PREX and CREX experiments and equation of state

Chuck Horowitz, Indiana U.

*Artwork by Marisa Petrusky

INT, June 2023

PREX uses Parity V. to Isolate Neutrons

- In Standard Model Z⁰ boson couples to the weak charge.
- Proton weak charge is small: $Q_W^p = 1 4 {\rm sin}^2 \Theta_W \approx 0.05$
- Neutron weak charge is big:

$$Q_W^n = -1$$

- Weak interactions, at low Q², probe neutrons.
- Parity violating asymmetry A_{pv} is cross section difference for positive and negative helicity electrons

$$A_{pv} = \frac{d\sigma/d\Omega_{+} - d\sigma/d\Omega_{-}}{d\sigma/d\Omega_{+} + d\sigma/d\Omega_{-}}$$

- A_{pv} from interference of photon and Z^0 exchange.
- Determines weak form factor

$$F_W(q) = \frac{1}{Q_W} \int d^3r j_0(qr)\rho_W(r)$$

- Model independently map out distribution of weak charge in a nucleus.
- Electroweak reaction free from most strong interaction uncertainties.

 $= \approx \frac{G_F Q^2 |Q_W|}{\overline{}} \frac{F_W(Q^2)}{\overline{}}$ $4\pi\alpha\sqrt{2}Z \quad F_{ch}(Q^2)$

R. Michaels

PREX-II weak radius R_w [fm] 2.6 2.6 2.6 5.9 $A_{pv} = \frac{d\sigma/d\Omega_{+} - d\sigma/d\Omega_{-}}{d\sigma/d\Omega_{+} + d\sigma/d\Omega_{-}}$ $\approx \frac{G_F Q^2 |Q_W|}{4\pi\alpha\sqrt{2}Z} \frac{F_W(Q^2)}{F_{ch}(Q^2)}$ 5.5

5.4

PREX-I+II Results

²⁰⁸ Pb Parameter	Value
Weak radius (B_W)	5.800 ± 0.01
Interior weak density (ρ_W^0)	-0.0796 ± 0.00
Interior baryon density $(\rho_b^{\acute{0}})$	0.1480 ± 0.00
Neutron skin $(R_n - R_p)$	0.283 ± 0.0

PHYSICAL REVIEW C 102, 054315

Radii of ²⁰⁸Pb and Neutron Stars

- Pressure of neutron matter pushes neutrons out against surface tension ==> R_n-R_p of ²⁰⁸Pb correlated with P of neutron matter.
- Radius of a neutron star also depends on P of neutron matter.
- Measurement of Rn (²⁰⁸Pb) in laboratory has important implications for the structure of neutron stars.

Neutron star is 18 orders of magnitude larger than Pb nucleus but both involve neutron rich matter at similar densities with the same strong interactions and equation of state.

Nuclear measurement vs Astronomical Observation To probe equation of state

PREX, CREX measure neutron radius of ²⁰⁸ ⁴⁸Ca. Clean electroweak rxn.

NICER measures NS radius from X-ray ligh Some systematic errors.

Electric dipole polarizability from coulomb excitation. Potential systematic error from excited states. Encourage ab initio calcula

LIGO measured gravitational deformability (quadrupole polarizability) of NS from tidal excitation. Statistics limited but systematic errors controllable. $||/|c||| 2\pi z ||\cdot||2$

$$\Lambda \propto \Sigma_f \frac{|\langle f | r^2 Y_{20} | i \rangle|^2}{E_f - E_i} \quad \propto \quad R^5$$

⁹⁸ Pb and ht curve.		Laborat measurer on nuc
o sum over ations.	Radius	PREX, C
ty c errors	Polarizability	Electric d

	Laboratory measurements on nuclei	Astronomica observations of neutron stars
Radius	PREX, CREX	NICER
Polarizability	Electric dipole	Gravitational deformability

CREX on ⁴⁸Ca and Chiral EFT

- Chiral EFT expands 2, 3, ... nucleon interactions in powers of momentum transfer over chiral scale.
- Three neutron forces are hard to directly observe. They increase the pressure of neutron matter and the neutron skin thickness of both ²⁰⁸Pb and ⁴⁸Ca.
- Only stable, neutron rich, closed shell nuclei are ⁴⁸Ca and ²⁰⁸Pb.
- PREX for ²⁰⁸Pb better for inferring pressure of neutron matter and structure of neutron stars.
- CREX measures neutron skin in ⁴⁸Ca. Smaller system allows direct comparison to Chiral EFT calculations and very sensitive to 3 neutron forces.

