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e The origin of mass «— The Aqcp confinement scale: Not in Locp

* Solving the equations of motion requires boundary conditions

e Perturbative S-matrix: No Aqcp in the free quark & gluon states

Feynman diagrams give no confinement

e Can we input Agcp in a boundary condition on the gluon field?

Yes: Poincaré€ invariance allows a single parameter /A

e Implies confinement, and a universal vacuum energy density « A4
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The QCD scale from a boundary condition

The QCD equations of motion do not involve the Aqcp scale.
This 1s 1llustrated by Gauss’ law for an electric charge:

VAt z) = ed(x) = A(t,x) =

€

47| x|

The 1/r dependence follows from dimensional analysis: [A°] = [1/r] = GeV

The “Cornell potential” for heavy quarkonia Vr) = Vi — % Qs
does involve the QCD confinement scale B 3 r
The scale [V’] = GeV? can arise from the dimensionless
equations of motion only due to a boundary condition.
In QCD there is a boundary condition giving pressure =5
a universal energy density of the vacuum ~ V*? N/

The result reminds of the “bag model”, but without a “bag”

7R

“empty vacuum” QCD vacuum



The perturbative S-matrix
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The perturbative S-matrix

o0

Sfi:Out<f,t%oo\{Texp[—i/ dtHI(t)}}\i,t%—oo%n

— OO

This defines the perturbative expansion around free in and out states.

The free gauge propagators have no scale. For photons in Coulomb gauge,

1

1
2 AT ||

ta) =~

— Doo(t,x) =

Bound states have a size (scale), and are orthogonal to free states:

No Feynman diagram has a bound state pole

Consider perturbative expansions for bound states




QED bound states: Atoms

Positronium
et et

Atoms are expanded around
D) -
an initial bound state |P)

C
L=

(A e

The initial state 1s usually chosen to be a solution of the Schrodinger equation.
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QED bound states: Atoms

Positronium
et et

Atoms are expanded around
D) -
an initial bound state |P)

C
L=

(A [

The initial state 1s usually chosen to be a solution of the Schrodinger equation.

Atomic wave functions ®(a) are non-polynomial (exponential) in o = e2/4m

Their higher order corrections @ (a)(1 + c10 + c,02 ) depend on D ().

The perturbative expansion for bound states Caswell &
is not unique, it depends on the choice of initial state. Lepage (1975)
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Valence quark Fock states govern quantum numbers,

Valence quantum numbers

even for highly relativistic constituents.

Mesons have a sizeable
current gg Fock component
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ud, id, us, ds; f! f
%(do?—uﬂ) ds, s
'Sy 0T = K n 1’ (958)
1351 17— p(770) K*(892) ¢(1020) w(782)
1'P 17~ b;(1235) Kip! h1(1415) h;(1170)
3Py 0tF ag(1450)  K((1430) fo(1710) fo(1370)
3P 17T a1(1260) K4l F1(1420) f1(1285)
3P, 27T ay(1320) K3(1430) f5(1525) f2(1270)
1'Dy 277 m3(1670) Ko (1770)7 12(1870) n2(1645)
1°D; 17~ p(1700) K*(1680)* w(1650)
13Dy 27~ K»(1820)1
13D3 377 p3(1690)  K3(1780) ¢3(1850) w3(1670)
13Fy 47T a4(1970)  K}(2045) f4(2300) f4(2050)
1°Gs 577 p5(2350) K¥(2380)
218, 0~ mw(1300) K(1460)  n(1475) mn(1295)
2351 17— p(1450) K*(1410)} ¢(1680) w(1420)
23P 17" a1(1640)
23P, 27T a3(1700)  K3(1980)  f2(1950) f2(1640)

Particle Data Group

E.g., pion decay:
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occurs only via ‘Ud >
Stan Brodsky

Assume:
Current quark Fock states
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A Bound Fock expansion

The relevance of valence states suggest a “Bound Fock™ expansion

| Positronium) = |eTe™ )+ |eTe ) +...

Each Fock state should be bound by an instantaneous potential.

E.g.,for |ete™) the potential is V(r) = — a/r

| Proton) = |qqq) + lqqq g) + - - -

Is there an instantaneous potential for the relativistic quarks of QCD?

