsymbol{x}

The blue quark sees the field

of the red and green quarks.
$$\boldsymbol{E}_L^a[\boldsymbol{x}_1;\,q_r(\boldsymbol{x}_2),q_g(\boldsymbol{x}_3)] \neq 0$$

An external observer sees no color field due to the sum over quark colors.

Each color component of the Fock state does have $\mathbf{E}_L^a \neq 0$

Temporal gauge in QCD: $A_a^0 = 0$

The temporal gauge constraint determines $\nabla \cdot \mathbf{\textit{E}}_{L,a}$ for each state:

$$\partial_i E_{L,a}^i(\boldsymbol{x}) | phys \rangle = g \left[-f_{abc} A_b^i E_c^i + \psi^{\dagger} T^a \psi(\boldsymbol{x}) \right] | phys \rangle$$

Temporal gauge in QCD: $A_a^0 = 0$

The temporal gauge constraint determines $\nabla \cdot \mathbf{\textit{E}}_{L,a}$ for each state:

$$\partial_i E_{L,a}^i(\boldsymbol{x}) | phys \rangle = g \left[-f_{abc} A_b^i E_c^i + \psi^{\dagger} T^a \psi(\boldsymbol{x}) \right] | phys \rangle$$

In QED we impose the boundary condition: $E_L(x) \rightarrow 0$ for $|x| \rightarrow \infty$

In QCD $E_{L,a}(x) \equiv 0$ for (globally) color singlet Fock states.

The color electric field $E_{L,a}(x) \neq 0$ for each quark color component

Temporal gauge in QCD: $A_a^0 = 0$

The temporal gauge constraint determines $\nabla \cdot \mathbf{\textit{E}}_{L,a}$ for each state:

$$\partial_i E_{L,a}^i(\boldsymbol{x}) | phys \rangle = g \left[-f_{abc} A_b^i E_c^i + \psi^{\dagger} T^a \psi(\boldsymbol{x}) \right] | phys \rangle$$

In QED we impose the boundary condition: $E_L(x) \rightarrow 0$ for $|x| \rightarrow \infty$

In QCD $E_{L,a}(x) \equiv 0$ for (globally) color singlet Fock states.

The color electric field $E_{L,a}(x) \neq 0$ for each quark color component

Include a homogeneous solution, $\nabla \cdot E_{L,a}(x) = 0$ with $E_{L,a}(x) \neq 0$.

 $E_{L,a}(x)$ binds each quark color component of a hadron.

The field cancels in the sum over quark colors for singlet states.

Including a homogeneous solution for $E_{L,a}^{i}$

$$E_{L,a}^{i}(\boldsymbol{x})|phys\rangle = -\partial_{i}^{x}\int d\boldsymbol{y}\Big[\kappa\,\boldsymbol{x}\cdot\boldsymbol{y} + \frac{g}{4\pi|\boldsymbol{x}-\boldsymbol{y}|}\Big]\mathcal{E}_{a}(\boldsymbol{y})|phys\rangle$$

where
$$\mathcal{E}_a(\mathbf{y}) = -f_{abc}A_b^i E_c^i(\mathbf{y}) + \psi^{\dagger} T^a \psi(\mathbf{y})$$
 and $\mathcal{E}_a(\mathbf{y})|0\rangle = 0$

The contribution $\propto g$ gives the gluon exchange potential: $V(r) = -\frac{4}{3} \frac{\alpha_s}{r}$

The contribution $\propto \kappa \neq \kappa(\boldsymbol{x}, \boldsymbol{y})$ is homogeneous: $\partial_i \boldsymbol{E}^i(\boldsymbol{x}) = 0$

Including a homogeneous solution for $E_{L,a}^{i}$

$$E_{L,a}^{i}(\boldsymbol{x})|phys\rangle = -\partial_{i}^{x}\int d\boldsymbol{y}\Big[\kappa\,\boldsymbol{x}\cdot\boldsymbol{y} + \frac{g}{4\pi|\boldsymbol{x}-\boldsymbol{y}|}\Big]\mathcal{E}_{a}(\boldsymbol{y})|phys\rangle$$

where
$$\mathcal{E}_a(\mathbf{y}) = -f_{abc}A_b^i E_c^i(\mathbf{y}) + \psi^{\dagger} T^a \psi(\mathbf{y})$$
 and $\mathcal{E}_a(\mathbf{y})|0\rangle = 0$

