Neutron Densities, PREX / CREX, and Neutron Stars

EXERCISE Office of Chuck Horowitz, Indiana U. Heaven and Earth, INT 2022

*Artwork by Marisa Petrusky

Neutron densities, PV electron scattering, and neutron stars

- Neutron densities and PREX
- Neutron stars and gravitational waves
- CREX PV electron scattering experiment on ⁴⁸Ca
 - Work done with student Brendan Reed!

Neutron Densities in Nuclei

orders of magnitude.

picture of the atomic nucleus!

PREX uses Parity V. to Isolate Neutrons

- In Standard Model Z⁰ boson couples to the weak charge.
- Proton weak charge is small: $Q_W^p = 1 4 {\rm sin}^2 \Theta_W \approx 0.05$
- Neutron weak charge is big:

$$Q_W^n = -1$$

- Weak interactions, at low Q², probe neutrons.
- Parity violating asymmetry A_{pv} is cross section difference for positive and negative helicity electrons

$$A_{pv} = \frac{d\sigma/d\Omega_{+} - d\sigma/d\Omega_{-}}{d\sigma/d\Omega_{+} + d\sigma/d\Omega_{-}}$$

- A_{pv} from interference of photon and Z^0 exchange.
- Determines weak form factor

$$F_W(q) = \frac{1}{Q_W} \int d^3r j_0(qr)\rho_W(r)$$

- Model independently map out distribution of weak charge in a nucleus.
- Electroweak reaction free from most strong interaction uncertainties.

 $= \approx \frac{G_F Q^2 |Q_W|}{\overline{}} \frac{F_W(Q^2)}{\overline{}}$ $4\pi\alpha\sqrt{2}Z \quad F_{ch}(Q^2)$

$$\rho_W(r) = \int d^3r' \left[G_{En}^Z(r')\rho_n(|\vec{r} - \vec{r'}|) + G_{Ep}^Z(r')\rho_p(|\vec{r} - \vec{r'}|) \right]$$

The weak form factor F

$$F_W(q) = \frac{1}{Q_W} \int$$

• Neutron skin is R_n-R_p and weak skin is R_w-R_{ch}

Weak Density and Form Factor

• The weak charge density $\rho_w(r)$ is neutron density folded with weak charge distribution of single neutron...

w(q) is F.T. of
$$\rho_w$$
.

$$d^3r j_0(qr)
ho_W(r)$$

²⁰⁸ Pb Parameter	Value
Weak radius (R_W)	$5.800\pm0.075~{\rm fm}$
Interior weak density (ρ_W^0)	$-0.0796\pm0.0038{ m fm}$
Interior baryon density (ρ_b^0)	$0.1480\pm0.0038{ m fm}$
Neutron skin $(R_n - R_p)$	$0.283\pm0.071~\mathrm{fm}$

Atomic Parity Nonconservation

• Atomic PNC depends on overlap of electrons with neutrons in nucleus.

Cs experiment good to 0.3%.
Not limited by R_n but future
0.1% exp would need R_n to 1%

• Measurement of R_n in ²⁰⁸Pb and ⁴⁸Ca constrains nuclear theory for R_n in other atomic PNC nuclei.

Combine neutron radius from PV e scattering with an atomic PNC exp for strong low energy test of standard model.

- Atomic PNC Experiments:
 - Berkeley/ Mainz Yb experiment can look at PNC for isotope ratios.
 - •PNC in radioactive Fr is x18 larger than for Cs because of higher electron density at nucleus of high Z nucleus.

Neutrino nucleus elastic scattering

COHERENT experiment at SNS in Oak Ridge, TN Rex Tayloe and others at IU

Neutrino nucleus scattering involves same weak form factor as PV electron scattering

$$\frac{d\sigma}{dT}(E,T) = \frac{G_F^2}{2\pi} M \frac{Q_W^2}{4} F^2(Q^2) \\ \times \left[2 - \frac{2T}{E} + \left(\frac{T}{E}\right)^2 - \frac{MT}{E^2}\right]$$

Coherent probed CsI average R_n to ~15%

PREX measured R_w(²⁰⁸Pb) to 1.3% CREX probed R_w(⁴⁸Ca) to 0.7% Qweak measured R_n(²⁷Al) to 3.8%

10

Use PV to constrain nuclear structure. This allows coherent neutrino scattering to probe non-standard neutrino interactions.

Neutron Stars

Neutron Rich Matter in Astrophysics

- Compress almost anything to 10¹¹+ g/cm³ and electrons react with protons to make neutron rich matter. This material is at the heart of many fundamental questions in nuclear physics and astrophysics.
 - What are the high density phases of QCD?
 - Where did chemical elements come from?
 - What is the structure of many compact and energetic objects in the heavens, and what determines their electromagnetic, neutrino, and gravitational-wave radiations?
- Interested in neutron rich matter over a \bullet tremendous range of density and temperature were it can be a gas, liquid, solid, plasma, liquid crystal (nuclear pasta), superconductor ($T_c = 10^{10} \text{ K!}$), superfluid, color superconductor...
- For example a heavy nucleus such as ²⁰⁸Pb expected to have neutron rich skin.

