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Figure 6. Value of the e↵ective Majorana mass |m�� | as a function of the lightest
neutrino mass in the cases of 3⌫ and 3+1 mixing with Normal and Inverted Ordering
of the three lightest neutrinos [210]. The signs in the legends indicate the signs of
e
i↵2 , e

i↵3 , e
i↵4 = ±1 for the cases in which CP is conserved. The intermediate yellow

regions are allowed only in the case of CP violation.

produced by Big Bang Nucleosynthesis (BBN). In Subsection 6.3 we discuss the e↵ects of

light sterile neutrinos on the formation of Large Scale Structures (LSS), which occurred

after the sterile neutrinos became non-relativistic. Finally, in Subsection 6.4 we review

the current cosmological bounds on light sterile neutrinos.

6.1. Neutrino parameterization

It is convenient to parametrize the neutrino contribution to the radiation content in the

early Universe in terms of an e↵ective number of degrees of freedom Ne↵ , such that the
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Other models: Left-Right Symmetric Model (LRSM) 
and SUSY R-parity violation
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TABLE I. The Q0⌫
�� values in MeV, the experimental T 0⌫

1/2 limits in years, and the calculated PSF in years�1 for all five isotopes
currently under investigation.

48Ca 76Ge 82Se 130Te 136Xe

Q0⌫
�� 4.2723 2.0390 2.9951 2.8135 2.2870

T 0⌫
1/2 > 2.0⇥ 1022[30] 5.3⇥ 1025[31] 2.5⇥ 1023[32] 4.0⇥ 1024[33] 1.1⇥ 1026[34]

G01 ⇥ 1014 2.45 0.22 1.00 1.41 1.45

G02 ⇥ 1014 15.4 0.35 3.21 3.24 3.15

G03 ⇥ 1015 18.2 1.20 6.50 8.46 8.55

G04 ⇥ 1015 5.04 0.42 1.92 2.53 2.58

G05 ⇥ 1013 3.28 0.60 2.16 4.12 4.36

G06 ⇥ 1012 3.87 0.50 1.65 2.16 2.21

G07 ⇥ 1010 2.85 0.28 1.20 1.75 1.80

G08 ⇥ 1011 1.31 0.17 0.82 1.72 1.83

G09 ⇥ 1010 15.5 1.12 4.42 4.47 4.44

II. EFFECTIVE FIELD THEORY APPROACH
TO NEUTRINOLESS DOUBLE-BETA DECAY

The possibility that right-handed currents could con-
tribute neutrinoless double-beta decay (0⌫��) has been
already considered for some time [29, 35]. Recently, 0⌫��
studies [9, 36] have adopted the left-right symmetric
model [7, 37] for the inclusion of right-handed currents.
In the framework of the left-right symmetric model and
R-parity violating (��Rp) supersymmetric (SUSY) model
[38–40], the half-life expression can be written as a sum
of products of PSF, BSM LNV parametes, and their cor-
responding NME [11]:

h
T

0⌫
1/2

i�1
= G01g

4
A

��⌘0⌫M0⌫ +
�
⌘
L
NR

+ ⌘
R
NR

�
M0N

+ ⌘q̃Mq̃ + ⌘�0M�0 + ⌘�X� + ⌘⌘X⌘|
2
. (1)

Here, G01 is a phase space factor that can be calculated
with good precision for most cases [41–44], gA is the ax-

ial vector coupling constant, ⌘0⌫ = hm��i
me

, with hm��i

representing the e↵ective Majorana neutrino mass and
me the electron mass. ⌘

L
NR

, ⌘RNR
are the heavy neutrino

parameters with left-handed and right-handed currents,
respectively [9, 21], ⌘q̃, ⌘�0 are ��Rp SUSY LNV parame-
ters [45], ⌘�, and ⌘⌘ are parameters for the so-called ”��”
and ”⌘�mechanism”, respectively [9]. M0⌫ , M0N , are the
light and the heavy neutrino exchange NME,Mq̃,M�0 are
the��Rp SUSY NME, andX� andX⌘ denote combinations
of NME and other PSF (G02�G09) corresponding to the
the ��mechanism involving right-handed leptonic and
right-handed hadronic currents, and the ⌘�mechanism
with right-handed leptonic and left-handed hadronic cur-
rents, respectively [11].

In Table I we present the Q
0⌫
�� values, the most re-

cent experimental half-life limits from the indicated ref-
erences, and the nine PSF for 0⌫�� transitions to ground
states of the daughter nucleus for five isotopes currently
under investigation. The PSF were calculated using a
new e↵ective method described in great detail in Ref.

TABLE II. The NME that appear in Eq. (1) and their cor-
responding LNV parameters for the five nuclei of current ex-
perimental interest.

48Ca 76Ge 82Se 130Te 136Xe

M0⌫ 1.03 3.64 3.42 1.93 1.75

M0N [25] 75.5 202 187 136 143

Mq̄ 107 339 320 185 169

M�0 370 619 570 415 366

X� 2.11 4.13 5.69 2.81 2.48

X⌘ 246 794 725 517 467

106·|⌘0⌫ | 27.5 0.50 3.70 1.37 0.28

109·|⌘0N | 376.5 8.97 67.5 19.5 3.49

109·|⌘q̄| 264 5.35 39.4 14.3 2.96

109·|⌘�0 | 76.9 2.92 22.1 6.39 1.36

107·|⌘�| 135 4.39 22.2 9.42 2.01

109·|⌘⌘| 115 2.28 17.4 5.13 1.07

[44]. G01 were calculated with a screening factor (sf ) of
94.5, while G02 � G09 used sf = 92.0 that is shown to
provide good accuracy within 18% of those in Ref. [46].
Table II shows the shell model values the the NME

that enter Eq. (1). The heavy right-handed neutrino-
exchange NME M0N are taken from Ref. [25] that de-
scribes their formalism and calculation. Mq̄ and M�0 are
calculated using the description in Eq. (150) and Eq.
(155), respectively, of Ref. [45]. X� and X⌘ are adapted
from C4 and C5 of Eq. (3.5.15d) and Eq. (3.5.15e), re-
spectively, in Ref. [29] multiplied by MGT /G01 to fit the
factorization of Eq. (1).
..........................

A more general approach is based on the e↵ective field
theory extension of the Standard Model. The analysis
based on the beyond standard model (BSM) e↵ective
field theory is more desirable, because it does not rely
on specific models, and their parameters could be ex-
tracted/constrained by the existing 0⌫�� data, and by

Gluino exchange

Squark 
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FIG. 7. E↵ective Majorana mass as a function of the lightest neutrino mass in the three neutrino (left panel) and 3+1 neutrino
(right panel) scenarios, at 99.7% CL, comparing normal (red) and inverted (blue) ordering of the three active neutrinos. Adapted
from Ref. [90]. The green band represents the 90% CL bounds from KamLAND-Zen [39], given the uncertainty on the NME.

IV. RESULTS FROM COSMOLOGY

Massive neutrinos a↵ect the cosmological observables in di↵erent ways, that we shall summarize in what follows.
For a comprehensive review of the e↵ects of neutrino masses in cosmology, we refer the reader to the recent work
presented in [23].
A very important epoch when discussing the impact of massive neutrinos in the cosmological expansion history and

in the perturbation evolution is the redshift at which neutrinos become non-relativistic. This redshift is given by

1 + znr,i ' 1890
⇣ mi

1 eV

⌘
, (9)

with mi referring to the mass of each massive neutrino eigenstate. Current bounds on neutrino masses imply that at
least two out of the three massive eigenstates became non-relativistic in the matter dominated period of the universe.
As stated in the introductory section, and as we shall further illustrate along this section, cosmological measurements
are currently unable to extract individually the masses of the neutrino eigenstates and the ordering of their mass
spectrum and, therefore, concerning current cosmological data, all the limits on the neutrino mass ordering will come
from the sensitivity to the total neutrino mass

P
m⌫ . Consequently, in what follows, we shall mainly concentrate on

the e↵ects on the cosmological observables of
P

m⌫ , providing additional insights on the sensitivity to the ordering
of the individual mass eigenstates whenever relevant.

A. CMB

There are several imprints of neutrino masses on the CMB temperature fluctuations pattern once neutrinos become
non-relativistic: a shift in the matter-radiation equality redshift or a change in the amount of non-relativistic energy
density at late times, both induced by the evolution of the neutrino background, that will, respectively, a↵ect the
angular location of the acoustic peaks and the slope of the CMB tail, through the Late Integrated Sachs Wolfe (ISW)
e↵ect. The former will mostly modify ⇥s, i.e. the angular position of the CMB peaks, which is given by the ratio of
the sound horizon and the angular diameter distance, both evaluated at the recombination epoch. Massive neutrinos
enhance the Hubble expansion rate, with a consequent reduction of the angular diameter distance and an increase of
⇥s, which would correspond to a shift of the peaks towards larger (smaller) angular scales (multipoles). The latter, the
Late ISW e↵ect, is related to the fact that the gravitational potentials are constant in a matter-dominated universe.
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presented in [23].
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in the perturbation evolution is the redshift at which neutrinos become non-relativistic. This redshift is given by
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density at late times, both induced by the evolution of the neutrino background, that will, respectively, a↵ect the
angular location of the acoustic peaks and the slope of the CMB tail, through the Late Integrated Sachs Wolfe (ISW)
e↵ect. The former will mostly modify ⇥s, i.e. the angular position of the CMB peaks, which is given by the ratio of
the sound horizon and the angular diameter distance, both evaluated at the recombination epoch. Massive neutrinos
enhance the Hubble expansion rate, with a consequent reduction of the angular diameter distance and an increase of
⇥s, which would correspond to a shift of the peaks towards larger (smaller) angular scales (multipoles). The latter, the
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
GF
p
2

2

4jµV�AJ
†
V�A,µ +

⇤X

↵,�

✏
�
↵j�J

†
↵

3

5 , (2)

where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏

�
↵ =

{✏
V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:

T (L(1)
6 L

(2)
6 ) =

G
2
F

2
T

h
jV�AJ

†
V�AjV�AJ

†
V�A

+ ✏
�
↵j�J

†
↵jV�AJ

†
V�A + ✏

�
↵✏

�
�j�J

†
↵j�J

†
�

i
. (3)

In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:

L9 =
G

2
F

2mp

h
"1JJj + "2J

µ⌫
Jµ⌫j + "3J

µ
Jµj

+"4J
µ
Jµ⌫j

⌫ + "5J
µ
Jjµ

i
, (4)

with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:

h
T

0⌫
1/2

i�1
=g

4
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2

4
X

i

|Ei|
2
M

2
i +Re

2

4
X

i 6=j

EiEjMij

3

5

3

5 . (5)

Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏
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TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and
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LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.

Effective field theory approach

3

TABLE I. The Q0⌫
�� values in MeV, the experimental T 0⌫

1/2 limits in years, and the calculated PSF (G01 � G09) in years�1 for
all five isotopes currently under investigation.