Theories with a local action generally do not have instantaneous potentials:

Constituent velocities are bounded by the speed of light (causality)

Paul Hoyer INT 6/22
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Gauge theories do have instantaneous interactions:
Although their action is local, the gauge may be fixed non-locally

The lack of d9AY and VA in Z£orp means that A° and Az do not propagate

Feynman gauge fixing: Lcr= (dy A*)? adds the missing terms
= All gauge fields propagate, explicit Poincaré invariance

Convenient for scattering (Feynman diagrams)

This hides the instantaneous potential

Instantaneously fixed gauges V:A(tx) =0 (Coulomb gauge)

with rotational invariance: A%(t,x) =0 (Temporal gauge)

Due to the absence of dpA° in LoEDp A° has no conjugate field

=> Canonical quantisation in Coulomb gauge requires Dirac constraints

Paul Hoyer INT 6/22
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Temporal gauge

No Dirac constraints in temporal gauge: A% = dgA? =10

Canonical commutation relations . . g
’ 7 7 R -

with £/ = — dpAl, include Ef. [E (t, ), A (¢, y)} = 1070(x — y)

AO(t,x) = 0 1s preserved under time-independent gauge transformations,

which are generated by the operator of “Gauss’ law™: Willemsen (1978)

0S '
514%?;3 = 0, F'(x) — ewW(x) Does not vanish as an operator!

Physical states need to be invariant under all gauge transformations:

0S
514@55; iphys) =0 Determines V- Ey, from the fermion distribution




The classical, instantaneous field EL

oS
%ED iphys) = 0 is not an operator relation, it is a constraint on |phys)
0 AY(x)
oS
s A%fol; 0) =0 implies Er = 0 in the vacuum. No particles are created.

In temporal gauge the electric field E; acts like a classical field.
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0SQED

A9 (x)

The classical, instantaneous field EL

iphys) =0  isnotan operator relation, it is a constraint on |phys)

0) =0 implies E; = 0 in the vacuum.

No particles are created.

In temporal gauge the electric field E; acts like a classical field.

E| can bind e*e- Fock states strongly, without pair creation.

Temporal gauge allows valence dominance even of relativistic states.

Contrast: In Coulomb gauge A9 is a quantum field, which creates particles.

Paul Hoyer INT 6/22
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Bound Fock expansion for Positronium in A%=0 gauge

eter)

The perturbative expansion in o 1s e
chosen to start from the le+e-) Fock state, EL .
which 1s bound by its classical field Er : €

‘ ete” 7>

Higher order corrections include states

o-
with transverse photons and ete- pairs, E

. Ar L
as determined by Hogp le*e-) et
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Bound Fock expansion for Positronium in A%=0 gauge

eter)

The perturbative expansion in o 1s e
chosen to start from the le+e-) Fock state, EL .
which 1s bound by its classical field Er : €

‘ ete” 7>

Higher order corrections include states

o-
with transverse photons and ete- pairs, E

. Ar L
as determined by Hogp le*e-) et

Each Fock component of the bound state
includes its particular instantaneous E, field.

This Fock expansion 1s valid in any frame,

and 1s formally exact at O(a®).
Paul Hoyer INT 6/22
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The classical fields of QED and QCD differ

Global gauge invariance allows a
classical gauge field for neutral atoms...
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External observers see a dipole field:
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Proton (QCD) 1s @ @

a color singlet ©
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The classical fields of QED and QCD differ

Global gauge invariance allows a
classical gauge field for neutral atoms...

et(x2)

Positronium (QED) .
e~(x1) «

External observers see a dipole field:

EL(m):—iVm( ! ! )

47 z—x1| |z — 2o

The electron is bound by a monopole field:

e 1
E -V
L(wl) 47’(‘ ’$1 —:132\

but color singlet hadrons cannot
have a color octet gluon field.

X1 X2
Proton (QCD) 1s @ @

a color singlet ©
X3

External observers see no field:

E7(x) =0 forall x

The blue quark sees the field
of the red and green quarks.

E%[aﬁ; QT(w2)7QQ(w3)] 7'é 0

An external observer sees no color field due to the sum over quark colors.

Each color component of the Fock state does have E7 # 0
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Temporal gauge in QCD: AL =0

The temporal gauge constraint determines V- E; , for each state:

0,E} ,(z) |phys) = g[ — fabe AYEL + T (z)] [phys)
In QED we impose the boundary condition: E;(x) — 0 for |x| — o

In QCD E. . (x) =0 for (globally) color singlet Fock states.

The color electric field £, . (x) # O for each quark color component

Include a homogeneous solution, V' E . (x) =0 with E., (x) # 0.
E. . (x) binds each quark color component of a hadron.

The field cancels in the sum over quark colors for singlet states.




Including a homogeneous solution for Ej ,

£y () [phys) = —0; / dy {mr Y+ 4W’w_yd5a(y) phys)
where £, (y) = —fac AL EL(y) + T (y) and Eq(y)[0) =0

The contribution * g gives the gluon exchange potential: V' (r) = —— —

The contribution & x # r(x,y) is homogeneous: O;E'(x) =0



Including a homogeneous solution for Ej ,

B} .(x) [phys) = —0; / dy {mr Y+ 4W’w_yd5a(y) phys)
where £, (y) = —fac AL EL(y) + T (y) and Eq(y)[0) =0

The contribution * g gives the gluon exchange potential: V' (r) = —— —

The contribution % k # k(x,y) is homogeneous: 0, E'(x) = 0

The homogeneous solution & % of the gauge constraint is the
only one that gives invariance under translations and rotations

E; « % 1s independent of x, as required by translation invariance:
The gluon field energy density 1s spatially constant.