Supernova remanent Cassiopea A in X-rays

MD simulation of Nuclear Pasta with 100,000 nucleons

Radii of ²⁰⁸Pb and Neutron Stars

- Pressure of neutron matter pushes neutrons out against surface tension ==> R_n-R_p of ²⁰⁸Pb correlated with P of neutron matter.
- Radius of a neutron star also depends on P of neutron matter.
- Measurement of Rn (²⁰⁸Pb) in laboratory has important implications for the structure of neutron stars.

Neutron star is 18 orders of magnitude larger than Pb nucleus but both involve neutron rich matter at similar densities with the same strong interactions and equation of state.

Nuclear measurement vs Astronomical Observation To probe equation of state

PREX, CREX measure neutron radius of ²⁰⁸Pb ⁴⁸Ca. Clean electroweak rxn.

NICER measures NS radius from X-ray light cu Some systematic errors.

Electric **dipole polarizability** from coulomb excitation. Potential systematic error from sun excited states. Encourage ab initio calculation

LIGO measured **gravitational deformability** (quadrupole polarizability) of NS from tidal excitation. Statistics limited but systematic errors controllable.

⁸ Pb and		n
nt curve.		
o sum over tions.	Radius	
ty	Polarizability	

	Laboratory measurements on nuclei	Astronomica observations of neutron stars
Radius	PREX, CREX	NICER
Polarizability	Electric dipole	Gravitational deformability

LIGO and deformability of NS

- Gravitational tidal field distorts shapes of neutron stars just before they merge.
- Dipole polarizability of an atom
 ~ R³.

$$\kappa = \Sigma_f \frac{|\langle f | r Y_{10} | i \rangle|^2}{E_f - E_i} \quad \propto R^3$$

 Tidal deformability (or quadrupole polarizability) of a neutron star scales as R⁵.

$$\Lambda \propto \Sigma_f \frac{|\langle f | r^2 Y_{20} | i \rangle|^2}{E_f - E_i} \quad \propto \quad R^5$$

• GWI708I7 observations set upper limit on Λ .

- For NS sum over excited states = sum over osc. modes. Most important is f₂ mode.
- Response to static tidal or electric field -> static polarizability or deformability.
- Response to time dependent fields -> dynamical polarizability or dynamical tides.

MREX experiment at Mainz

- MESA is high current low energy electron accelerator being built at Mainz.
- Mainz Radius Experiment (MREX) will use MESA and large acceptance P2 detector to measure the neutron skin of ²⁰⁸Pb more accurately than PREX.
- PREX measured R_n to 1.3% (+/- 0.07 fm), MREX goal 0.5% (+/- 0.03 fm)

MAGIX

beam energy	155 MeV
beam current	150 μA
target density	$0.28{ m g/cm^2}$
polar angle step size	$\Delta heta =$ 4°
polar angular range	30° to 34°
degree of polarization	85 %
parity violating asymmetry	0.66 ppm
running time	1440 hours
systematic uncertainty	1 %
$\delta A^{PV}/A^{PV}$	1.39%
$\delta R_{\rm n}/R_{\rm n}$	0.52 %

Next generation gravitational wave observatories

- The Einstein Telescope is proposed GW detector to be built at Dutch-Belgian-German border or in Sardinia.
- Cosmic explorer is proposed US detector with 40 km arms.
- I0 times more sensitive, I000
 x detection rate, of existing
 LIGO and VIRGO.
- They could accurately measure deformability of neutron stars.

CREX

CREX on ⁴⁸Ca and Chiral EFT

- Chiral EFT expands 2, 3, ... nucleon interactions in powers of momentum transfer over chiral scale.
- Three neutron forces are hard to directly observe. They increase the pressure of neutron matter and the neutron skin thickness of both ²⁰⁸Pb and ⁴⁸Ca.
- Only stable, neutron rich, closed shell nuclei are ⁴⁸Ca and ²⁰⁸Pb.
- PREX for ²⁰⁸Pb better for inferring pressure of neutron matter and structure of neutron stars.
- CREX measures neutron skin in ⁴⁸Ca. Smaller system allows direct comparison to Chiral EFT calculations and very sensitive to 3 *neutron* forces.

22

CREX

- 2.182 GeV electrons scattering with q=0.8733 fm⁻¹ from ⁴⁸Ca.
 - Target 8% 40 Ca, 0.6%, 0.6%, 0.2% of rate from first three excited states (2+,3-,3-).
 - A_{PV}=2668+/-106+/-40 ppb
- We thank J. Piekarewicz, P. G.
 Reinhard and X. Rocca-Maza for RPA calculations of ⁴⁸Ca excited states and J. Erler and M.
 Gorshteyn for calculations of γ – Z box radiative corrections.