48Ca 76Ge 82Se 130Te 136Xe

Q0⌫
�� [53] 4.272 2.039 2.995 2.813 2.287

T 0⌫
1/2 > 2.0 · 1022[54] 5.3 · 1025[55] 2.5 · 1023[56] 4.0 · 1024[57] 1.1 · 1026[58]

G01 · 10
14 2.45 0.22 1.00 1.41 1.45

G02 · 10
14 15.4 0.35 3.21 3.24 3.15

G03 · 10
15 18.2 1.20 6.50 8.46 8.55

G04 · 10
15 5.04 0.42 1.92 2.53 2.58

G05 · 10
13 3.28 0.60 2.16 4.12 4.36

G06 · 10
12 3.87 0.50 1.65 2.16 2.21

G07 · 10
10 2.85 0.28 1.20 1.75 1.80

G08 · 10
11 1.31 0.17 0.82 1.72 1.83

G09 · 10
10 15.5 1.12 4.42 4.47 4.44

TABLE II. The NME that appear in Eq. (1) for the five
nuclei of current experimental interest, and the corresponding
LNV parameters extracted under the assumption that only
one dominates.

48Ca 76Ge 82Se 130Te 136Xe

M0⌫ 1.03 3.64 3.42 1.93 1.75

M0N 75.5 202 187 136 143

Mq̃ 107 339 320 185 169

M�0 370 619 570 415 366

X� 2.11 4.13 5.69 2.81 2.48

X⌘ 246 794 725 517 467

106·|⌘0⌫ | 27.5 0.50 3.70 1.37 0.28

109·|⌘0N | 376.5 8.97 67.5 19.5 3.49

109·|⌘q̃| 264 5.35 39.4 14.3 2.96

109·|⌘�0 | 76.9 2.92 22.1 6.39 1.36

107·|⌘�| 135 4.39 22.2 9.42 2.01

109·|⌘⌘| 115 2.28 17.4 5.13 1.07

[52]multiplied by MGT /G01 to fit the factorization of Eq.
(1). All NME used in this paper were calculated using the
interacting shell model (ISM) approach[27–30, 33, 48, 70]
(see Ref. [33] for a review), and include short-range-
correlation e↵ects based on the CD-Bonn parametriza-
tion [26], finite-size e↵ects [68] and, when appropriate,
optimal closure energies [50] (see Appendix for more de-
tails).
The upper limits for corresponding LNV parameters

extracted from lower limits of the half-lives under the as-
sumption that only one term in the amplitude dominates,
are also presented in Table II.

III. EFFECTIVE FIELD THEORY APPROACH
TO NEUTRINOLESS DOUBLE-BETA DECAY

A more general approach is based on the e↵ective
field theory extension of the Standard Model. The anal-
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

ysis based on the BSM contributions to the e↵ective
field theory is more desirable, because it does not rely
on specific models, and their parameters could be ex-
tracted/constrained by the existing 0⌫�� data, and by
data from LHC and other experiments. In fact, the mod-
els considered in section II always lead to a subset of
terms in the low-energy (⇠ 200 MeV) e↵ective field the-
ory Lagrangian. Here we consider all the terms in the
Lagrangian allowed by the symmetries. Some of the cou-
plings will correspond to the model couplings in Eq. (1),
but they might have a wider meaning. Others are new,
not corresponding to specific models.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
GF
p
2

2

4jµV�AJ
†
V�A,µ +

⇤X

↵,�
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†
↵

3

5 , (2)

where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏

�
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V�A, ✏
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S+P
S±P , ✏
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TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "
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These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
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V+A
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range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them
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3 and "
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3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
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denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
GF
p
2

2

4jµV�AJ
†
V�A,µ +

⇤X

↵,�

✏
�
↵j�J

†
↵

3

5 , (2)

where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏

�
↵ =
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V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:

L9 =
G

2
F

2mp

h
"1JJj + "2J

µ⌫
Jµ⌫j + "3J

µ
Jµj

+"4J
µ
Jµ⌫j

⌫ + "5J
µ
Jjµ

i
, (4)

with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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3
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 2. Similar to Fig.1, we present the nucleon-level diagrams of 0⌫�� decay process : (2a) presents the generic description
of the process, (2b) shows the light left-handed neutrino exchange, (2c) is the long-range component, Subfigure 2d shows the
short-range contribution. On the second line, (2e) is the pion-neutrino component, (2f) is the one-pion long-range contribution
of the⇢Rp SUSY induced 0⌫�� diagram, and (2g presents the two-pion long-range contribution of the⇢Rp SUSY induced 0⌫��.
The e↵ective couplings ⌘1⇡ and ⌘2⇡ are related to Eq. (16) as ⌘1⇡ = c1⇡⌘⇡N and ⌘2⇡ = c2⇡⌘⇡N .

In that restrictive case we showed that one can disen-
tangle di↵erent contributions to the 0⌫�� decay process
using two-electron angular and energy distributions as
well as half-lives of two selected isotopes. Obviously, this
number of observables is not enough to extract all cou-
pling appearing in the e↵ective field theory Lagrangian.
However, they can be used to constrain these couplings,
thus adding to the information extracted from the Large
Hadron Collider and other related experiments. Here we
attempt to extract these couplings assuming that only
one of them can have a dominant contribution to the
half-life, Eq. (5). We call this approach “on-axis“. Con-
sidering the “on-axis“ approach to extracting limits of the
LNV parameters, the interference terms are neglected in
our analysis. In the following, we extract the “on-axis“
upper limits of these parameters using the most recent
experimental the half-lives lower limits, as presented in
Table I.

IV. EXPERIMENTAL LIMITS ON THE BSM
LNV COUPLINGS

To obtain experimentally constrained upper limits of
the e↵ective LNV couplings one needs experimental half-

life lower limits, accurate calculations of the PSF, to-
gether with reliable NME results calculated using nu-
clear structure methods tested to correctly describe the
experimental nuclear structure data available for the nu-
clei involved. We split our analysis of the LNV parame-
ters into three subsections corresponding the exchange of
light left-handed Majorana neutrinos, the LNV couplings
entering the remaining quark-level long-range diagrams,
and the LNV couplings entering the quark-level short-
range diagrams.

A. The exchange of light left-handed neutrinos

Most studies in the literature have only considered the
case where only the exchange of light left-handed Ma-
jorana neutrinos contribute to the 0⌫�� decay process,
presented in Figs. 1b and 2b. Therefore, one can easily
find calculations of NME and PSF for this scenario. Con-
sidering only this case, we reduce the half-life equation
to:

h
T

0⌫
1/2

i�1
= g

4
A |⌘0⌫ |

2
M

2
0⌫ , (6)

where gA = 1.27, M2
0⌫ contains the NME and the PFS

(see Eq. (8) below). ⌘0⌫ = hm��i
me

, where me is the elec-
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matrix element. An uncertainty of a factor of three in the 
matrix element thus corresponds to nearly an order of mag-
nitude uncertainty in the amount of material required, e.g. 
to cover the parameter space corresponding to the inverted 
hierarchy. If the experiment is background-limited, the uncer-
tainty is even larger [111]. An informed decision about how 
much material to use in an expensive experiment will require 
a more accurate matrix element.

Second, the uncertainty affects the choice of material to be 
used in νββ0  decay searches, a choice that is a compromise 
between experimental advantages and the matrix element 
value. Figure  5 (top) shows nuclear matrix elements calcu-
lated in different approaches, and because of the spread of the 
results (roughly the factor of three above) we can conclude 
only that the matrix element of 48Ca is smaller than those 
of the other νββ0  decay candidates. And the differences in 
the expected rate, a product of the nuclear matrix elements 
and phase-space factors, are even more similar (see "gure 5 

bottom, and equation  (9)) [112]. Better calculations would 
make it easier to select an optimal isotope.

Finally, and perhaps most obviously, we need matrix ele-
ments to obtain information about the absolute neutrino 
masses once a νββ0  decay lifetime is known. Reducing the 
uncertainty in the matrix element calculations will be crucial 
if we wish to fully exploit an eventual measurement of the 
decay half-life. Even the interpretation of limits is hindered 
by matrix-element uncertainty. The blue band in  "gure  1 
represents the upper limit of <ββm 61–165 meV from the 
KamLAND-Zen experiment [5]. The uncertainty, again a fac-
tor of about three, is due almost entirely to the matrix ele-
ment. And the real theoretical uncertainty, at this point, must 
be taken to be larger; the ‘gA problem’, which we discuss in 
section 4, has been ignored in this analysis. We really need 
better calculations. Fortunately, we are now "nally in a posi-
tion to undertake them.

3. Nuclear matrix elements at present

As we have noted, calculated matrix elements at present carry 
large uncertainties. Matrix elements obtained with differ-
ent nuclear-structure approaches differ by factors of two or 
three. Figure  5 compares matrix elements produced by the 
shell model [82, 113, 114], different variants of the quasipar-
ticle random phase approximation (QRPA) [81, 115–117], 
the interacting boson model (IBM) [109], and energy density 
functional (EDF) theory [118–120]. The strengths and weak-
nesses of each calculation are discussed in detail later in this 
section.

Some of these methods can be used to compute single-β 
and νββ2  decay lifetimes. It is disconcerting to "nd that pre-
dicted lifetimes for these processes are almost always shorter 
than measured lifetimes, i.e. computed single Gamow–Teller 
and νββ2  matrix elements are too large [121–123]. The prob-
lems are usually ‘cured’ by reducing the strength of the spin-
isospin Gamow–Teller operator στ, which is equivalent to 
using an effective value of the axial coupling constant that 
multiplies this operator in place of its ‘bare’ value of !g 1.27A . 
This phenomenological modi"cation is sometimes referred to 
as the ‘quenching’ or ‘renormalization’ of gA. In section 4 we 
review possible sources of the renormalization, none of which 
has yet been shown to fully explain the effect, and their conse-
quences for νββ0  matrix elements.

3.1. Shell model

The nuclear shell model is a well-established many-body 
method, routinely used to describe the properties of medium-
mass and heavy nuclei [121, 124, 125], including candidates 
for ββ-decay experiments. The model, also called the ‘con-
"guration interaction method’ (particularly in quantum chem-
istry [126, 127]), is based on the idea that the nucleons near 
the Fermi level are the most important for low-energy nuclear 
properties, and that all the correlations between these nucleons 
are relevant. Thus, instead of solving the Schrödinger equa-
tion for the full nuclear interaction in the complete many-body 

Figure 5. Top panel: nuclear matrix elements ( νM 0 ) for νββ0  decay 
candidates as a function of mass number A. All the plotted results 
are obtained with the assumption that the axial coupling constant 
gA is unquenched and are from different nuclear models: the shell 
model (SM) from the Strasbourg–Madrid (black circles) [113], 
Tokyo (black circle in 48Ca) [114], and Michigan (black bars) [82] 
groups; the interacting boson model (IBM-2, green squares) [109]; 
different versions of the quasiparticle random-phase approximation 
(QRPA) from the Tübingen (red bars) [115, 116], Jyväskylä (orange 
times signs) [81], and Chapel Hill (magenta crosses) [117] groups; 
and energy density functional theory (EDF), relativistic (downside 
cyan triangles) [118, 119] and non-relativistic (blue triangles) 
[120]. QRPA error bars result from the use of two realistic nuclear 
interactions, while shell model error bars result from the use of 
several different treatments of short range correlations. Bottom 
panel: associated νββ0  decay half-lives, scaled by the square of the 
unknown parameter ββm .
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Predicting the neutrinoless double-β-decay matrix element of 136Xe using a statistical approach
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Calculation of the nuclear matrix elements (NMEs) for double-β decay is of paramount importance for guiding
experiments and for analyzing and interpreting the experimental data, especially for the search of the neutrinoless
double β decay mode (0νββ). However, there are currently still large differences between the NME values
calculated by different methods, hence a quantification of their uncertainties is very much required. In this paper
we propose a statistical analysis of 0νββ NME for the 136Xe isotope, based on the interacting shell model,
but using three independent effective Hamiltonians, emphasizing the range of the NMEs’ most probable values
and its correlations with observables that can be obtained from the existing nuclear data. Consequently, we
propose a common probability distribution function for the 0νββ NME, which has a range of (1.55–2.65) at
90% confidence level, with a mean value of 1.99 and a standard deviation of 0.37.