CREX

- 2.182 GeV electrons scattering with q=0.8733 fm⁻¹ from ⁴⁸Ca.
 - Target 8% 40 Ca, 0.6%, 0.6%, 0.2% of rate from first three excited states (2+,3-,3-).
 - A_{PV}=2668+/-106+/-40 ppb
- We thank J. Piekarewicz, P. G.
 Reinhard and X. Rocca-Maza for RPA calculations of ⁴⁸Ca excited states and J. Erler and M.
 Gorshteyn for calculations of γ – Z box radiative corrections.

Corre

- Beam Beam Beam Isotop 3.831
- $4.507 \\ 5.370$
- Trans
- Detec
- Accep Radia

Total Statis

A_{PV} corrections and corresponding systematic errors

ection A	Absolute [ppb]	Relative [%]
n polarization	382 ± 13	14.3 ± 0.5
n trajectory & energy	68 ± 7	2.5 ± 0.3
ı charge asymmetry	112 ± 1	4.2 ± 0.0
pic purity	19 ± 3	0.7 ± 0.1
MeV (2^+) inelastic	-35 ± 19	-1.3 ± 0.7
$MeV (3^{-})$ inelastic	0 ± 10	0 ± 0.4
MeV (3^{-}) inelastic	-2 ± 4	-0.1 ± 0.1
sverse asymmetry	0 ± 13	0 ± 0.5
ctor non-linearity	0 ± 7	0 ± 0.3
ptance	0 ± 24	0 ± 0.9
ative corrections (Q_W)	0 ± 10	0 ± 0.4
systematic uncertainty	40 ppb	1.5%
stical Uncertainty	106 ppb	4.0%

Weak Form Factor

$A_{PV} = \frac{G_F Q^2 Q_W^2 F_W(q)}{4\pi\alpha\sqrt{2}ZF_{ch}(q)}$

- Determine ratio F_W/F_{ch} from A_{PV} (Include Coulomb distortions and averaging over acceptance)
- Main result:

 $F_{\rm ch}(q) - F_{\rm W}(q) = 0.0277 \pm 0.0055 \;({\rm exp})$

MREX experiment at Mainz

- MESA is high current low energy electron accelerator being built at Mainz.
- Mainz Radius Experiment (MREX) will use MESA and large acceptance P2 detector to measure the neutron skin of ²⁰⁸Pb more accurately than PREX.
- PREX measured R_n to 1.3% (+/- 0.07) fm), MREX goal 0.5% (+/- 0.03 fm)

MAGIX

beam energy	155 MeV
beam current	150 μA
target density	$0.28{ m g/cm^2}$
polar angle step size	$\Delta heta =$ 4°
polar angular range	30° to 34°
degree of polarization	85 %
parity violating asymmetry	0.66 ppm
running time	1440 hours
systematic uncertainty	1 %
$\delta A^{PV}/A^{PV}$	1.39%
$\delta R_{\rm n}/R_{\rm n}$	0.52 %

PREX and CREX Collaborations

Students: Devi Adhikari, Devaki Bhatta Pathak, Quinn Campagna, Yufan Chen, Cameron Clarke, Catherine Feldman, Iris Halilovic, Siyu Jian, Eric King, Carrington Metts, Marisa Petrusky, Amali Premathilake, Victoria Owen, Robert Radloff, Sakib Rahman, Ryan Richards, Ezekiel Wertz, Tao Ye, Adam Zec, Weibin Zhang

Post-docs and Run Coordinators: Rakitha Beminiwattha, Juan Carlos Cornejo, Mark-Macrae Dalton, Ciprian Gal, Chandan Ghosh, Donald Jones, Tyler Kutz, Hanjie Liu, Juliette Mammei, Dustin McNulty, Caryn Palatchi, Sanghwa Park, Ye Tian, Jinlong Zhang

Spokespeople: Kent Paschke (contact), Krishna Kumar, Robert Michaels, Paul A. Souder, Guido M. Urciuoli Thanks to the Hall A techs, Machine Control, Yves Roblin, Jay Benesch and other Jefferson Lab staff

Student **Brenden Reed** made important contributions!

C. Horowitz (horowit@iu.edu)