Corre

- Beam Beam Beam Isotop 3.831
- $4.507 \\ 5.370$
- Trans
- Detec
- Accep Radia

Total Statis

A_{PV} corrections and corresponding systematic errors

ection 4	Absolute [ppb]	Relative $[\%]$
n polarization	382 ± 13	14.3 ± 0.5
n trajectory & energy	68 ± 7	2.5 ± 0.3
n charge asymmetry	112 ± 1	4.2 ± 0.0
pic purity	19 ± 3	0.7 ± 0.1
$MeV (2^+)$ inelastic	-35 ± 19	-1.3 ± 0.7
$MeV (3^{-})$ inelastic	0 ± 10	0 ± 0.4
MeV (3^{-}) inelastic	-2 ± 4	-0.1 ± 0.1
sverse asymmetry	0 ± 13	0 ± 0.5
ctor non-linearity	0 ± 7	0 ± 0.3
ptance	$0~\pm~24$	0 ± 0.9
ative corrections (Q_W)	0 ± 10	0 ± 0.4
systematic uncertainty	40 ppb	1.5%
stical Uncertainty	106 ppb	4.0%

R. Michaels

Weak Form Factor

$A_{PV} = \frac{G_F Q^2 Q_W^2 F_W(q)}{4\pi\alpha\sqrt{2}ZF_{ch}(q)}$

- Determine ratio F_W/F_{ch} from A_{PV} (Include Coulomb distortions and averaging over acceptance)
- Main result:

 $F_{\rm ch}(q) - F_{\rm W}(q) = 0.0277 \pm 0.0055 \;({\rm exp})$

QuantityValue
$$\pm$$
 (exp) \pm (model) $R_{\rm W} - R_{\rm ch}$ $0.159 \pm 0.026 \pm 0.023$ $R_n - R_p$ $0.121 \pm 0.026 \pm 0.024$ Model error in extraction of
Rw-R_{ch} or R_n-R_p from spread in
model predictions for given
F_{ch}-F_W. $F_{\rm ch}$ -Fw. $F_{\rm ch}$ -Fw. $F_{\rm ch}$ -Fw. $F_{\rm ch}$ -Fw. $F_{\rm rot}$ arror in R_n +/-0.026 fm (.
Total error in R_n +/-0.035 fm (.
Total er

Small Model Error for PREX

PREX was run at lower q then CREX —> Less sensitive to surface thickness of weak density and has a smaller model error.

QPREX=0.4 fm⁻¹ QCREX=.8733 fm⁻¹

QPREX R_{ch}(²⁰⁸Pb)=2.2 QCREX R_{ch}(⁴⁸Ca)=3.0

CREX Experiment

- New and precise measurement of A_{PV} from ⁴⁸Ca at q=0.8733 fm⁻¹
- Main result (model independent): $F_{\rm ch}(q) - F_{\rm W}(q) = 0.0277 \pm 0.0055 \ ({\rm exp})$
- Extract with small model dependence from shape of $\rho_w(r)$

	-
Quantity	Value \pm (exp) \pm (mod
$\begin{array}{c} R_{\rm W} - R_{\rm ch} \\ R_n - R_p \end{array}$	$0.159 \pm 0.026 \pm 0.000 \pm 0.0000$ $0.121 \pm 0.026 \pm 0.0000$

of models are consistent with both PREX and CREX.

lel) [fm]

023024

Compared to many density functional models, neutron skin of ⁴⁸Ca is somewhat thin and ²⁰⁸Pb somewhat thick. However, a number

PREX and CREX Collaborations

Students: Devi Adhikari, Devaki Bhatta Pathak, Quinn Campagna, Yufan Chen, Cameron Clarke, Catherine Feldman, Iris Halilovic, Siyu Jian, Eric King, Carrington Metts, Marisa Petrusky, Amali Premathilake, Victoria Owen, Robert Radloff, Sakib Rahman, Ryan Richards, Ezekiel Wertz, Tao Ye, Adam Zec, Weibin Zhang

Post-docs and Run Coordinators: Rakitha Beminiwattha, Juan Carlos Cornejo, Mark-Macrae Dalton, Ciprian Gal, Chandan Ghosh, Donald Jones, Tyler Kutz, Hanjie Liu, Juliette Mammei, Dustin McNulty, Caryn Palatchi, Sanghwa Park, Ye Tian, Jinlong Zhang

Spokespeople: Kent Paschke (contact), Krishna Kumar, Robert Michaels, Paul A. Souder, Guido M. Urciuoli Thanks to the Hall A techs, Machine Control, Yves Roblin, Jay Benesch and other Jefferson Lab staff

Student **Brenden Reed** made important contributions!

C. Horowitz (horowit@iu.edu)