DOI: 10.1103/PhysRevC.107.045501

I. INTRODUCTION

Double-β decay (DBD) is an actively studied process due
to its potential to provide insights into the nuclear structure
of involved nuclei, the properties of neutrinos, and to test
models beyond the standard model (SM) [1,2]. Within the
SM, this rare nuclear decay occurs with the emission of two
electrons/positrons and two antineutrinos/neutrinos (2νββ),
preserving the lepton number. However, the possibility of the
decay occurring without the emission of neutrinos (0νββ),
resulting in lepton number violation, is a highly intrigu-
ing theoretical possibility. In the case of neutrino exchange,
this would imply that neutrinos are Majorana particles with
nonzero mass, a feature beyond the original SM framework.
While 2νββ transitions have been observed in eleven iso-
topes, no 0νββ transition has been detected yet. However,
these transitions are actively sought in DBD experiments due
to their potential to reveal phenomena beyond the SM.

The DBD half-life equations can be expressed, in a good
approximation, as a product of some factors. Thus, the 2νββ
half-life is a product of a phase space factor (PSF) describing
the kinematics of the outgoing leptons [3–8], and a nuclear
matrix element (NME) describing the nuclear effects related
to the nuclei involved in the decay. In the 0νββ half-life
expression, besides the PSF and NME factors, an additional
lepton number violation (LNV) factor appears as well, de-
scribing the particular BSM mechanism that may contribute
to this decay mode. In principle, any LNV operator introduced
in the Lagrangian can contribute, therefore the full half-life
expression should be the sum of the individual contribu-
tions of all mechanisms and their interference terms [2,4,9–
13]. In the absence of a signal indicating the 0νββ transi-
tion, the experimental lifetime limits and theoretical PSF and
NME values are used to constrain the LNV parameters and

associated BSM scenarios, typically under the assumption that
only one mechanism is contributing at a time [14]. Thus,
progress in the DBD study needs the continuous improve-
ment of the experimental set-ups and measurement techniques
corroborated with accurate, reliable calculations of the theo-
retical quantities involved. The current sensitivity of the DBD
experiments reached limits of 1026 y for the half-lives, and it
is expected that the next generation of experiments to push
these limits to 1028 y, thus covering the entire region of the
neutrino inverted mass hierarchy [15,16]. The interpretation
of these results in terms of values of the neutrino mass and
constraints of the LNV parameters depend on reliable values
of the calculated PSF and NME quantities.

The progress of the theoretical methods for relativistic
wave function computations, now provides PSF calculations
with a high degree of confidence for all the double-β decay
modes and transitions [6–8]. However, the same level of con-
fidence is not yet valid for the NME calculation, which still
remain the main source of uncertainty for the DBD lifetime.
There are several nuclear structure methods for the NME cal-
culation, the most used being: interacting shell model methods
[14,17–26], pn- quasiparticle random-phase approximation
methods [5,27–32], interacting boson approximation meth-
ods [33,34], energy density functional method [35], projected
Hartree-Fock-Bogoliubov [36], coupled-cluster (CC) method
[37], in-medium generator coordinate method (IM-GCM)
[38], and valence-space in- medium similarity renormaliza-
tion group (VS-IMSRG) method [39]. Each of these methods
have their strengths and weakness, largely discussed over time
in the literature, and the current situation is that there are
still significant differences between NME values calculated
with different methods, and sometimes, even between NME
values calculated with the same methods (see for example the
reviews [15,40,41]). For the 2νββ decay NMEs are products
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Statistical analysis for the neutrinoless double-β-decay matrix element of 48Ca
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Neutrinoless double-β-decay (0νββ) nuclear matrix elements (NME) are the object of many theoretical
calculation methods, and are very important for analysis and guidance of a large number of experimental efforts.
However, there are large discrepancies between the NME values provided by different methods. In this paper we
propose a statistical analysis of the 48Ca 0νββ NME using the interacting shell model, emphasizing the range of
the NME probable values and their correlations with observables that can be obtained from the existing nuclear
data. Based on this statistical analysis with three independent effective Hamiltonians, we propose a common
probability distribution function for the 0νββ NME, which has a range of (0.45–0.95) at 90% confidence level,
and a mean value of 0.68.

DOI: 10.1103/PhysRevC.106.054302

I. INTRODUCTION

The study of the double-β decay (DBD) is currently a
hot research topic since it is viewed as one of the most
promising approaches to clarify important, as yet unknown,
properties of neutrinos and to explore physics beyond the
standard model (SM) [1,2]. Two scenarios are possible for
this process to occur: (i) two-neutrino double-β (2νββ) tran-
sitions (with emission of two electrons/positrons and two
antineutrinos/neutrinos), which conserve the lepton number
and are allowed by the SM, and (ii) double-β-decay transi-
tions without emission of neutrinos (0νββ), which violate the
lepton number conservation and are only allowed by theories
beyond SM (BSM).

Neutrinoless DBD has not yet been experimentally de-
tected, but its measurement would provide us with important
information about lepton number violating (LNV) processes;
neutrino properties (neutrino absolute mass scale and mass
hierarchy, neutrino nature as Dirac or Majorana fermion, num-
ber of neutrino flavors); CP and Lorentz symmetries violation;
constraining of different BSM mechanisms that may con-
tribute to this decay mode, etc. The most common mechanism
investigated is the light left-handed (LH) Majorana neutrinos
exchange between two nucleons, but once a LNV operator
is introduced in the Lagrangian, several other mechanisms
are also allowed, such as the exchange of light and heavy
neutrinos in left-right symmetric models, the exchange of su-
persymmetric particles, DBD with the emission of majorons,
etc.

The DBD half-life equations can be expressed, in a good
approximation, as a product of some factors. The 2νββ half-
life is a product of a phase space factor (PSF), which depends
on the atomic charge and energy released in the decay, and a
nuclear matrix element (NME) related to the nuclear structure
of the parent and daughter nuclei. The 0νββ half-life, besides

the PSF and NME factors, also contains a LNV factor, related
to the particular BSM mechanism that may contribute to the
decay. If several mechanisms are considered, the inverse half-
life can be written as a sum of all the individual contributions
and their interference terms [2–8]. Using the experimental
limits of the 0νββ decay half-lives and the theoretical values
of PSF and NME, one can constrain the LNV parameters and
the associated BSM scenarios, usually under the assumption
that only one mechanism contributes at one time.

There is currently significant progress in the DBD experi-
ments (in terms of the amount of source material, decreasing
background, and improvement in the detection techniques),
leading to the expectation that the next generation of experi-
ments will be able to cover the entire region of the neutrino
inverted mass hierarchy [9]. Concurrently, the progress of the
theoretical methods now provides us with accurate PSF values
for all the double-β decay modes and transitions. [10–12].
Thus, at present, the uncertainty in the DBD calculations
remains mostly in the NME evaluation.

There are several nuclear structure methods for the NME
calculation, the most used being shell model methods [13–23],
proton-neutron quasiparticle random-phase approximation
(pnQRPA) methods [24–30], interacting boson approach
(IBA) methods [31,32], the energy density functional
(EDF) method [33], projected Hartree-Fock-Bogoliubov
(PHFB) [34], the coupled-cluster (CC) method [35], the
in-medium generator coordinate method (IM-GCM) [36],
and the valence-space in-medium similarity renormalization
group method (VS-IMSRG) [37]. Each of these methods has
its strengths and weakness, largely discussed over time in
the literature, and the current situation is that there are still
significant differences between NME values calculated with
different methods, and sometimes even between NME val-
ues calculated with the same methods (see for example the
review [9]). For the 2νββ decay the NME are products of
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Shell Model Effective Hamiltonians
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Shell-model Calculations
E(2+1) and B(E2; 0+1→2+1) values have been 

calculated using shell model with GXPF1A and 
JUN45 effective interactions

B. Pritycenko, J. Choquette, M. Horoi, B. Karamy, B. Singh, Atomic 
Data and Nuclear Data Tables, 107, 1 (2016)
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Shell Model Spaces
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Statistical Model: why 136Xe?

• One of the longest half-life limit measured, 
~2x1026 years

• One of the potential isotopes chosen for the 
next “tonne experiment”

• Relatively low shell model dimensions in 
the jj55 (0g7/2,2s,1d,0h11/2) model space
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Statistical Model: Shell Model Effective 
Hamiltonians
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- Isospin conserving effective Hamiltonians 
in jj55 model space (0g7/5, 2s1d, 0h11/2)

- 327 TBME of starting Hamiltonians  ±10% 
uniformly random changes

- Three starting effective Hamiltonians:

=> SVD,  PRC 86 044323 (2012)

=> GCN5082, PRC 82 064304 (2010)

=> jj55t, PRL 110 222502 (2013)



Statistical Model: Observables (24)
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- 0nbb NME (1): M0n , short-range correlator CD-Bonn

- 2nbb NME (1): M2n , 𝑞 = 0.7

- Energies 2+, 4+, 6+ (6): PE2+, PE4+ , PE6+ , DE2+ , DE4+ , DE6+

- B(GT) to 1+1 state (2): PGT, DGT, 𝑞 = 0.7

- B(E2) 2+ -> 0+ (2): PBE2, DBE2

- Proton occupation (8): POPg7, POPs1, POPd, POPh11, DOPg7, 
DOPs1, DOPd, DOPh11

- Neutron vacancies (4): DVNg7, DVNs1, DVNd, DVNh11

- Muon Capture rate (0)