The contribution $\propto g$ gives the gluon exchange potential: $V(r) = -\frac{4}{3} \frac{\alpha_s}{r}$

The contribution $\propto \kappa \neq \kappa(\boldsymbol{x}, \boldsymbol{y})$ is homogeneous: $\partial_i \boldsymbol{E}^i(\boldsymbol{x}) = 0$

The homogeneous solution $\propto \varkappa$ of the gauge constraint is the only one that gives invariance under translations and rotations

 $E_L \propto \varkappa$ is independent of x, as required by translation invariance: The gluon field energy density is spatially constant.

This solution is excluded by the free field BC of Feynman diagrams.

The instantaneous potential from the Hamiltonian

$$E_{L,a}^{i}(\boldsymbol{x})|phys\rangle = -\partial_{i}^{x}\int d\boldsymbol{y}\Big[\kappa\,\boldsymbol{x}\cdot\boldsymbol{y} + \frac{g}{4\pi|\boldsymbol{x}-\boldsymbol{y}|}\Big]\mathcal{E}_{a}(\boldsymbol{y})|phys\rangle$$

$$egin{aligned} \mathcal{H}_V &\equiv rac{1}{2} \int dm{x} \sum_a m{E}_L^a \cdot m{E}_L^a \ &= \int dm{y} dm{z} \Big\{ m{y} \cdot m{z} \Big[rac{1}{2} \kappa^2 \int dm{x} + g \kappa \Big] + rac{1}{2} rac{lpha_s}{|m{y} - m{z}|} \Big\} \mathcal{E}_a(m{y}) \mathcal{E}_a(m{z}) \end{aligned}$$

where
$$\mathcal{E}_a(\boldsymbol{y}) = -f_{abc}A_b^i E_c^i(\boldsymbol{y}) + \psi^{\dagger} T^a \psi(\boldsymbol{y})$$

The instantaneous potential from the Hamiltonian

$$E_{L,a}^{i}(\boldsymbol{x})|phys\rangle = -\partial_{i}^{x}\int d\boldsymbol{y}\Big[\kappa\,\boldsymbol{x}\cdot\boldsymbol{y} + \frac{g}{4\pi|\boldsymbol{x}-\boldsymbol{y}|}\Big]\mathcal{E}_{a}(\boldsymbol{y})|phys\rangle$$

$$egin{aligned} \mathcal{H}_V &\equiv rac{1}{2} \int dm{x} \sum_a m{E}_L^a \cdot m{E}_L^a \ &= \int dm{y} dm{z} \Big\{ m{y} \cdot m{z} \Big[rac{1}{2} \kappa^2 \int dm{x} + g \kappa \Big] + rac{1}{2} rac{lpha_s}{|m{y} - m{z}|} \Big\} \mathcal{E}_a(m{y}) \mathcal{E}_a(m{z}) \end{aligned}$$

where
$$\mathcal{E}_a(\boldsymbol{y}) = -f_{abc}A_b^i E_c^i(\boldsymbol{y}) + \psi^{\dagger} T^a \psi(\boldsymbol{y})$$

The field energy \propto volume of space is irrelevant only if it is universal.

This relates the normalisation \varkappa of all Fock components,

leaving an overall scale Λ as the single parameter.

Meson $q\overline{q}$ Fock state potential

$$|q(\boldsymbol{x}_1)\bar{q}(\boldsymbol{x}_2)\rangle \equiv \sum_A \bar{\psi}^A(\boldsymbol{x}_1) \, \psi^A(\boldsymbol{x}_2) \, |0\rangle$$
 globally color singlet

$$\mathcal{H}_V \equiv rac{1}{2} \int dm{x} \sum_a m{E}_L^a \cdot m{E}_L^a$$
 does not create particles

