Soft electromagnetic radiation from critical fluid in the vicinity of QCD critical point

Masaru Hongo (Niigata Univ./RIKEN iTHEMS)

2023/08/22, INT Workshop on Chirality and Criticality

Based on the ongoing work with Akamatsu, Asakawa, Stephanov, and Yee

QCD Critical point

Properties and Signals of QGP

Temperature?

Hadron spectra, thermal photon…

Equation of state?

Collective flow

Chiral magnetic effect

Charge-dependent correlation

Viscosity?

Elliptic flow, triangular flow…

Diffusion constant?

Nuclear modification factor for heavy quark

Stopping power?

Electric conductivity?

Nuclear modification factor for jet

Dilepton spectra, charge difference in v_1

QCD Critical Point (QCD CP)

Fluctuation of conserved charges

Other possible experimental signals?

Outline

P Motivation:

Search for a potential signal of a QCD CP using photons

Approach:

Stochastic dynamics with the Model H with one-loop approximation

Critical enhancement and scaling behavior of soft photons

Lesson from stat-phys in 1970s

Critical point for H₂O

Critical opalescence

 $\xi \ll \lambda_{\text{light}}$

 $\xi \sim \lambda_{
m light}$

(From Wikipedia)

Old lesson from stat-phys

Scaling behavior for the dynamic light scattering!

Divergence of conductivity

- Kubo formula for conductivity

$$\lambda = \frac{1}{2T} \langle \widetilde{J}^x(-k) \widetilde{J}^x(k) \rangle_{k=0} \quad \text{with a current operator } J^i$$

Photon self-energy probed by light scattering!

• Experimental result on conductivity around CP

Conductivity diverges as

$$\lambda \sim \xi \to \infty$$

(ξ : correlation length)

Old lesson from stat-phys

Scaling behavior for the dynamic light scattering! Electromagnetic probes for the QCD CP search?

<u>The crucial observation</u>

・と

This is the same correlator exhibiting diverging conductivity!!

$$\lambda = \frac{1}{2T} \langle \widetilde{J}^x(-k) \widetilde{J}^x(k) \rangle_{k=0} \xrightarrow{\text{near CP}} \xi \to \infty$$

• There should be critical enhancement of soft photon emission!

Outline

Motivation:

Search for a potential signal of a QCD CP using photons

🧛 Approach:

Stochastic dynamics with the Model H with one-loop approximation

Critical enhancement and scaling behavior of soft photons

Critical dynamics with Model H

Universality at critical point

-Why a critical point is so special?

Critical point is a special point at which systems acquire the emergent scale (or possibly conformal) symmetry!

Thanks to the enhanced symmetry,

the resulting low-energy dynamics is universal!

Divergence of conductivity

- Kubo formula for conductivity

 $\lambda = \frac{1}{2T} \langle \widetilde{J}^x(-k) \widetilde{J}^x(k) \rangle_{k=0} \quad \text{with a current operator } J^i$

Photon self-energy probed by light scattering!

Conductivity diverges as

$$\lambda \sim \xi \to \infty$$

(ξ : correlation length)

Q. What is the origin of diverging conductivity at CP?

$$\begin{aligned} & \textbf{Simple understanding} \\ & \textbf{Kubo formula: } \lambda = \frac{1}{2T} \langle \tilde{J}^x(-k) \tilde{J}^x(k) \rangle_{k=0} = \frac{1}{2T} \int dt d^3x \langle J^x(x) J^x(0) \rangle \\ & \textbf{Formosition of current operator} \\ & J^x(x) = a \delta \hat{s}(x) v_{\perp}^x(x) + j_{\text{micro}}^x(x) \text{ with } \left\{ \begin{array}{c} \text{critical fluctuation } \delta \hat{s} \\ \text{transverse velocity } v_{\perp}^i \end{array} \right. \\ & \lambda = \lambda_{\text{micro}} + \frac{a^2}{2T} \int dt d^3x \langle \delta \hat{s}(x) v_{\perp}^x(x) \delta \hat{s}(0) v_{\perp}^x(0) \rangle \\ & \simeq \lambda_{\text{micro}} + \frac{a^2}{2T} \int dt d^3x \langle \delta \hat{s}(x) \delta \hat{s}(0) \rangle \langle v_{\perp}^x(x) v_{\perp}^x(0) \rangle \\ & \sim \gamma_T^{-1} \xi^2 \times \xi^3 \quad \sim \frac{e^{-r/\xi}}{r} \sim \xi^{-1} \quad \sim t^{-3/2} \sim (\xi^2)^{-3/2} \sim \xi^{-3} \\ & \sim \lambda_{\text{micro}} + \frac{a^2}{T\gamma_T} \end{cases} \text{ Reproduce divergence of conductivity!} \end{aligned}$$

Hydrodynamic mode coupling plays a crucial role!