- B(M1) (0)
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3

Observable Data Error svds gcns j5ts µsvd �svd µgcn �gcn µj5t �j5t

M0⌫ N/A N/A 1.763 2.645 2.314 1.749 0.111 2.632 0.135 2.306 0.156

M2⌫ 0.018 0.001 0.025 0.069 0.060 0.022 0.003 0.061 0.007 0.052 0.007

PGT 0.150 0.021 0.163 0.545 0.512 0.141 0.059 0.457 0.105 0.333 0.220

PBE2 0.286 0.081 0.154 0.121 0.096 0.153 0.009 0.122 0.013 0.099 0.012

PE2+ 1.313 0.150 1.498 1.363 1.513 1.494 0.089 1.352 0.089 1.507 0.098

PE4+ 1.694 0.150 2.073 1.747 2.012 2.070 0.089 1.740 0.107 2.011 0.107

PE6+ 1.892 0.150 2.178 1.892 2.254 2.192 0.088 1.884 0.125 2.212 0.096

POPg7 2.930 0.100 2.705 2.716 3.143 2.702 0.187 2.705 0.209 3.082 0.267

POPs1 0.057 0.006 0.089 0.025 0.020 0.090 0.018 0.025 0.006 0.021 0.006

POPh11 0.400 0.040 0.190 0.375 0.265 0.189 0.020 0.373 0.050 0.265 0.045

POPd 0.520 0.030 1.016 0.884 0.572 1.019 0.180 0.896 0.197 0.632 0.250

DGT 0.012 0.005 0.001 0.009 0.004 0.001 0.000 0.008 0.003 0.003 0.003

DBE2 0.413 0.011 0.342 0.194 0.158 0.337 0.023 0.195 0.026 0.163 0.028

DE2+ 0.819 0.150 0.662 0.842 0.917 0.660 0.067 0.836 0.056 0.919 0.049

DE4+ 1.867 0.150 1.389 1.873 2.113 1.403 0.131 1.861 0.116 2.087 0.082

DE6+ 2.207 0.150 2.157 2.196 2.502 2.171 0.151 2.197 0.090 2.507 0.117

DVNg7 0.000 0.150 0.102 0.174 0.130 0.100 0.010 0.172 0.014 0.132 0.023

DVNs1 0.080 0.020 0.271 0.251 0.415 0.286 0.117 0.255 0.058 0.407 0.110

DVNh11 1.680 0.130 1.205 0.726 0.347 1.177 0.237 0.724 0.132 0.385 0.162

DVNd 0.240 0.050 0.423 0.850 1.108 0.437 0.132 0.850 0.118 1.076 0.158

DOPg7 3.860 0.100 3.189 3.475 4.145 3.187 0.209 3.477 0.249 4.078 0.436

DOPs1 0.200 0.020 0.263 0.083 0.049 0.264 0.047 0.084 0.020 0.052 0.017

DOPh11 0.620 0.060 0.264 0.658 0.625 0.269 0.049 0.658 0.093 0.613 0.121

DOPd 1.290 0.080 2.285 1.785 1.181 2.280 0.227 1.781 0.265 1.258 0.447

Table I. All relevant data and statistics for all selected observables.

plicated, since besides the GT transitions, other tran-
sitions may contribute as well. Also, the NME values
calculated by di↵erent methods may di↵er by factors of
3-4 for most relevant isotopes, and up to 7-8 in the case
if 136Xe (see e.g. Fig. 5 of Ref. [9], and Refs. [35, 36]).
Uncertainties in the NME values are further amplified
when predicting half-lives, since they enter at the power
of two in the lifetime formulas. In addition, there is no
measured lifetime for this decay mode to compared with,
and these uncertainties in the NME computation reflect
in the interpretation of the DBD data and planning the
performances of the DBD experiments.

The shell model-based methods have some advantages
such as the inclusion of all correlations between nucleons
around the Fermi surface, preserving all symmetries of
the nuclear many-body problem, and the use of widely
tested nucleon-nucleon (NN) interactions. For di↵erent
mass regions of nuclei, one uses several di↵erent e↵ec-
tive NN e↵ective Hamiltonians that are appropriate for
the corresponding model spaces. These e↵ective Hamil-
tonians are usually obtained by starting with a theoreti-
cal Bruekner G-Matrix Hamiltonian that is further fine-
tuned to describe the experimental energy levels for a
large number of nuclei that can be investigated in the

corresponding model spaces. These e↵ective Hamilto-
nians are described by a small number of single parti-
cle energies and a finite number of two-body matrix ele-
ments. As a by-product, the wave functions produced by
these Hamiltonian can be used to describe and predict
observables, such as the electromagnetic transition prob-
abilities, Gamow-Teller transitions probabilities, nucleon
occupation probabilities, spectroscopic factors, etc, us-
ing relative simple changes of the transition operators in
terms of e↵ective charges and quenching factors. These
e↵ective charges and quenching factors are calibrating to
the existing data. For 0⌫�� NME such calibrations are
not yet possible due to the lack of data. However, di↵er-
ent existing e↵ective Hamiltonians for nuclei envolved in
a given 0⌫�� decay produce smaller ranges of the NME.
In addition, some recent ab-initio methods, such as IM-
SRG [36, 37], build on the modern advances in the shell
model by providing ab-initio derived e↵ective Hamiltoni-
ans and e↵ective transition operators, and they can pro-
vide some guidance for calibrating the shell model 0⌫��
NME.

It would be thus interesting to study the robustness
of the 0⌫�� NME to small changes of the parameters of
di↵erent e↵ective shell model Hamiltonians and to ex-
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Figure 1. SVD full heat-map

and valence-space in-medium similarity renormalization
group method (VS-IMSRG) [37]. Each of these methods
have their strengths and weakness, largely discussed over
time in the literature, and the current situation is that
there are still significant di↵erences between NME values
calculated with di↵erent methods, and sometimes, even
between NME values calculated with the same methods
(see for example the review [9]). For the 2⌫�� decay the
NME are products of two Gamow-Teller (GT) transition

amplitudes, and most of the nuclear methods overesti-
mate them, in comparison with experiment. This draw-
back is often treated by introducing a quenching factor
that multiplies the GT operator and reduces its strength.
This is equivalent to using a quenched axial vector con-
stant, instead of its bare value gA = 1.27.

For the 0⌫�� decay the NME calculation is more com-

Statistical Model: 
Heat Map

# samples=1,000
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Statistical Model: 
Correlations Map

5

Figure 2. Correlation matrix for observables that have correlation factor greater than 0.5, when using the SVD Hamiltonian.
See section III for notations and analysis.

tween the 0⌫�� NME and other measurable observables
for each starting e↵ective Hamiltonian. The research also
aims to establish theoretical limits for each observable,
examine the shape of di↵erent distributions for each ob-
servable and starting Hamiltonian, use this data to de-
termine the impact of di↵erent starting Hamiltonians on
the most favorable distribution of the 0⌫�� NME, and
ultimately identify the most favorable value of the 0⌫��

NME and its estimated theoretical uncertainty.

The observables that we calculate and compare to their
experimental values are: 2⌫�� NME, the energies of the
first 2+, 4+, and 6+ states in the parent (136Xe) and
daughter (136Ba) nuclei, B(E2)" transition probabilities
for 136Xe and 136Ba to the first 2+ states, the Gamow-
Teller transition probability for the transition from 136Xe
and from 136Ba to the 1+ excited state in 136Cs, and
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6

Figure 3. Experimental data in red vs SVD distributions.

major harmonic oscillator shells using CDBonn two body
wave functions, indicates that using a phenomenological
CDBonn parametrization of the short-range correlator is
a reasonable approach [47]. More recent ab-initio calcu-
lations of the 0⌫�� NME using the N

3
LO Hamiltonian

provides more quenched values, more consistent with the
shell model results base on Miller-Spencer parametriza-
tion of the short-range correlator. In an e↵ort to calibrate
the e↵ective operator used in shell model calculations to
the latest ab-initio results we used the Miller-Spencer

correlator in this study.

The other observables used in this study including the
excited state energies, the GT strengths to the first 1+

state 136Cs, the B(E2)" to the first 2+ state in the parent
and daughter, as well as the s.p. occupation probabilities,
are calculated in the standard way. Here we use in all
cases the same e↵ective charges (ep = 1.5 and en = 0.5))
for the B(E2)", and the same quenching factor (q = 0.74)
for the the GT strengths and M2⌫ .

Statistical Model: 
Density Distributions
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any wild departure from the main values that would indi-
cate some phase transitions are found. This seems to be
a consequence of the preservation of nuclear many-body
symmetries in the shell model. One can further try using
the distributions of all available e↵ective Hamiltonians
to draw conclusions on some optimal values for the 0⌫��
NME and its range (error). One direct approach would
be to superpose the distributions of the NME produced
in Fig. 3 with some weighting factors WH ,

P (x = M0⌫) =WsvdPsvd(x) +WgcnPgcn(x)

+Wj5tPj5t(x) ,
(4)

where x is the random value of the 0⌫�� NME. The
normalized weights Wk with k = svd, gcn, jj5 can be
inferred using using the statistical distributions of the
evidence observables in Table I and their correlations
with the calculated M0⌫ NME. Here we use the Bayesian
model averaging [? ] that remaps Eq. (4) using the
Bayes approach to updating probabilities,

p(x = M0⌫ |ye,�e) =
j5tX

k=svd

p(x = M0⌫ |ye,�e,Mk)p(Mk|ye,�e), (5)

where p(x = M0⌫ |ye,�e),Mk) corresponds to the probability densities Pk in Eq. (4) and p(Mk|(ye,�e)Y ) corresponds
to the weights Wk. Here ✓i represents a set of parameters describing the model Mk Hamiltonians, i.e. their two-body
matrix elements (tbme). Their values for the starting Hamiltonians of each model were determined from a wider set
of data (more specific excitation energies) describing a larger class of nuclei in a given s.p. particle space. One would
like to calibrate the weighting factors Wk to the evidence data ye and their errors �e that are relevant for the 0⌫��
decay, evidence data listed listed in the first three columns of Table I. To obtain the weights W one needs the so
called evidence integrals

p(ye,�e|Mk) =

Z NobsY

i

dyipye,�e(yi)

2

4
Z NtbmeY

j

d✓jp(yi|✓j ,Mk)⇡(✓j |Mk)

3

5 , (6)

which can be used in Bayes theorem to obtain the pos-
terior probabilities

p(Mk|ye,�e) =
p(ye,�e|Mk)⇡(Mk)P

j5t
k=svd

p(ye,�e|Mk)⇡(Mk)
. (7)

Here the ⇡(Mk) are the prior probabilities for each
model, which are considered uniform. In Eq. (6)
⇡(✓j |Mk) represents the distribution of the parameters
✓j in a given model, which we generate uniformly, al-
though with a compact support. In addition, the evi-
dence likelihood function is taken as a typical product
for independent observables,

pye,�e(yi) /
NobsY

i

exp[�(yi � yei)
2
/(2�2

ei
)], (8)

where the overall proportionality factor is irrelevant if the
same set of observales are used with all models. In Eqs.
(5-6) the integration variable yi run on a subset of observ-
ables that correlate strongly with the M0⌫ . Here we take
the 10 observables that have R > 0.5, listed below 0⌫��
in the heat map of Fig. 1 and included in the correlation
matrix of Fig. 2. The integrals in eq. (6) can done using
Monte Carlo techniques, provided that the integration
hypervolume is the same for all models Mk. Having the

posterior probabilities p(Mk|ye,�e), one often calculates
the Bayesian factors

B
k

m
= p(Mk|ye,�e)/p(Mm|ye,�e) (9)

to either infer that one model is dominant or to use them
in Eq. (4) (equivalent of Eq. (5)) to obtain an aver-
age probability density. In our case, using a standard
quenching factor of 0.7 for all GT matrix elements one
gets a clearly dominant contribution of the svd model.
In principle, one could infer that all W are 0, but the
Wsvd. However, given the inherent bias embedded in the
Bayesian approach, and in the spirit of the predictor-
corrector approach to step-by-step evolution schemes,
we consider for the weights Wk an average between the
prior probabilities ⇡(Mk) and the posterior probabilities
p(Mk|ye,�e).
Fig. 4 shows the probability distribution functions