Meson qq Fock state potential

$$|q(\mathbf{x}_1)\bar{q}(\mathbf{x}_2)\rangle \equiv \sum_{A} \bar{\psi}^A(\mathbf{x}_1) \, \psi^A(\mathbf{x}_2) \, |0\rangle$$
 globally color singlet

$$\mathcal{H}_V \equiv rac{1}{2} \int dm{x} \sum_a m{E}_L^a \cdot m{E}_L^a$$
 does not create particles

$$\mathcal{H}_V |q\bar{q}\rangle = V_{q\bar{q}} |q\bar{q}\rangle$$

$$V_{q\bar{q}}(\boldsymbol{x}_1,\boldsymbol{x}_2) = \Lambda^2 |\boldsymbol{x}_1 - \boldsymbol{x}_2| - C_F \frac{\alpha_s}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|}$$
 Cornell potential

Meson $q\overline{q}$ Fock state potential

$$|q(\boldsymbol{x}_1)\bar{q}(\boldsymbol{x}_2)\rangle \equiv \sum_A \bar{\psi}^A(\boldsymbol{x}_1)\,\psi^A(\boldsymbol{x}_2)\,|0\rangle$$
 globally color singlet

$$\mathcal{H}_V \equiv rac{1}{2} \int dm{x} \sum_a m{E}_L^a \cdot m{E}_L^a$$
 does not create particles

$$\mathcal{H}_V |q\bar{q}\rangle = V_{q\bar{q}} |q\bar{q}\rangle$$

$$V_{q\bar{q}}(\boldsymbol{x}_1,\boldsymbol{x}_2) = \Lambda^2 |\boldsymbol{x}_1 - \boldsymbol{x}_2| - C_F \frac{\alpha_s}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|}$$
 Cornell potential

This potential is valid also for relativistic $q\bar{q}$ Fock states, in any frame

The universal vacuum energy density is
$$E_{\Lambda} = \frac{\Lambda^4}{2g^2C_F}$$

Baryon Fock state potential

Baryon:
$$|q(\boldsymbol{x}_1)q(\boldsymbol{x}_2)q(\boldsymbol{x}_3)\rangle \equiv \sum_{A,B,C} \epsilon_{ABC} \psi_A^{\dagger}(\boldsymbol{x}_1) \, \psi_B^{\dagger}(\boldsymbol{x}_2) \, \psi_C^{\dagger}(\boldsymbol{x}_3) \, |0\rangle$$

$$V_{qqq}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) = \Lambda^2 d_{qqq}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) - \frac{2}{3} \alpha_s \left(\frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|} + \frac{1}{|\boldsymbol{x}_2 - \boldsymbol{x}_3|} + \frac{1}{|\boldsymbol{x}_3 - \boldsymbol{x}_1|} \right)$$

$$d_{qqq}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) \equiv \frac{1}{\sqrt{2}} \sqrt{(\boldsymbol{x}_1 - \boldsymbol{x}_2)^2 + (\boldsymbol{x}_2 - \boldsymbol{x}_3)^2 + (\boldsymbol{x}_3 - \boldsymbol{x}_1)^2}$$

Baryon Fock state potential

Baryon:
$$|q(\boldsymbol{x}_1)q(\boldsymbol{x}_2)q(\boldsymbol{x}_3)\rangle \equiv \sum_{A,B,C} \epsilon_{ABC} \psi_A^{\dagger}(\boldsymbol{x}_1) \psi_B^{\dagger}(\boldsymbol{x}_2) \psi_C^{\dagger}(\boldsymbol{x}_3) |0\rangle$$

$$V_{qqq}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) = \Lambda^2 d_{qqq}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) - \frac{2}{3} \alpha_s \left(\frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|} + \frac{1}{|\boldsymbol{x}_2 - \boldsymbol{x}_3|} + \frac{1}{|\boldsymbol{x}_3 - \boldsymbol{x}_1|} \right)$$

$$d_{qqq}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) \equiv \frac{1}{\sqrt{2}} \sqrt{(\boldsymbol{x}_1 - \boldsymbol{x}_2)^2 + (\boldsymbol{x}_2 - \boldsymbol{x}_3)^2 + (\boldsymbol{x}_3 - \boldsymbol{x}_1)^2}$$

When two of the quarks coincide the potential reduces to the $q\bar{q}$ potential:

$$V_{qqq}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_2) = \Lambda^2 |\boldsymbol{x}_1 - \boldsymbol{x}_2| - \frac{4}{3} \frac{\alpha_s}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|} = V_{q\bar{q}}(\boldsymbol{x}_1, \boldsymbol{x}_2)$$

Analogous potentials are obtained for any globally color singlet quark and gluon Fock state, such as $q\bar{q}g$ and gg.