This solution is excluded by the free field BC of Feynman diagrams.



The instantaneous potential from the Hamiltonian

Ej .(x)|phys) = =07 / dy{m-y+ J }Sa(y) Iphys)

Ar|x — Yy
/deEa . EY
/dydz{y z{ /CZCU—FQKJ} +1_e }5 (y)Ea(2)

2Iy—Z\

N

where &,(y) = —fabcAéEi(y) =+ INTCL@D(’!/)



The instantaneous potential from the Hamiltonian

Ej .(x)|phys) = =07 / dy{m-y+ J }Sa(y) Iphys)

Arr|z — y|
%/deE‘LL-E%

[ayaz{y-=[3n* [ dzrgn] + 32 Yewea(x

>y — z|

Hy

where 5a(y) — _fabcAéEz(y) =+ WTQ@D(Z/)

The field energy « volume of space is irrelevant only if it is universal.
This relates the normalisation # of all Fock components,

leaving an overall scale A as the single parameter.



Meson qq Fock state potential

lq(x1)q(x2)) Zw 1) :cg) |0) globally color singlet

Paul Hoyer INT 6/22
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Meson qq Fock state potential
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globally color singlet

does not create particles

Cornell potential



Meson qq Fock state potential

‘Q(Cﬂl)@(ﬂh» = Z &A(wl) ”QDA(CB2) \0> globally color singlet
A

Hy = % / dx Z E; - EY does not create particles

Hv [99) = Vag lqq)

g

Vog(@1, @2) = A% |y — @] — T — @ Cornell potential

This potential is valid also for relativistic gg Fock states, in any frame
A4
29°CF

The universal vacuum energy density is Ep =

Paul Hoyer INT 6/22



Baryon Fock state potential

Baryon: [q(z1)q(®2)q(xs3)) = Z 6ABC¢L($1)¢E($2)¢ZJ($3)|O>

A,B,C
2 1 1 1
Vaga(®1, @2, T3) = Adggq (1, 2, 3) — 3 Oés<\fl31 — &9 i [z — 3 i T3 — $1‘>

1
2

dogg (@1, T2, @3) = —= /(X1 — )% + (B2 — @3)2 + (w5 — 1)?



Baryon Fock state potential

Baryon: [q(z1)q(®2)q(xs3)) = Z 6ABC¢T4(331)¢13(332)¢2($3) 0)
A,B,C

2 1 1 1
Vaga(®1, @2, T3) = Adggq (1, 2, 3) — §&8<‘w1 — &9 i [z — 3 i T3 — 131‘)

1
dgqq(T1, T2, T3) = ﬁ\/(if/‘l — )2 + (X2 — x3)? + (3 — 21)?

When two of the quarks coincide the potential reduces to the gg potential:

4 Qg

quq(mlﬂw%mQ) — AQ‘wl - wZ‘ - VQQ(m17m2)

g‘ibl—wg‘ N

Analogous potentials are obtained for any globally color singlet
quark and gluon Fock state, such as ggg and gg.



O (o)) qq bound states

An O (ag) meson state with P = 0 and wave function ®:

|M> = Z /diBleBQ &é(t — O, 331)5AB(I)QB(331 — wg)wﬁB(t — O, 2132) ‘O>
A,B;a,p
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O (o)) qq bound states

An O (ozg) meson state with P = 0 and wave function ®:

|M> = Z /d.’EldCBQ &ﬁ(t — O, 2131)5AB(I)@5(2B1 — wg)wﬁB(t — O, 2132) ‘O>
A,B;a,p

The (rest frame) bound state condition H |[M) = M |M) gives
— +—
[z'fyofy -V + mfyo] O(x) + ¢(x) [z’fyofy .V — mfyo] = [M - V(\w\)]@(w)

where x =x1—x2and V(z) = A%|z| at O (a?)
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O (o)) qq bound states

An O (ozg) meson state with P = 0 and wave function ®:

’M> = Z /d.’I;ldCBQ &ﬁ(t — O, $1)5AB(I)QB(ZU1 — mg)wﬁB(t — O, 2132) ‘O>
A,B;a,3

The (rest frame) bound state condition H |[M) = M |M) gives
— +—
[z'fyofy -V + mfyo] O(x) + ¢(x) [z’fyofy .V — mfyo] = [M - V(\az\)]@(a})

where x =x1—x2and V(z) = A%|z| at O (a?)

In the non-relativistic limit (m > A) this reduces to the Schrédinger equation.