(PDF) for the three starting e↵ective Hamiltonians and
their weighted sum. To calculate each PDF we use
kernel-density estimates [? ] for the histograms describ-
ing the M0⌫ , such as that of the upper-left panel of Fig.
3. Based on the results of our statistical analysis sum-
marized in Fig. 4 (see ”weighted sum” curve) one can
infer that with 90% confidence the 0⌫�� NME lies in the
range between 1.55 and 2.65, with a mean value of about
1.99 and a standard deviation of 0.37.
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where the overall proportionality factor is irrelevant if the
same set of observales are used with all models. In Eqs.
(5-6) the integration variable yi run on a subset of observ-
ables that correlate strongly with the M0⌫ . Here we take
the 10 observables that have R > 0.5, listed below 0⌫��
in the heat map of Fig. 1 and included in the correlation
matrix of Fig. 2. The integrals in eq. (6) can done using
Monte Carlo techniques, provided that the integration
hypervolume is the same for all models Mk. Having the

posterior probabilities p(Mk|ye,�e), one often calculates
the Bayesian factors
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to either infer that one model is dominant or to use them
in Eq. (4) (equivalent of Eq. (5)) to obtain an aver-
age probability density. In our case, using a standard
quenching factor of 0.7 for all GT matrix elements one
gets a clearly dominant contribution of the svd model.
In principle, one could infer that all W are 0, but the
Wsvd. However, given the inherent bias embedded in the
Bayesian approach, and in the spirit of the predictor-
corrector approach to step-by-step evolution schemes,
we consider for the weights Wk an average between the
prior probabilities ⇡(Mk) and the posterior probabilities
p(Mk|ye,�e).
Fig. 4 shows the probability distribution functions

(PDF) for the three starting e↵ective Hamiltonians and
their weighted sum. To calculate each PDF we use
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ing the M0⌫ , such as that of the upper-left panel of Fig.
3. Based on the results of our statistical analysis sum-
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infer that with 90% confidence the 0⌫�� NME lies in the
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1.99 and a standard deviation of 0.37.
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Figure 4. PDFs of the 0⌫�� NME distributions for the SVD,
jj55t and gcn5082 Hamiltonians, and their weighted sum (red
curve, see text for details).

values, which may be attributed to the preservation of nu-
clear many-body symmetries in the nuclear shell model.
Further investigations, such as utilizing the distributions
of available e↵ective Hamiltonians, may aid in determin-

ing optimal values and a potential range of error for the
0⌫�� NME. One possible approach investigated in Ref.
[42] for 48Ca is to combine the distributions for each
starting e↵ective Hamiltonian depicted in Fig. 3 using
weighting factors WH ,

P (x = M0⌫) =WsvdPsvd(x) +WgcnPgcn(x)

+Wj5tPj5t(x) ,
(2)

where x is the random value of the 0⌫�� NME. The
normalized weights Wk with k = svd, gcn, jj5 can be in-
ferred using the statistical distributions of the evidence
observables in Table I and their correlations with the cal-
culated M0⌫ NME. However, in Ref. [42] not all data
that strongly correlated to the 0⌫�� NME was avail-
able, and therefore we only used ”democratic” weights
for three e↵ective Hamiltonians. In the case of 136Xe
we have all needed data listed in Table I. Here, we use
the Bayesian Model Averaging method [46, 47] by re-
mapping the quantities in Eq. (2) in the framework of
the Bayes approach to updating probabilities,

p(x = M0⌫ |ye,�e) =
j5tX

k=svd

p(x = M0⌫ |ye,�e,Mk)p(Mk|ye,�e), (3)

where p(x = M0⌫ |ye,�e,Mk) correspond to the probability densities Pk in Eq. (2) and p(Mk|(ye,�e) correspond to
the weights Wk. Here the Mk models are represented by the TBME of di↵erent starting Hamiltonians in the jj55
model space, such as SVD, jj55t or gcn5082. The ye and �e represent a set of relevant experimental data and their
uncertainties for the nuclei involved in the decay. The TBME values for the starting Hamiltonians of each model were
determined from a wider set of data (more specific only a set of excitation energies) describing a larger class of nuclei
in a given s.p. particle space. One would like to calibrate the weighting factors Wk to the evidence data ye and their
errors �e that are relevant for the 0⌫�� decay, evidence data listed in the first three columns of Table I. In Eq. (4),
✓j represents a set of parameters describing the model Mk Hamiltonians, i.e. their two-body matrix elements. To
obtain the weights Wk one needs the so called evidence integrals

p(ye,�e|Mk) =

Z NobsY

i

dyipye,�e(yi)

2

4
Z NtbmeY

j

d✓jp(yi|✓j ,Mk)⇡(✓j |Mk)

3

5 , (4)

which can be used in Bayes theorem to obtain the pos-
terior probabilities

p(Mk|ye,�e) =
p(ye,�e|Mk)⇡(Mk)P

j5t
k=svd

p(ye,�e|Mk)⇡(Mk)
. (5)

Here the ⇡(Mk) are the prior probabilities for each
model, which are considered uniform. In Eq. (4)
⇡(✓j |Mk) represents the distribution of the parameters
✓j in a given model, which we generate uniformly, al-
though with a compact support. In addition, the evi-
dence likelihood function is taken as a typical product

for independent observables,

pye,�e(yi) /
NobsY

i

exp[�(yi � yei)
2/(2�2

ei
)], (6)

where the overall proportionality factor is irrelevant if
the same set of observales are used with all models. In
Eqs. (3-4) the integration variable yi run on a subset of
observables that correlate strongly with M0⌫ . Here we
take the 10 observables that have R > 0.5, listed below
0⌫�� in the heat map of Fig. 1 and included in the
correlation matrix of Fig. 2. The integrals in eq. (4) are
done using multi-dimensional Monte Carlo techniques,

M0n  =1.99 ± 0.37
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Figure 6. Value of the e↵ective Majorana mass |m�� | as a function of the lightest
neutrino mass in the cases of 3⌫ and 3+1 mixing with Normal and Inverted Ordering
of the three lightest neutrinos [210]. The signs in the legends indicate the signs of
e
i↵2 , e

i↵3 , e
i↵4 = ±1 for the cases in which CP is conserved. The intermediate yellow

regions are allowed only in the case of CP violation.

produced by Big Bang Nucleosynthesis (BBN). In Subsection 6.3 we discuss the e↵ects of

light sterile neutrinos on the formation of Large Scale Structures (LSS), which occurred

after the sterile neutrinos became non-relativistic. Finally, in Subsection 6.4 we review

the current cosmological bounds on light sterile neutrinos.

6.1. Neutrino parameterization

It is convenient to parametrize the neutrino contribution to the radiation content in the

early Universe in terms of an e↵ective number of degrees of freedom Ne↵ , such that the
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of neutrino mixing matrix Uek [2],

〈mββ〉 =
∣∣∣∣∣
∑

k

mkU
2
ek

∣∣∣∣∣. (2)

The nuclear matrix element M0ν is usually presented as a sum
of Gamow-Teller (GT), Fermi (F), and Tensor (T) [18] nuclear
matrix elements (see, for example, Ref. [6]),

M0ν = M0ν
GT −

(
gV

gA

)2

M0ν
F + M0ν

T , (3)

where gV and gA are the vector and axial constants correspond-
ingly; in our calculations we use gV = 1 and gA = 1.254.

The nuclear matrix elements in Eq. (3) describe the transi-
tion from an initial nucleus |i〉 = |0+

i 〉 to a final nucleus |f 〉 =
|0+

f 〉, and they can be presented as a sum over intermediate
nuclear states |κ〉 = |J π

κ 〉 with certain angular momentum Jκ ,
parity π , and energy Eκ :

M0ν
α =

∑

κ

∑

1234

〈13|Oα|24〉〈f |ĉ†3ĉ4|κ〉〈κ|ĉ†1ĉ2|i〉, (4)

where operators Oα , α = {GT,F, T }, contain neutrino poten-
tials, spin and isospin operators, and the explicit dependence
on the intermediate state energy Eκ . They are given by

OGT = τ1−τ2− (σ 1 · σ 2) HGT (r, Eκ ),

OF = τ1−τ2− HF (r, Eκ ), (5)

OT = τ1−τ2− S12 HT (r, Eκ ),

with S12 = 3(σ 1 · n)(σ 2 · n) − (σ 1 · σ 2), r = r1 − r2, r = |r|,
and n = r/r . The neutrino potentials, Hα(r, Eκ ), are integrals
over the neutrino exchange momentum q,

Hα(r, Eκ ) = 2R

π

∫ ∞

0

fα(qr)hα(q2)q dq

q + Eκ − (Ei + Ef )/2
, (6)

where fGT,F (qr) = j0(qr) and fT (qr) = j2(qr) are spherical
Bessel functions. The nuclear radius R = 1.2 × A1/3 fm was
introduced to make the neutrino potentials dimensionless (and
since the phase-space factor G0ν contains 1/R2 the final
transition probability does not depend on R). The form factors
hα(q2) are defined in Appendix A and they include vector
and axial nucleon form factors that take into account nucleon
size effects. Calculation details for two-body matrix elements,
〈13|Oα|24〉, are discussed in Appendix D. Let us note that the
two-body wave functions in the matrix elements (4) are not
antisymmetrized, as one would expect for nuclear two-body
matrix elements. They should be understood as

|24〉 = |2〉 · |4〉 and |13〉 = |1〉 · |3〉, (7)

where 1, 2, 3, and 4 represent single-nucleon quantum numbers
(for example, 1 = {τ1z, n1, l1, j1, µ1} and so on).

Appendices B, C, and D provide expressions for the nuclear
matrix elements (4) by considering rotational symmetry and
isospin invariance.

III. THE CLOSURE APPROXIMATION

If one replaces the energies of the intermediate states in
Eq. (6) by an average constant value one gets the closure

approximation,

[Eκ − (Ei + Ef )/2] → 〈E〉. (8)

The operators Oα → Õα ≡ Oα(〈E〉) become energy inde-
pendent and the sum over the intermediate states in the
nuclear matrix element (4) can be taken explicitly by using
the completeness relation

∑

κ

〈f |ĉ†3ĉ4|κ〉〈κ|ĉ†1ĉ2|i〉 = 〈f |ĉ†3ĉ4ĉ
†
1ĉ2|i〉. (9)

The advantage of this approximation is significant, because it
eliminates the need of calculating a very large number of states
in the intermediate nucleus, which could be computationally
challenging, especially for heavy systems. One needs only to
calculate the two-body transition densities (9) between the
initial and the final nuclear states. This approximation is very
good because the values of q that dominate the matrix elements
are of the order of 100–200 MeV, while the relevant excitation
energies are only of the order of 10 MeV. The obvious difficulty
related to this approach is that we have to find a reasonable
value for this average energy, 〈E〉, which can effectively
represent the contribution of all the intermediate states. This
average energy needs to account also for the symmetric part
of the two-body matrix elements, 〈13|Oα|24〉, in Eq. (4).
Indeed, the two-body wave functions |13〉 and |24〉 are not
antisymmetric; by replacing the energies of the intermediate
states with a constant, only the antisymmetric part of these
matrix elements is taken into account.

The uncertainty in the value of the nuclear matrix elements
is related to our inability to derive the average energy, 〈E〉,
associated with the closure approximation. Fortunately, the
nuclear matrix elements are not very sensitive to the value of
this average energy (with the uncertainty being estimated to be
about 10%; see, for example, [6]). Such weak dependence on
the average energy originates from the large value of typical
momentum of the virtual neutrino [see Eq. (6)], which is
∼1 fm−1 (∼200 MeV), i.e., much larger than the typical
nuclear excitations.