$\mathcal{O}\left(\alpha_s^0\right)$ q $\overline{\mathbf{q}}$ bound states

An $\mathcal{O}(\alpha_s^0)$ meson state with P = 0 and wave function Φ :

$$|M\rangle = \sum_{A,B;\alpha,\beta} \int d\boldsymbol{x}_1 d\boldsymbol{x}_2 \, \bar{\psi}_{\alpha}^A(t=0,\boldsymbol{x}_1) \delta^{AB} \Phi_{\alpha\beta}(\boldsymbol{x}_1 - \boldsymbol{x}_2) \psi_{\beta}^B(t=0,\boldsymbol{x}_2) \, |0\rangle$$

$\mathcal{O}\left(\alpha_s^0\right)$ q $\overline{\mathbf{q}}$ bound states

An $\mathcal{O}(\alpha_s^0)$ meson state with P = 0 and wave function Φ :

$$|M\rangle = \sum_{A,B;\alpha,\beta} \int d\boldsymbol{x}_1 d\boldsymbol{x}_2 \, \bar{\psi}_{\alpha}^A(t=0,\boldsymbol{x}_1) \delta^{AB} \Phi_{\alpha\beta}(\boldsymbol{x}_1 - \boldsymbol{x}_2) \psi_{\beta}^B(t=0,\boldsymbol{x}_2) |0\rangle$$

The (rest frame) bound state condition $H|M\rangle = M|M\rangle$ gives

$$\left[i\gamma^{0}\boldsymbol{\gamma}\cdot\overrightarrow{\boldsymbol{\nabla}}+m\gamma^{0}\right]\Phi(\boldsymbol{x})+\Phi(\boldsymbol{x})\left[i\gamma^{0}\boldsymbol{\gamma}\cdot\overleftarrow{\boldsymbol{\nabla}}-m\gamma^{0}\right]=\left[M-V(|\boldsymbol{x}|)\right]\Phi(\boldsymbol{x})$$

where $\mathbf{x} = \mathbf{x}_1 - \mathbf{x}_2$ and $V(\mathbf{x}) = \Lambda^2 |\mathbf{x}|$ at $\mathcal{O}(\alpha_s^0)$

$\mathcal{O}\left(\alpha_s^0\right)$ q $\overline{\mathbf{q}}$ bound states

An $\mathcal{O}(\alpha_s^0)$ meson state with P = 0 and wave function Φ :

$$|M\rangle = \sum_{A,B;\alpha,\beta} \int d\boldsymbol{x}_1 d\boldsymbol{x}_2 \, \bar{\psi}_{\alpha}^A(t=0,\boldsymbol{x}_1) \delta^{AB} \Phi_{\alpha\beta}(\boldsymbol{x}_1 - \boldsymbol{x}_2) \psi_{\beta}^B(t=0,\boldsymbol{x}_2) |0\rangle$$

The (rest frame) bound state condition $H|M\rangle = M|M\rangle$ gives

$$\left[i\gamma^{0}\boldsymbol{\gamma}\cdot\overrightarrow{\boldsymbol{\nabla}}+m\gamma^{0}\right]\Phi(\boldsymbol{x})+\Phi(\boldsymbol{x})\left[i\gamma^{0}\boldsymbol{\gamma}\cdot\overleftarrow{\boldsymbol{\nabla}}-m\gamma^{0}\right]=\left[M-V(|\boldsymbol{x}|)\right]\Phi(\boldsymbol{x})$$

where
$$\mathbf{x} = \mathbf{x}_1 - \mathbf{x}_2$$
 and $V(\mathbf{x}) = \Lambda^2 |\mathbf{x}|$ at $\mathcal{O}(\alpha_s^0)$

In the non-relativistic limit $(m \gg \Lambda)$ this reduces to the Schrödinger equation.

→ The quarkonium phenomenology with the Cornell potential.