Systematic understanding

Dynamic universality class

Critical dynamics is classified by symmetry!

[Hohenberg-Halperin, RMP (1977)]

Symmetry tells us what are relevant slow variables (e.g., critical fluctuation, Hydro & NG mode)

Model H describe critical dynamics w/

- Conserving critical scalar mode Transverse momentum (hydro) mode

Liquid-gas and QCD critical points belongs model H! [Son-Stephanov, PRD (2004)]

Model H

- Critical fluctuation:
$$\delta \hat{s} := n_0 \delta \left(\frac{s}{n}\right) = \frac{1}{T_0} \delta e - \frac{e_0 + p_0}{n_0 T_0} \delta n_0$$

- Transverse momentum fluctuation: g_T^i (satisfying $\nabla \cdot g_T = 0$)

[* Pressure fluctuation and longitudinal velocity is omitted in the model H]

• Langevin equation for model H
- EoM:
$$\begin{cases} \partial_t \delta \hat{s} = -\frac{1}{w} g_T \cdot \nabla \delta \hat{s} + \lambda \nabla^2 \left[(r - C \nabla^2) \delta \hat{s} + u \delta \hat{s}^3 \right] + \zeta_s \\ \partial_t g_T = -\left[C (\nabla^2 \delta \hat{s}) \nabla \delta \hat{s} \right]_T + \gamma_\perp \nabla^2 g_T + \zeta_T \\ \text{-Noise properties:} \begin{cases} \langle \zeta_s(x) \zeta_s(x') \rangle = -2T \lambda \nabla^2 \delta^{(4)}(x - x') \\ \langle \zeta_{T,i}(x) \zeta_{T,j}(x') \rangle = -2T \eta (\delta_{ij} \nabla^2 - \partial_i \partial_j) \delta^{(4)}(x - x') \\ \text{[See, e.g., Hohenberg-Halperin, RMP (1977)]} \end{cases}$$

× Isospin fluctuation is irrelevant [Son-Stephanov (2004)] and thus $J_{R}^{\mu} \propto J^{\mu}$

This diagram gives the dominant contribution for on-shell photon! (This is the diagram responsible for divergence of conductivity)

$$\underbrace{ \begin{pmatrix} k-p \\ \hline \\ \hline \\ \end{pmatrix} }_{p} \sim \int \frac{\mathrm{d}^{4}p}{(2\pi)^{4}} G_{S}^{ss}(p^{0}, \boldsymbol{p}) G_{S}^{ij}(k^{0}-p^{0}, \boldsymbol{k}-\boldsymbol{p}) \sim \begin{cases} \frac{1}{\gamma_{T}} \boldsymbol{\xi} & \text{for } \boldsymbol{\xi} \ll \sqrt{\frac{\gamma_{T}}{|\boldsymbol{k}|}} \\ \frac{1}{\sqrt{\gamma_{T}}} |\boldsymbol{k}|^{-0.5} & \text{for } \boldsymbol{\xi} \gg \sqrt{\frac{\gamma_{T}}{|\boldsymbol{k}|}} \end{cases}$$

Critical enhancement of photon The behavior of the one-loop integral **(I)** 1000 $\xi^{-1} = 0$ (CP) 100 $\xi^{-1} = 10^{-3}$ • $\xi^{-1} = 10^{-2}$ 3 (2) $k \sim \gamma_T \xi^{-2}$ 10 $\xi^{-1} = 10^{-1}$ $k^{-0.5}$ 10^{-7} 10⁻⁵ 0.001 0.100

(I) Soft limit at $k \ll \gamma_T \xi^{-2}$ shows critical divergence proportional to ξ (2) Transition to the scaling regime takes place around $k \sim k_* = \gamma_T \xi^{-2}$ (3) Scaling $\propto k^{-1/2}$ is observed at $\gamma_T \xi^{-2} \ll k (\ll \xi^{-1})$

Summary & Discussion

Summary

Motivation:

Search for a potential signal of a QCD CP using photons

🧛 Approach:

Stochastic dynamics with the Model H with one-loop approximation

Result:

Critical enhancement and scaling behavior of soft photons

Discussion

While we consider the on-shell photon with $k^0 = |\mathbf{k}|$, the Model H does not contain the sound mode!

Q. Could the sound mode be relevant?

$$\Gamma_{\text{sound}}(\boldsymbol{k}) = \frac{1}{e_0 + p_0} \left(\zeta_R + \frac{4}{3} \eta_R \right) \boldsymbol{k}^2 \sim \xi^3 \boldsymbol{k}^2$$

The sound mode shows a fast decay around QCD CP! [Minami (2011)]

The sound mode is probably irrelevant