IV. NONCLOSURE AND MIXED METHODS

In the nonclosure approach one needs to calculate the sum
in Eq. (4) explicitly, which is an obvious challenge due to the
large number of intermediate states |κ〉. For the case of 48Ca
in the fp model space there are about 105 intermediate states;
it is extremely difficult to find and include all these states.

Let us introduce a cutoff energy E to investigate the
convergence of the sum over κ in Eq. (4) (where here and
below the sum over repeated indices {1, 2, 3, 4} is omitted):

M0ν
α (E) =

∑

Eκ<E

〈13|Oα|24〉〈f |ĉ†3ĉ4|κ〉〈κ|ĉ†1ĉ2|i〉. (10)

Alternatively, we can use a cutoff on the number of states, N ,
calculating the sum only for κ < N . At the limit of large cutoff
energies M0ν

α (E) approaches the exact value of the nuclear
matrix element (4).

The difference between the closure and nonclosure calcula-
tions originates mainly from the low-lying excitation energies.
The intermediate and higher energies cannot produce much of
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Fig. 2. Variation of the factor for maximum interference ε with Q ββ . Plot is obtained 
by varying the Q -value, while keeping the mass fixed to 76Ge and the charge of the 
final nucleus Z f = 34 of 76Se. Different nuclei are added in the plot for the g.s. and 
first 0+ excited states Q ββ values.

calculated (numerically) taking this into account by introducing the 
Fermi factor [40]. In [41] this was done by using a non-relativistic 
Fermi factor, which is independent of the Q -value of the process. 
Moreover the electrons were assumed to be ultra-relativistic in the 
analysis in order to arrive at the numerical values of the small 
suppression factors of the interference term. This is in contrast to 
the consideration of the non-relativistic Fermi factor for electron 
wave function used in Ref. [41]. For our analysis we have correctly 
considered the relativistic Fermi factor. In addition we have also 
considered the effect of finite nuclear size. Although the numerical 
results obtained in our current study are very close to the values 
in references [41] and [14], our results are more general since the 
assumption of ultra-relativistic electrons can be relaxed. Consid-
eration for relativistic Fermi factor and finite nuclear size extend 
the analysis and allows us to predict the Q ββ values for which the 
effect of interference can be observable.

4. Conclusions

In summary, we studied the interference effects to the 0νββ
decay rate when contributions from the light left-handed and 
heavy right-handed neutrino exchange mechanisms are considered. 
These effects were first analyzed long time ago in Ref. [41] under 
some simplifying assumptions, a simple relation for the relative 
interference amplitude was presented and numerical values for 
few isotopes were provided (see also [14]). The general conclusion 
was that these effects are small and can be neglected. Unfortu-
nately, the analytical expression seem to be marred by typos and 
one needed to redo the analysis to extend it to other isotopes of 
recent experimental interest. In addition, for a long time the stan-
dard mass mechanism was the only one mainly considered, and 
the results of Ref. [41] were almost forgotten.

In recent years, however, the contributions from other mecha-
nisms, especially those related to the LRSM, became relevant and 
competitive to BSM studies at LHC and elsewhere. In this letter we 
extended the analysis of Ref. [41] by considering the relativistic 
distortion of the outgoing electrons wave functions, the finite size 
effects of the daughter nucleus, and by applying the new formal-
ism to all isotopes of recent experimental interest. In addition, we 
provide an analysis of the relative interference factor as a function 
of Q ββ , mass number A, and charge of the daughter Z f , and we 
find that only its decrease with larger Q ββ is relevant. This feature 
indicates that the relative interference factor might not be negli-
gible for cases where Q ββ is small, such as that of 128Te and for 
the transitions to the first excited 0+ states (e.g. it reaches 44% for 

110Pa). Therefore, we provide numerical results for all these new 
transitions that could be of experimental interest.

Finally, the analysis presented can be extended to other pairs 
of 0νββ mechanisms where both outgoing electrons have different 
helicities. Examples of such mechanisms described in within the 
effective field theory approach can be found in Ref. [47].
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exchange in the presence of purely RH currents. Both of these are mass-dependent mechanisms.
The two momentum-dependent mechanisms are shown in fig.1c and 1d. Fig.1c is the so-called
l -mechanism where LH and RH currents are combined. The so-called h-diagram of fig.1d arises
due to the WL�WR mixing. The other possible diagrams are not considered due to the suppression
of neutrino mixing and W-boson parameters [10].

Considering the four diagrams we arrive at the following inverse half-life formula for 0nbb ,
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The NME are taken to be real and the complex NPP along with the phases are defined as follows,
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The NME include Fermi and Gamow-Teller contributions [16].

4 Analysis of interference terms

In this section we analyze the contribution of the interference terms to the total half-life arising
from the four terms. Due to the modulus squares in the expression of the half-life in eq.9 we get
six interference terms between all possible pairs of mechanisms,
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The coefficients Cs are combinations of NME and integrated PSF,

Cm = (1�cF)
2G01, (16)

Cl = [c2
2�G02 +

1
9
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1+G04 �

2
9

c1+c2�G03], (17)
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G0ν
1 = g0ν

r2
A

T +1∫

1

dε1 F0(Zs,ε1)F0(Zs,ε2)

× p̃1 p̃2ε1ε2δ(ε2 + ε1 − T − 2), (21)

G0ν ′
1 = g0ν

r2
A

T +1∫

1

dε1 F0(Zs,ε1)F0(Zs,ε2)p̃1 p̃2δ(ε2 + ε1 − T − 2),

(22)

with the common dimensionful constant having the value,

g0ν = (G F cos θc)
4m9

e

(2π)5 ln 2
= 2.8 × 10−22 yr−1. (23)

The PSF for the light and heavy neutrino exchange are the same, 
G0ν

1 of Eq. (21). As Eq. (21) and (22) show, the PSF for the inter-
ference term, G0ν ′

1 , has a different structure than the PSF of the 
individual mechanisms, G0ν

1 . Because of the absence of electron 
energies, the interference PSF is suppressed considerably compared 
to the ‘non-interference’ PSF.

3. Results

The accuracy of PSF calculations depends on certain assump-
tions and methods. References [17] and [20] considered the effect 
of finite nuclear size and screening of nuclear charge due to atomic 
electrons in calculating the non-interference PSF. An easy to use, 
faster and sufficiently accurate method was recently introduced in 
[21] by considering a screening factor S f to the charge of the fi-
nal nucleus Z f , still retaining the original assumption of point-like 
nuclear charge. This modification to the charge (Zs = S f

100 Z f ) repli-
cates the effects of finite nuclear size and electron screening to 
good accuracy. For our case we consider the value S f = 94.5% for 
G0ν

1 (see table IV of [21]).
The effect of the interference term was considered in [41]

where the numerical values of the suppression factors of the term 
for different nuclei were calculated. We try to verify the values 
claimed in [41] based on our derivation of the interference term 
PSF (see Eq. (22)). We analyze the contribution of the PSF for max-
imum interference so as to make our conclusions as general as 
possible. This is in anticipation of its smallness, as was already 
claimed in [41] and [14]. To make the analysis for maximum in-
terference more transparent we introduce certain assumptions and 
notations. The NME are taken to be real Mν∗ = Mν , MN∗ = MN . 
The LNV parameters are nonetheless treated as complex having the 
phases,

ην
L =

∣∣ην
L

∣∣ eiφ1 , ηN
R =

∣∣∣ηN
R

∣∣∣ eiφ2 . (24)

Furthermore we make the assumptions 
∣∣ην

L
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∣∣ηN
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∣∣ MN ≈ ηM . 
Thus the inverse half-life of Eq. (20) can be rewritten so as to give 
maximum interference,
[
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where we have defined the phase difference between the two LNV 
parameters as φ = φ1 − φ2 and the ratio between the two phase 
space factors of Eq. (21), (22) as ε = G0ν ′

1 /G0ν
1 . Depending on the 

value of ε , the ε cosφ term will mostly determine the contribution 

Table 1
Numerical values of PSF of different nuclei for g.s. → g.s. transitions. Column 4 
lists the values of the interference PSF Eq. (22) and column 5 is the ratio to the 
individual PSF in % (see Eq. (21)). (Q ββ values are taken from [20]).

Nuclei Q ββ

[MeV]
G0ν

1
[×10−14 yr−1]

G0ν ′
1

[×10−15 yr−1]
ε = G0ν′

1
G0ν

1
[%]

48Ca 4.27226 2.45462 1.09027 4.44168
76Ge 2.03904 0.228003 0.28987 12.7134
82Se 2.99512 0.996509 0.757323 7.59976
96Zr 3.35037 2.04454 1.32482 6.47976
100Mo 3.03440 1.57402 1.17824 7.48553
110Pd 2.01785 0.465953 0.603145 12.9443
116Cd 2.8135 1.65694 1.38323 8.34808
124Sn 2.28697 0.886628 0.979603 11.0486
128Te 0.86795 0.0554 0.017355 31.3251
130Te 2.5269 1.4104 1.36624 9.68692
136Xe 2.45783 1.44863 1.45738 10.0604
150Nd 3.37138 6.60043 4.27367 6.47483

Table 2
Same as Table 1, for transitions from g.s. → 1st 0+ excited states. (Q ββ values are 
taken from [21]).

Nuclei Q ββ

[MeV]
G0ν

1
[×10−15 yr−1]

G0ν ′
1

[×10−16 yr−1]
ε = G0ν′

1
G0ν

1
[%]

48Ca 1.275 0.292636 0.633955 21.6636
76Ge 0.917 0.185314 0.552101 29.7927
82Se 1.508 0.906993 1.64925 18.1837
96Zr 2.202 4.43543 5.12937 11.5646
100Mo 1.904 3.03925 4.221 13.8883
110Pd 0.5472 0.120312 0.531163 44.1487
116Cd 1.057 0.720768 1.89277 26.2605
124Sn 1.12 0.953037 2.36911 24.8585
130Te 0.7335 0.358299 1.28598 35.8911
136Xe 0.879 0.651285 2.0187 30.9956
150Nd 2.631 27.5308 25.3183 9.19636

of the interference. The numerical values are tabulated in Tables 1
and 2 for the g.s. → g.s. and g.s. → 0+ (1st excited) transitions, 
respectively. The first excited 0+ transitions are also considered 
because of their potential experimental relevance. The fifth col-
umn in both tables lists the values of the factor for maximum 
interference, ε in %. From these values we can clearly see that the 
interference effect decreases when the Q ββ values increase. From 
Table 1 one observes quite clearly the extreme cases for 48Ca and 
128Te. A 4% increase to the 0νββ decay rate due to consideration 
of the interference effect for a Q ββ value of 4.27 MeV for 48Ca, 
whereas for 128Te the contribution is as high as 31% for a Q ββ