Separation of radial and angular variables

$$i\nabla \cdot \{\gamma^0 \gamma, \Phi(x)\} + m [\gamma^0, \Phi(x)] = [M - V(x)]\Phi(x)$$

Expanding the 4 × 4 wave function in a basis of 16 Dirac structures $\Gamma_i(x)$ $\Phi(x) = \sum_i \Gamma_i(x)$

$$\Phi(\boldsymbol{x}) = \sum_{i} \Gamma_{i}(\boldsymbol{x}) F_{i}(r) Y_{j\lambda}(\hat{\boldsymbol{x}})$$

Separation of radial and angular variables

$$i\nabla \cdot \{\gamma^0 \gamma, \Phi(x)\} + m [\gamma^0, \Phi(x)] = [M - V(x)]\Phi(x)$$

Expanding the 4 × 4 wave function in a basis of 16 Dirac structures $\Gamma_i(\mathbf{x})$ $\Phi(\mathbf{x}) = \sum_i \Gamma_i(\mathbf{x}) F_i(r) Y_{j\lambda}(\hat{\mathbf{x}})$

We may use rotational, parity and charge conjugation invariance to determine which $\Gamma_i(x)$ may occur for a state of given j^{PC} :

```
0<sup>-+</sup> trajectory [s = 0, \ \ell = j]: -\eta_P = \eta_C = (-1)^j \ \gamma_5, \ \gamma^0 \gamma_5, \ \gamma_5 \ \boldsymbol{\alpha} \cdot \boldsymbol{x}, \ \gamma_5 \ \boldsymbol{\alpha} \cdot \boldsymbol{x} \times \boldsymbol{L}
0<sup>--</sup> trajectory [s = 1, \ \ell = j]: \eta_P = \eta_C = -(-1)^j \ \gamma^0 \gamma_5 \ \boldsymbol{\alpha} \cdot \boldsymbol{x}, \ \gamma^0 \gamma_5 \ \boldsymbol{\alpha} \cdot \boldsymbol{x} \times \boldsymbol{L}, \ \boldsymbol{\alpha} \cdot \boldsymbol{L}, \ \gamma^0 \ \boldsymbol{\alpha} \cdot \boldsymbol{L}
0<sup>++</sup> trajectory [s = 1, \ \ell = j \pm 1]: \eta_P = \eta_C = +(-1)^j \ 1, \ \boldsymbol{\alpha} \cdot \boldsymbol{x}, \ \gamma^0 \boldsymbol{\alpha} \cdot \boldsymbol{x}, \ \boldsymbol{\alpha} \cdot \boldsymbol{x} \times \boldsymbol{L}, \ \gamma^0 \boldsymbol{\alpha} \cdot \boldsymbol{x} \times \boldsymbol{L}, \ \gamma^0 \gamma_5 \ \boldsymbol{\alpha} \cdot \boldsymbol{L}
0<sup>+-</sup> trajectory [exotic]: \eta_P = -\eta_C = (-1)^j \ \gamma^0, \ \gamma_5 \ \boldsymbol{\alpha} \cdot \boldsymbol{L}
```

Separation of radial and angular variables

$$i\nabla \cdot \{\gamma^0 \gamma, \Phi(x)\} + m \left[\gamma^0, \Phi(x)\right] = \left[M - V(x)\right]\Phi(x)$$

Expanding the 4 × 4 wave function in a basis of 16 Dirac structures $\Gamma_i(\mathbf{x})$ $\Phi(\mathbf{x}) = \sum_i \Gamma_i(\mathbf{x}) F_i(r) Y_{j\lambda}(\hat{\mathbf{x}})$

We may use rotational, parity and charge conjugation invariance to determine which $\Gamma_i(x)$ may occur for a state of given j^{PC} :

