Parity violating electron and coherent neutrino scattering

Chuck Horowitz, FRIB+Indiana U.

*Artwork by Marisa Petrusky

ana U. INT, Apr. 2023

Parity violating electron scattering measures same coherent weak form factor $F_w(Q)$

WIMP Mass $[\text{GeV}/c^2]$

PV e scattering and nuclear theory (to extrapolate to neighboring nuclei) may be able to constrain weak from factors better than near future neutrino scattering exps.

This allows coherent neutrino scattering to probe non-standard neutrino interactions.

Present R_w measurements: PREX-2(²⁰⁸Pb) 1.3%(+/-0.075 fm) CREX(48Ca) 1(0.7)%(+/-0.03 fm) Qweak(²⁷Al) 3.8%(+/-0.12 fm) Future:

MREX(²⁰⁸Pb) goal 0.5%(+/-0.03fm)

- In Standard Model Z⁰ boson couples to the weak charge.
- Proton weak charge is small: $Q_W^p = 1 - 4\sin^2\Theta_W \approx 0.05$
- Neutron weak charge is big:

$$Q_W^n = -1$$

- Weak interactions, at low Q², probe neutrons.
- Parity violating asymmetry A_{pv} is cross section difference for positive and negative helicity electrons

$$A_{\rm PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \approx \frac{G_F Q^2 |Q_W|}{4\sqrt{2\pi\alpha Z}} \frac{F_W(Q)}{F_{\rm ch}(Q)}$$

Parity Violation Isolates Neutrons

- A_{pv} from interference of photon and Z^0 exchange.
- Determines weak form factor

$$F_W(Q^2) = \int d^3r \frac{\sin(Qr)}{Qr} \rho_W(r)$$

- Model independently map out distribution of weak charge in a nucleus.
- Coulomb distortions: $A=G_F\rho_W$ Potential=V+ $\gamma_5 A$
- Electroweak reaction free from most strong interaction uncertainties.

$$\rho_W(r) = \int d^3r' \begin{bmatrix} G_{En}^Z(r')\rho_n(|\vec{r} - \vec{r'}|) + G_{Ep}^Z(r')\rho_p(|\vec{r} - \vec{r'}|) \end{bmatrix}_{q_p = 0.0711}$$

• The weak form factor $F_W(q)$ is F.T. of ρ_w .

$$F_W(q) = \frac{1}{Q_W} \int$$

• Neutron skin is R_n-R_p and weak skin is R_w-R_{ch}

Weak Density and Form Factor

• The weak charge density $\rho_w(r)$ is neutron density folded with weak charge distribution of single neutron...

$$d^3r j_0(qr)
ho_W(r)$$

R. Michaels

PREX-II

Parity violating asymmetry calculated including Coulomb distortions and integration over experimental acceptance

5.4

weak radius R_w [fm]

PREX-I+II Results

²⁰⁸ Pb Parameter	Value
Weak radius (R_W)	5.800 ± 0.0
Interior weak density (ρ_W^0)	-0.0796 ± 0.09
Interior baryon density (ρ_b^0)	0.1480 ± 0.0
Neutron skin $(R_n - R_p)$	0.283 ± 0.0

Radii of ²⁰⁸Pb and Neutron Stars

- Pressure of neutron matter pushes neutrons out against surface tension ==> R_n-R_p of ²⁰⁸Pb correlated with P of neutron matter.
- Radius of a neutron star also depends on P of neutron matter.
- Measurement of Rn (²⁰⁸Pb) in laboratory has important implications for the structure of neutron stars.

Neutron star is 18 orders of magnitude larger than Pb nucleus but has same neutrons, strong interactions, and equation of state.

Nuclear measurement vs Astronomical Observation To probe equation of state

PREX, CREX measure neutron radius of ²⁰⁸Pb and ⁴⁸ Discuss systematic errors. Future MREX at Mainz

NICER measures NS radius from X-ray light curve. Some systematic errors modeling X-ray emission.

Electric **dipole polarizability** from coulomb excitation. Potential systematic error from sum over excited states. Encourage ab initio calculations.

LIGO measured gravitational deformability (quadrupole) polarizability) of NS from tidal excitation. Statistics limited but systematic errors controllable. Motivates third generation observatory such as Cosmic Explorer (40 km) or Einstein Telescope.

	Laboratory measurements on nuclei	Astronomica observations of neutron stars
Radius	PREX, CREX, COHERENT	NICER
Polarizability	Electric dipole	Gravitational deformability

CREX on ⁴⁸Ca and Chiral EFT

- Chiral EFT expands 2, 3, ... nucleon interactions in powers of momentum transfer over chiral scale.
- Three neutron forces are hard to directly observe. They increase the pressure of neutron matter and the neutron skin thickness of both ²⁰⁸Pb and ⁴⁸Ca.
- Only stable, neutron rich, closed shell nuclei are ⁴⁸Ca and ²⁰⁸Pb.
- PREX for ²⁰⁸Pb better for inferring pressure of neutron matter and structure of neutron stars.
- CREX measures neutron skin in ⁴⁸Ca. Smaller system allows direct comparison to Chiral EFT calculations and very sensitive to 3 neutron forces.