of 0.868 MeV. The variation of ε with Q ββ is plotted in Fig. 2, 
obtained by fixing the mass number A = 76 for Ge and the pro-
ton number of the final nucleus Z f = 34. As the plot suggests, 
for decay modes of smaller Q ββ values the effect of interference 
will be stronger. The effect can be as high as about 50% as can be 
seen for the first excited 0+ transition for 110Pd (see Table 2 and 
Fig. 2). We also studied the variation of ε with mass number A
and proton number Z f for the final nucleus. No significant depen-
dence on A and Z f was found. The exchange of heavy neutrinos 
for inducing 0νββ was first considered in [46]. The interference 
between light and heavy neutrinos was then considered in [41]. 
It was found that the PSF for the interference term was typically 
factor of 10 smaller than the PSF of the individual mechanisms 
[41,14]. The suppression factors of the interference term were cal-
culated for several nuclides and was found to be less than 10%. 
The smallness of the contribution of the interference is mainly due 
to the opposite chiral structures of the outgoing electrons. Due 
to the Coulomb attraction of the daughter nucleus, the outgoing 
electron wave functions are distorted. Therefore the PSF has to be 
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imum interference so as to make our conclusions as general as 
possible. This is in anticipation of its smallness, as was already 
claimed in [41] and [14]. To make the analysis for maximum in-
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Numerical values of PSF of different nuclei for g.s. → g.s. transitions. Column 4 
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respectively. The first excited 0+ transitions are also considered 
because of their potential experimental relevance. The fifth col-
umn in both tables lists the values of the factor for maximum 
interference, ε in %. From these values we can clearly see that the 
interference effect decreases when the Q ββ values increase. From 
Table 1 one observes quite clearly the extreme cases for 48Ca and 
128Te. A 4% increase to the 0νββ decay rate due to consideration 
of the interference effect for a Q ββ value of 4.27 MeV for 48Ca, 
whereas for 128Te the contribution is as high as 31% for a Q ββ

of 0.868 MeV. The variation of ε with Q ββ is plotted in Fig. 2, 
obtained by fixing the mass number A = 76 for Ge and the pro-
ton number of the final nucleus Z f = 34. As the plot suggests, 
for decay modes of smaller Q ββ values the effect of interference 
will be stronger. The effect can be as high as about 50% as can be 
seen for the first excited 0+ transition for 110Pd (see Table 2 and 
Fig. 2). We also studied the variation of ε with mass number A
and proton number Z f for the final nucleus. No significant depen-
dence on A and Z f was found. The exchange of heavy neutrinos 
for inducing 0νββ was first considered in [46]. The interference 
between light and heavy neutrinos was then considered in [41]. 
It was found that the PSF for the interference term was typically 
factor of 10 smaller than the PSF of the individual mechanisms 
[41,14]. The suppression factors of the interference term were cal-
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G0ν
1 = g0ν

r2
A

T +1∫

1

dε1 F0(Zs,ε1)F0(Zs,ε2)

× p̃1 p̃2ε1ε2δ(ε2 + ε1 − T − 2), (21)

G0ν ′
1 = g0ν

r2
A

T +1∫

1

dε1 F0(Zs,ε1)F0(Zs,ε2)p̃1 p̃2δ(ε2 + ε1 − T − 2),

(22)

with the common dimensionful constant having the value,

g0ν = (G F cos θc)
4m9

e

(2π)5 ln 2
= 2.8 × 10−22 yr−1. (23)

The PSF for the light and heavy neutrino exchange are the same, 
G0ν

1 of Eq. (21). As Eq. (21) and (22) show, the PSF for the inter-
ference term, G0ν ′

1 , has a different structure than the PSF of the 
individual mechanisms, G0ν

1 . Because of the absence of electron 
energies, the interference PSF is suppressed considerably compared 
to the ‘non-interference’ PSF.

3. Results

The accuracy of PSF calculations depends on certain assump-
tions and methods. References [17] and [20] considered the effect 
of finite nuclear size and screening of nuclear charge due to atomic 
electrons in calculating the non-interference PSF. An easy to use, 
faster and sufficiently accurate method was recently introduced in 
[21] by considering a screening factor S f to the charge of the fi-
nal nucleus Z f , still retaining the original assumption of point-like 
nuclear charge. This modification to the charge (Zs = S f

100 Z f ) repli-
cates the effects of finite nuclear size and electron screening to 
good accuracy. For our case we consider the value S f = 94.5% for 
G0ν

1 (see table IV of [21]).
The effect of the interference term was considered in [41]

where the numerical values of the suppression factors of the term 
for different nuclei were calculated. We try to verify the values 
claimed in [41] based on our derivation of the interference term 
PSF (see Eq. (22)). We analyze the contribution of the PSF for max-
imum interference so as to make our conclusions as general as 
possible. This is in anticipation of its smallness, as was already 
claimed in [41] and [14]. To make the analysis for maximum in-
terference more transparent we introduce certain assumptions and 
notations. The NME are taken to be real Mν∗ = Mν , MN∗ = MN . 
The LNV parameters are nonetheless treated as complex having the 
phases,

ην
L =

∣∣ην
L

∣∣ eiφ1 , ηN
R =

∣∣∣ηN
R

∣∣∣ eiφ2 . (24)

Furthermore we make the assumptions 
∣∣ην

L

∣∣ Mν ≈
∣∣ηN

R

∣∣ MN ≈ ηM . 
Thus the inverse half-life of Eq. (20) can be rewritten so as to give 
maximum interference,
[

T 0ν
1/2

]−1
≈ g4

A

[
G0ν

1

[
|η|2 |M|2 + |η|2 |M|2

]

− G0ν ′
1

[
|η|2 |M|2 e(φ1−φ2) + |η|2 |M|2 e(φ2−φ1)

]]

= 2g4
A G0ν

1 |η|2 |M|2
[

1 − G0ν ′
1 /G0ν

1 cosφ
]

= 2g4
A G0ν

1 |η|2 |M|2 [1 − ε cosφ] , (25)

where we have defined the phase difference between the two LNV 
parameters as φ = φ1 − φ2 and the ratio between the two phase 
space factors of Eq. (21), (22) as ε = G0ν ′

1 /G0ν
1 . Depending on the 

value of ε , the ε cosφ term will mostly determine the contribution 

Table 1
Numerical values of PSF of different nuclei for g.s. → g.s. transitions. Column 4 
lists the values of the interference PSF Eq. (22) and column 5 is the ratio to the 
individual PSF in % (see Eq. (21)). (Q ββ values are taken from [20]).

Nuclei Q ββ

[MeV]
G0ν

1
[×10−14 yr−1]

G0ν ′
1

[×10−15 yr−1]
ε = G0ν′

1
G0ν

1
[%]

48Ca 4.27226 2.45462 1.09027 4.44168
76Ge 2.03904 0.228003 0.28987 12.7134
82Se 2.99512 0.996509 0.757323 7.59976
96Zr 3.35037 2.04454 1.32482 6.47976
100Mo 3.03440 1.57402 1.17824 7.48553
110Pd 2.01785 0.465953 0.603145 12.9443
116Cd 2.8135 1.65694 1.38323 8.34808
124Sn 2.28697 0.886628 0.979603 11.0486
128Te 0.86795 0.0554 0.017355 31.3251
130Te 2.5269 1.4104 1.36624 9.68692
136Xe 2.45783 1.44863 1.45738 10.0604
150Nd 3.37138 6.60043 4.27367 6.47483

Table 2
Same as Table 1, for transitions from g.s. → 1st 0+ excited states. (Q ββ values are 
taken from [21]).

Nuclei Q ββ

[MeV]
G0ν

1
[×10−15 yr−1]

G0ν ′
1

[×10−16 yr−1]
ε = G0ν′

1
G0ν

1
[%]

48Ca 1.275 0.292636 0.633955 21.6636
76Ge 0.917 0.185314 0.552101 29.7927
82Se 1.508 0.906993 1.64925 18.1837
96Zr 2.202 4.43543 5.12937 11.5646
100Mo 1.904 3.03925 4.221 13.8883
110Pd 0.5472 0.120312 0.531163 44.1487
116Cd 1.057 0.720768 1.89277 26.2605
124Sn 1.12 0.953037 2.36911 24.8585
130Te 0.7335 0.358299 1.28598 35.8911
136Xe 0.879 0.651285 2.0187 30.9956
150Nd 2.631 27.5308 25.3183 9.19636

of the interference. The numerical values are tabulated in Tables 1
and 2 for the g.s. → g.s. and g.s. → 0+ (1st excited) transitions, 
respectively. The first excited 0+ transitions are also considered 
because of their potential experimental relevance. The fifth col-
umn in both tables lists the values of the factor for maximum 
interference, ε in %. From these values we can clearly see that the 
interference effect decreases when the Q ββ values increase. From 
Table 1 one observes quite clearly the extreme cases for 48Ca and 
128Te. A 4% increase to the 0νββ decay rate due to consideration 
of the interference effect for a Q ββ value of 4.27 MeV for 48Ca, 
whereas for 128Te the contribution is as high as 31% for a Q ββ

of 0.868 MeV. The variation of ε with Q ββ is plotted in Fig. 2, 
obtained by fixing the mass number A = 76 for Ge and the pro-
ton number of the final nucleus Z f = 34. As the plot suggests, 
for decay modes of smaller Q ββ values the effect of interference 
will be stronger. The effect can be as high as about 50% as can be 
seen for the first excited 0+ transition for 110Pd (see Table 2 and 
Fig. 2). We also studied the variation of ε with mass number A
and proton number Z f for the final nucleus. No significant depen-
dence on A and Z f was found. The exchange of heavy neutrinos 
for inducing 0νββ was first considered in [46]. The interference 
between light and heavy neutrinos was then considered in [41]. 
It was found that the PSF for the interference term was typically 
factor of 10 smaller than the PSF of the individual mechanisms 
[41,14]. The suppression factors of the interference term were cal-
culated for several nuclides and was found to be less than 10%. 
The smallness of the contribution of the interference is mainly due 
to the opposite chiral structures of the outgoing electrons. Due 
to the Coulomb attraction of the daughter nucleus, the outgoing 
electron wave functions are distorted. Therefore the PSF has to be 
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other (0 < α ! 1),

Cj |η j |2 = αCi|ηi|2 ⇒ |η j | =
√

α
Ci

Cj
|ηi|. (67)

Thus, our approximate generic half-life expression becomes
[
T 0ν

1/2

]−1 # g4
A(1 + α)Ci|ηi|2[1 + εi j cos (φi − φ j )], (68)

where the interference coefficient

εi j (α) =
√

α

1 + α

|Ci j |√
|Ci||Cj |

(69)

would allow us to compare the contribution of the interference
term with respect to that of each individual mechanisms for

maximum interference, | cos (φi − φ j )| = 1. We numerically
calculate the products of NME and PSF, and the ten Ci and Ci j
of Eqs. (48)–(57), given in Table I.