0⁻⁺ trajectory
$$[s = 0, \ \ell = j]$$
: $-\eta_P = \eta_C = (-1)^j \ \gamma_5, \ \gamma^0 \gamma_5, \ \gamma_5 \alpha \cdot x, \ \gamma_5 \alpha \cdot x \times L$
0⁻⁻ trajectory $[s = 1, \ \ell = j]$: $\eta_P = \eta_C = -(-1)^j \ \gamma^0 \gamma_5 \alpha \cdot x, \ \gamma^0 \gamma_5 \alpha \cdot x \times L, \ \alpha \cdot L, \ \gamma^0 \alpha \cdot L$
0⁺⁺ trajectory $[s = 1, \ \ell = j \pm 1]$: $\eta_P = \eta_C = +(-1)^j \ 1, \ \alpha \cdot x, \ \gamma^0 \alpha \cdot x, \ \alpha \cdot x \times L, \ \gamma^0 \alpha \cdot x \times L, \ \gamma^0 \gamma_5 \alpha \cdot L$
0⁺⁻ trajectory [exotic]: $\eta_P = -\eta_C = (-1)^j \ \gamma^0, \ \gamma_5 \alpha \cdot L$

→ There are no solutions for quantum numbers that would be exotic in the NR quark model (despite the relativistic dynamics)

The BSE gives the radial equations for the $F_i(r)$

Example: $-\eta_P = \eta_C = (-1)^j$ states at $O(\alpha_s^0)$

$$\Phi_{-+}(\boldsymbol{x}) = \left[\frac{2}{M-V}(i\boldsymbol{\alpha}\cdot\overrightarrow{\boldsymbol{\nabla}} + m\gamma^0) + 1\right]\gamma_5 F_1(r)Y_{j\lambda}(\hat{\boldsymbol{x}})$$

Radial equation:
$$F_1'' + \left(\frac{2}{r} + \frac{V'}{M-V}\right)F_1' + \left[\frac{1}{4}(M-V)^2 - m^2 - \frac{j(j+1)}{r^2}\right]F_1 = 0$$

Example: $-\eta_P = \eta_C = (-1)^j$ states at $O(\alpha_s^0)$

$$\Phi_{-+}(\boldsymbol{x}) = \left[\frac{2}{M-V}(i\boldsymbol{\alpha}\cdot\overrightarrow{\boldsymbol{\nabla}} + m\gamma^0) + 1\right]\gamma_5 F_1(r)Y_{j\lambda}(\hat{\boldsymbol{x}})$$

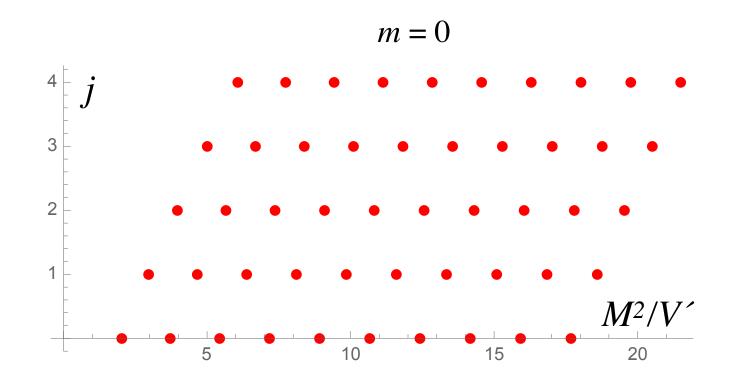
Radial equation:
$$F_1'' + \left(\frac{2}{r} + \frac{V'}{M-V}\right)F_1' + \left[\frac{1}{4}(M-V)^2 - m^2 - \frac{j(j+1)}{r^2}\right]F_1 = 0$$

Regularity at r = 0 and at V(r) = M determines the bound state masses M

Mass spectrum:

Linear Regge trajectories with daughters

Spectrum similar to dual models



The QCD scale Λ_{QCD} can be introduced via a boundary condition

The QCD scale Λ_{QCD} can be introduced via a boundary condition

Not violating the equations of motion is essential for Poincaré invariance

The QCD scale Λ_{QCD} can be introduced via a boundary condition

Not violating the equations of motion is essential for Poincaré invariance

In temporal gauge ($A^0 = 0$) the charges instantaneously determine $\nabla \cdot \mathbf{E}_L$

The QCD scale Λ_{QCD} can be introduced via a boundary condition

Not violating the equations of motion is essential for Poincaré invariance

In temporal gauge ($A^0 = 0$) the charges instantaneously determine $\nabla \cdot \mathbf{E}_L$

This allows a "Bound Fock expansion": The constituents are bound by E_L .