—> The quarkonium phenomenology with the Cornell potential.
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Separation of radial and angular variables

iV Ay, ®(x)} + m 70, P(x)] = [M — V(x)|®(x)

Expanding the 4 x 4 wave function B | | .
in a basis of 16 Dirac structures [';(x) O(x) = Z Li(x)F; (T)Y}A ()
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Separation of radial and angular variables
iV {17, @)} +m [, e(x)] = [M — V(z)|d(z)

Expanding the 4 x 4 wave function F .
) X
in a basis of 16 Dirac structures I’i(x) Z jr (@)

We may use rotational, parity and charge con]ugatlon invariance to determine
which I'/(x) may occur for a state of given jPC:

0~ trajectory [s =0, {=j] —np =1nc = (=1)7 v, 95, Ba-x, ya-xx L

0~ trajectory [s=1, £ =j]: np=nc=—(-1)Y YPywa -z, Vsa-xxL, a-L, y°a-L

0" trajectory [s=1,f=35+1]: np=nc=+(-1) 1, -z, Ya -z, a-zx L, Ya-zx L, Vy5a-L
0"~ trajectory [exotic] : np=-nc= (-1 4% s a-L



Separation of radial and angular variables
iV {7y, @)} +m [, (x)] = [M — V(x)|P(z)

Expanding the 4 x 4 wave function F .
) X
in a basis of 16 Dirac structures Fi(x) Z jr (@)

We may use rotational, parity and charge con]ugatlon invariance to determine
which I'/(x) may occur for a state of given jPC:

0~ trajectory [s =0, {=j] —np =1nc = (=1)7 v, 95, Ba-x, ya-xx L

0~ trajectory [s=1, £ =j]: np=nc=—(-1)Y YPywa -z, Vsa-xxL, a-L, y°a-L

0" trajectory [s=1,f=35+1]: np=nc=+(-1) 1, -z, Ya -z, a-zx L, Ya-zx L, Vy5a-L
0"~ trajectory [exotic] : np=-nc= (-1 4% s a-L

—> There are no solutions for quantum numbers that would be exotic
in the NR quark model (despite the relativistic dynamics)

The BSE gives the radial equations for the Fi(r)



Example: —np =nc = (—1)7 states at O(0sP)

2 A .
O, ()= [ (i - V +mA°) + 1]75 P (r)Y (&)
M-V
- S 2 v’ / 1 2 > JU+1) B
Radial equation: F|" + (r + M—V)F1+ [Z(M—V) —mt - ]Fl =0

Paul Hoyer INT 6/22
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Example: —np =nc = (—1)’ states at O(0sP)

2 A .
O, ()= { (i - V +mA°) + 1}% P (r)Y (&)
M-V
. e 1 g v’ / 1 . 2 Q_j(j—|_1) _
Radial equation: F|" + (r + 7 V)F1 + L(M V) —m ;s ]Fl =0

Regularity at » = 0 and at V(r) = M determines the bound state masses M

Mass spectrum: * m=0
. 4 B .
Llnear Regge : ] o o o o o o o o o o
trajeCtOTieS 3+ ® o6 e e o o o o o o
with daughters
2 - o o o o o o o o [ o

Spectrum similar to
dual models

—
\
[
o
o
[
[
o
[
[
o
o
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Summary

The QCD scale Aqcp can be introduced via a boundary condition
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Summary

The QCD scale Aqcp can be introduced via a boundary condition

Not violating the equations of motion is essential for Poincaré invariance

In temporal gauge (A% = 0) the charges instantaneously determine V-E,

This allows a “Bound Fock expansion”: The constituents are bound by E;.

Including a homogeneous solution for E;, gives confinement in QCD

Poincaré invariance allows only a single parameter A

The features of hadrons thus obtained appear promising
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The qqq potential

A (qq state, with the emission of a transverse gluon: XTLZ/% E;

q(z1)g(2g)q(2)) Z a(x1) Al (2,)Th 5B (22) |0)

A2
Vq(gOg(mlv Ty, T2) = \/77 dggq(T1,Tg, T2) (universal A)

dng(xl’wg’ 332) = \/i(N - Q/N)(wl — $2)2 + N(wg — %5131 — %:EQ)Q

1 1 1 1
v ~ S| - ( )
194 (T1, Tg, T2) = 5 @ N |z — x| [T — x| i 2 — @

When ¢ and g coincide: Vq(gog( =T, xa) = A2|331 — | = Vq(g)

(1) _ _ @)
Viga (X1 =g, T2) = Vg
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The gg potential

A “glueball” component: ’9(331)9(332» - Z AZ(%) Ai(wz) |O>

N
has the potential Vg = o A?|zy — 9| — N
I

g

|€U1 — L2

This agrees with the qgq potential where the quarks coincide:
Vog(@, 2g) = Vygg(x, 24, )

It 1s straightforward to work out the instantaneous potential for any Fock state.
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