The NME for the six isotopes used in this study were
calculated by using shell-model techniques [2,31] in three
different model spaces, using three different effective Hamil-
tonians [27,32,33]. Some of the NME are sensitive to short-
range correlation (SRC) effects entering the two-body matrix
elements. Here we used the CD-Bonn SRC parametrization
[2]. Using the AV18 SRC parametrization [2] or/and the
Strasbourg-Madrid choice for the effective Hamiltonians [27]
does not significantly change the results. The relevant NME
and PSF used in this study are given in the Appendix. Besides
the values of Ref. [27], we have also considered the PSF of
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CNλ = −
[

MGT N −
(

gV

gA

)2

MFN + MT N

]

× [G03M2− − G04M1+], (54)

Cmη =
[

MGT −
(

gV

gA

)2

MF + MT

]

× [G03M2+ − G04M1− − G05MP + G06MR], (55)

CNη =
[

MGT N −
(

gV

gA

)2

MFN + MT N

]

× [G03M2+ − G04M1− − G05MP + G06MR], (56)

Cλη = −2G02M2−M2+ + 2
9

G03[M1+M2+ + M2−M1−]

− 2
9

G04M1+M1−, (57)

where the following definitions are used:

M1± = MGT q ± 3
(

gV

gA

)2

MFq − 6MT q, (58)

M2± = MGT ω ±
(

gV

gA

)2

MFω − 1
9
M1∓. (59)

Note that the term 1
9M1∓ in Eq. (59) above is the correct

expression (see footnote on p. 146 of Ref. [26]); it was
incorrectly written as 1

9M1± in Eq. (3.5.16) of Ref. [17].
Detailed expressions for the thirteen NMEs {MF , MGT , MT ,
MFω, MFq, MGT ω, MGT q, MT q, MP, MR, MFN , MGT N , MT N }
are given in the Appendix of Ref. [27]. The expressions for
the nine PSF integrals {G01–G09} are [24]

G0k = g0ν

r2
A

∫ T +1

1
b0kF0(Zs, ε1)F0(Zs, ε2)p1 p2ε1ε2dε1, (60)

with

g0ν = (GF cos θc)4m9
e

(2π )5 ln 2
= 2.8 × 10−22 y−1, (61)

where the expressions for the nine kinematical factors b0k
(k = 1–9) and definitions of other terms are given in Ap-
pendix A of Ref. [24]. The PSF G′

01 in CmN [Eq. (52)] for the
interference between regular mass mechanism [Fig. 2(a)] and
heavy-neutrino exchange for purely RH currents [Fig. 2(b)]
has the same expression as G01 of Eq. (60) without the factors
ε1ε2 [9]. Because of our definitions of the PSFs and NMEs,
the products Ci and Ci j are reported in the units of y−1.

D. Effective-field theory approach to 0νββ

Before proceeding to the analysis section we would like
to point out that the effective Lagrangian of Eq. (24) arises
from an explicit LRSM charge-current Lagrangian, Eq. (21).
This is exactly the approach taken in the standard literature,
e.g., as in Ref. [17], where RH neutrinos are assumed to con-
tribute besides the usual SM neutrinos. In the effective-field
theory (EFT) approach to 0νββ we encounter a dimension-six
Lagrangian [27,28] that is similar in structure to Lβ

LR of

TABLE I. Values of the product of NME and PSF, Ci and Ci j ,
for various nuclei for the 0+ → 0+ transition in units of y−1. See
Tables V and VI of the Appendix.

48Ca 76Ge 82Se 124Sn 130Te 136Xe

Cm × 1014 2.57 3.00 11.54 4.14 5.22 4.39
CN × 1010 1.63 0.87 3.28 1.84 2.25 1.86
Cλ × 1013 1.22 0.43 3.52 0.79 1.24 0.99
Cη × 1009 1.45 1.40 5.11 2.74 3.67 3.09
CmN × 1013 −1.82 −4.11 −9.35 −6.10 −6.64 −5.75
Cmλ × 1014 −0.90 −1.13 −5.68 1.97 −2.64 −2.20
Cmη × 1011 0.38 0.64 1.91 −0.97 1.19 1.01
CNλ × 1012 −0.72 −0.61 −3.03 1.31 −1.74 −1.43
CNη × 1010 3.05 3.43 10.19 −6.45 7.80 6.58
Cλη × 1013 −1.51 −0.60 −5.05 −1.06 −1.65 −1.31

Eq. (21),

LEFT
6 = Gβ√

2

[
jµV−AJ†

V−A,µ+ εV+A
V −A jµV+AJ†

V −A,µ+ εV+A
V+A jµV+AJ†

V+A,µ

+ εS+P
S−P jS+PJ†

S−P+ εS+P
S+P jS+PJ†

S+P+ εTR
TR

jµν
TR

J†
TR,µν

]
, (62)

which is the most general Lorentz-invariant Lagrangian re-
sponsible for 0νββ in the second order of perturbation theory.
The leptonic and hadronic currents of the EFT Lagrangian
are respectively jβ = eOβν and J†

α = uOαd , with the Oα,β

operators defined as

OV ±A = γ µ(1 ± γ5), OS±P = (1 ± γ5),

OTR = i
2

[γµ, γv](1 + γ5). (63)

Note that the neutrino fields used in Eq. (62) are the SM
LH neutrinos in the flavor basis. Heavy RH neutrinos in
Eq. (19) are integrated out and any related parameters are
absorbed in the definition of the effective BSM couplings εβ

α .
EFT formalism allows us to relate BSM physics parameters
through the SM degrees of freedom. In the case of LRSM we
approximate the effective BSM couplings as

εV +A
V −A = ηη, εV +A

V +A = ηλ. (64)

The scalar-pseudoscalar (S ± P) and tensor (TR) terms do not
arise from the LRSM charged-current Lagrangian but from
other BSM models. The term related to the heavy-neutrino ex-
change in the presence of purely RH currents, AN

R [Fig. 2(b)],
is not given by the LEFT

6 since it is a short-range contribution

TABLE II. Interference coefficients εmλ(α) in % for specific α

values.

Nuclei εmλ(0.25) εmλ(0.5) εmλ(0.75) εmλ(1)

48Ca 6.42 7.57 7.95 8.03
76Ge 12.68 14.94 15.69 15.85
82Se 11.27 13.28 13.94 14.08
124Sn 13.81 16.28 17.09 17.27
130Te 13.16 15.51 16.28 16.45
136Xe 13.33 15.70 16.49 16.66
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TABLE III. Interference coefficients εmη(α) in % for specific α

values.

Nuclei εmη(0.25) εmη(0.5) εmη(0.75) εmη(1)

48Ca 25.11 29.60 31.07 31.40
76Ge 39.27 46.28 48.59 49.09
82Se 31.48 37.10 38.94 39.35
124Sn 36.32 42.80 44.93 45.40
130Te 34.29 40.41 42.42 42.86
136Xe 34.75 40.95 42.99 43.44

due to the exchange of heavy particles. LEFT
6 gives rise to

long-range contributions to 0νββ due to the exchange of light
neutrinos, see Figs. 1(b) and 1(c) of Ref. [27]. In the EFT
approach to 0νββ, the dimension-nine Lagrangian is [27]

LEFT
9 =

G2
β

2mP

[
ε1JJ j + ε2JµνJµν j + εLLz

3 JµJµ j

+ εRRz
3 JµJµ j + εLRz

3 JµJµ j + εRLz
3 JµJµ j

+ ε4JµJµν jν + ε5JµJ jµ
]
. (65)

The expressions for the leptonic and hadronic currents are
given in Ref. [27]. The short-range contribution [see Fig. 1(d)
of Ref. [27] ] to 0νββ, AN

R , arises from the JµJµ j term
of LEFT

9 in first-order of perturbation where we approximate
εRRz

3 = ηN . However, the 0νββ half-life formula, Eq. (47),
is the same in both approaches. Thus, our analysis of the
interference between different mechanisms arising from Lβ

LR
can easily be extended to a subset of terms of the EFT
approach to 0νββ Lagrangians LEFT

6 and LEFT
9 . For a complete

discussion of 0νββ in the EFT approach, see Refs. [28–30].
The contribution of the (S ± P) and TR terms of LEFT

6 to
the total decay rate of 0νββ, along with the constraints on
the effective LNV couplings, have been studied with the
assumption that the interference terms are negligible [27]. As

TABLE IV. Interference coefficient ελη(α) in % for specific α

values.

Nuclei ελη(0.25) ελη(0.5) ελη(0.75) ελη(1)

48Ca 0.45 0.54 0.56 0.57
76Ge 0.31 0.37 0.38 0.39
82Se 0.48 0.56 0.59 0.60
124Sn 0.29 0.34 0.35 0.36
130Te 0.31 0.36 0.38 0.39
136Xe 0.30 0.35 0.37 0.38

an extension of our current work, we plan to explore in the
future the contribution of all the possible interference terms
arising from LEFT

6 . A similar analysis can be also carried out
for the interference terms arising from LEFT

9 ; see, e.g., Eq. (5)
of Ref. [27].

IV. ANALYSIS OF INTERFERENCE TERMS

We now analyze the contribution of each of the interfer-
ence terms in Eq. (47) by comparison with the related pairs
of squared amplitudes for each individual mechanisms. The
interference between light-LH and heavy-RH neutrinos [CmN
term in Eq. (47)] was analyzed in Ref. [9]. Here we analyze
the other five terms (three after symmetry, see below). We
write a generic approximate inverse half-life formula for a pair
of mechanisms in the following manner:

[
T 0ν

1/2

]−1 " g4
A[Ci|ηi|2 + Cj |η j |2 + Ci j |ηi||η j | cos (φi − φ j )],

(66)

where i, j = {m, N, λ, η} and i #= j. We assume the individ-
ual mechanism squared amplitude to be a factor α of each
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FIG. 4. Coefficient of maximum interference εmλ(1) plotted against Qββ values.
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other (0 < α ! 1),

Cj |η j |2 = αCi|ηi|2 ⇒ |η j | =
√

α
Ci

Cj
|ηi|. (67)

Thus, our approximate generic half-life expression becomes
[
T 0ν

1/2

]−1 # g4
A(1 + α)Ci|ηi|2[1 + εi j cos (φi − φ j )], (68)

where the interference coefficient

εi j (α) =
√

α

1 + α

|Ci j |√
|Ci||Cj |

(69)

would allow us to compare the contribution of the interference
term with respect to that of each individual mechanisms for

maximum interference, | cos (φi − φ j )| = 1. We numerically
calculate the products of NME and PSF, and the ten Ci and Ci j
of Eqs. (48)–(57), given in Table I.

The NME for the six isotopes used in this study were
calculated by using shell-model techniques [2,31] in three
different model spaces, using three different effective Hamil-
tonians [27,32,33]. Some of the NME are sensitive to short-
range correlation (SRC) effects entering the two-body matrix
elements. Here we used the CD-Bonn SRC parametrization
[2]. Using the AV18 SRC parametrization [2] or/and the
Strasbourg-Madrid choice for the effective Hamiltonians [27]
does not significantly change the results. The relevant NME
and PSF used in this study are given in the Appendix. Besides
the values of Ref. [27], we have also considered the PSF of
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other (0 < α ! 1),

Cj |η j |2 = αCi|ηi|2 ⇒ |η j | =
√

α
Ci
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Thus, our approximate generic half-life expression becomes
[
T 0ν
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]−1 # g4
A(1 + α)Ci|ηi|2[1 + εi j cos (φi − φ j )], (68)

where the interference coefficient

εi j (α) =
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would allow us to compare the contribution of the interference
term with respect to that of each individual mechanisms for

maximum interference, | cos (φi − φ j )| = 1. We numerically
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of Eqs. (48)–(57), given in Table I.
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other (0 < α ! 1),

Cj |η j |2 = αCi|ηi|2 ⇒ |η j | =
√

α
Ci

Cj
|ηi|. (67)

Thus, our approximate generic half-life expression becomes
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Statistical Model: Results
• Shell model observables show robustness relative to 

small random changes of the effective  Hamiltonian

• M0n shows significant correlations with about half of 
the observables considered

• The outcome of our Bayesian Averaging model is a 
joint distribution of the 136Xe M0n with a range of 1.55 –
2.65 at 90% confidence level

• We propose a M0n  NME of 1.99 ± 0.37 for 136Xe

Future work:

- Statistical investigation of the maximal interference effects

- Investigate other random changes, e.g. 15%, GOA, etc