The QCD scale Λ_{QCD} can be introduced via a boundary condition

Not violating the equations of motion is essential for Poincaré invariance

In temporal gauge ($A^0 = 0$) the charges instantaneously determine $\nabla \cdot \mathbf{E}_L$

This allows a "Bound Fock expansion": The constituents are bound by E_L .

Including a homogeneous solution for E_L gives confinement in QCD

The QCD scale Λ_{QCD} can be introduced via a boundary condition

Not violating the equations of motion is essential for Poincaré invariance

In temporal gauge ($A^0 = 0$) the charges instantaneously determine $\nabla \cdot \mathbf{E}_L$

This allows a "Bound Fock expansion": The constituents are bound by E_L .

Including a homogeneous solution for E_L gives confinement in QCD

Poincaré invariance allows only a single parameter Λ

The QCD scale Λ_{QCD} can be introduced via a boundary condition

Not violating the equations of motion is essential for Poincaré invariance

In temporal gauge ($A^0 = 0$) the charges instantaneously determine $\nabla \cdot \mathbf{E}_L$

This allows a "Bound Fock expansion": The constituents are bound by E_L .

Including a homogeneous solution for E_L gives confinement in QCD

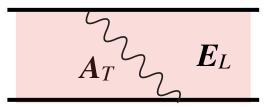
Poincaré invariance allows only a single parameter Λ

The features of hadrons thus obtained appear promising

Back-up slides

The qgq potential

A $q\bar{q}$ state, with the emission of a transverse gluon:



$$|q(\boldsymbol{x}_1)g(\boldsymbol{x}_g)\bar{q}(\boldsymbol{x}_2)\rangle \equiv \sum_{A,B,b} \bar{\psi}_A(\boldsymbol{x}_1) A_b^j(\boldsymbol{x}_g) T_{AB}^b \psi_B(\boldsymbol{x}_2) |0\rangle$$

$$V_{qgq}^{(0)}(\boldsymbol{x}_1, \boldsymbol{x}_g, \boldsymbol{x}_2) = \frac{\Lambda^2}{\sqrt{C_F}} d_{qgq}(\boldsymbol{x}_1, \boldsymbol{x}_g, \boldsymbol{x}_2) \qquad \text{(universal } \Lambda\text{)}$$

$$d_{qgq}(\boldsymbol{x}_1, \boldsymbol{x}_g, \boldsymbol{x}_2) \equiv \sqrt{\frac{1}{4}(N - 2/N)(\boldsymbol{x}_1 - \boldsymbol{x}_2)^2 + N(\boldsymbol{x}_g - \frac{1}{2}\boldsymbol{x}_1 - \frac{1}{2}\boldsymbol{x}_2)^2}$$

$$V_{qgq}^{(1)}(\boldsymbol{x}_1, \boldsymbol{x}_g, \boldsymbol{x}_2) = \frac{1}{2} \alpha_s \left[\frac{1}{N} \frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|} - N \left(\frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_g|} + \frac{1}{|\boldsymbol{x}_2 - \boldsymbol{x}_g|} \right) \right]$$

When q and g coincide:

$$V_{qgq}^{(0)}(m{x}_1=m{x}_g,m{x}_2)=\Lambda^2|m{x}_1-m{x}_2|=V_{qar{q}}^{(0)} \ V_{qgq}^{(1)}(m{x}_1=m{x}_g,m{x}_2)=V_{qar{q}}^{(1)}$$

The gg potential

A "glueball" component: $|g(\boldsymbol{x}_1)g(\boldsymbol{x}_2)\rangle \equiv \sum_a A_a^i(\boldsymbol{x}_1)\,A_a^j(\boldsymbol{x}_2)\,|0
angle$

has the potential
$$V_{gg}=\sqrt{rac{N}{C_F}}\,\Lambda^2\,|m{x}_1-m{x}_2|-N\,rac{lpha_s}{|m{x}_1-m{x}_2|}$$

This agrees with the $qg\bar{q}$ potential where the quarks coincide:

$$V_{gg}(\boldsymbol{x}, \boldsymbol{x}_g) = V_{qg\bar{q}}(\boldsymbol{x}, \boldsymbol{x}_g, \boldsymbol{x})$$

It is straightforward to work out the instantaneous potential for any Fock state.