CREX

- 2.182 GeV electrons scattering with q=0.8733 fm⁻¹ from ⁴⁸Ca.
 - Target 8% 40 Ca, 0.6%, 0.6%, 0.2% of rate from first three excited states (2+,3-,3-).
 - A_{PV}=2668+/-106+/-40 ppb
- We thank J. Piekarewicz, P. G.
 Reinhard and X. Rocca-Maza for RPA calculations of ⁴⁸Ca excited states and J. Erler and M.
 Gorshteyn for calculations of γ – Z box radiative corrections.

Corre

- Beam Beam Beam Isotop 3.831
- $4.507 \\ 5.370$
- Trans
- Detec
- Accep Radia

Total Statis

A_{PV} corrections and corresponding systematic errors

ection	Absolute [ppb]	Relative $[\%]$
n polarization	382 ± 13	14.3 ± 0.5
n trajectory & energy	68 ± 7	2.5 ± 0.3
ı charge asymmetry	112 ± 1	4.2 ± 0.0
pic purity	19 ± 3	0.7 ± 0.1
$MeV (2^+)$ inelastic	-35 ± 19	-1.3 ± 0.7
$MeV (3^{-})$ inelastic	0 ± 10	0 ± 0.4
MeV (3^{-}) inelastic	-2 ± 4	-0.1 ± 0.1
sverse asymmetry	0 ± 13	0 ± 0.5
ctor non-linearity	0 ± 7	0 ± 0.3
ptance	$0~\pm~24$	0 ± 0.9
ative corrections (Q_W)	0 ± 10	0 ± 0.4
systematic uncertainty	40 ppb	1.5%
stical Uncertainty	106 ppb	4.0%

Weak Form Factor

$$A_{PV} = \frac{G_F Q^2 Q_W^2 F_W(q)}{\sqrt{2} \pi \pi} \qquad 0.0$$

$$4\pi\alpha\sqrt{2ZF_{ch}(q)} \qquad 0.0$$

Determine ratio F_W/F_{ch} from - F w A_{PV} (Include Coulomb 0.03 distortions and averaging over F_{ch} 0.02 acceptance)

$$F_{\rm ch}(q) - F_{\rm W}(q) = 0.0277 \pm 0.0055 \ ({\rm exp})$$

QuantityValue
$$\pm$$
 (exp) \pm (model) $R_W - R_{ch}$ $0.159 \pm 0.026 \pm 0.023$ $R_n - R_p$ $0.121 \pm 0.026 \pm 0.024$ Model error in extraction of
Rw-R_{ch} or R_n-R_p from spread
model predictions for given
F_{ch}-Fw. $Exp. error in R_n +/-0.026 fm (Total error in R_n +/-0.035 fm (Total error in R_n +/-0.035 fm (Total error in F_{ch}-Fw $R_n - R_p = 0.121 \pm 0.035(totalNo model error in F_{ch}-Fw $No model error in F_{ch}-Fw$ $R_n - R_p = 0.121 \pm 0.035(total)$ $R_n - R_p = 0.0277 \pm 0.005$$$

PREX measured R_n to 1.3%

Symmetry Energy from PREX, CREX

- - $L=3n_0dS(n)/dn|_{n_0}$ Extracting L from CREX is more model dependent than from PREX.
- L=106 +/- 37 MeV (PREX), 69 +/- 34 MeV (PREX+CREX)
- The DINO RMF interactions have unusual density dependence, fit to both PREX and CREX

Symmetry energy S(n) describes how E of nuc. matter rises as one moves away from N=Z

Parity violation at Mainz

- At MESA (new high current low energy machine) measure: –Weak charge of proton (improve on Qweak)
 - –Weak charge of ^{12}C ("Atomic PNC without the atomic structure")
 - –MREX: Neutron skin thickness of 208 Pb (improve on PREX II by more than factor of two) measure R_w to 0.5%.
- R_w ⁴⁸Ca to 1% (CREX), ²⁰⁸Pb (PREX 1.3%), (MREX 0.5%)
 - –Nuclear theory can extrapolate $R_{w}R_{ch}$ to $R_{w}R_{ch}$ in a neighboring nucleus, for example from ⁴⁸Ca (CREX) to ⁴⁰Ar.
- PREX/ CREX: K. Kumar, P. Souder, R. Michaels, K.
 Paschke, G. Urciuoli... Graduate student: Brendan Reed

C. J. Horowitz, Indiana U., horowit@indiana.edu