

# Towards a theory consensus for neutron decay

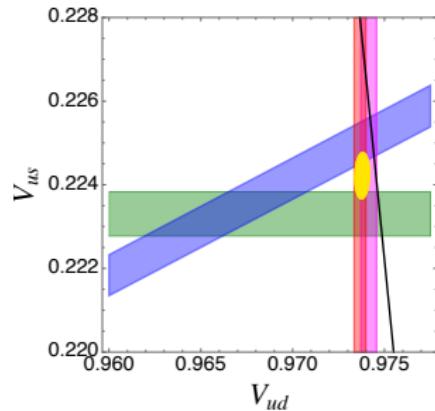
Based on many discussions over the last years, including

MITP 2022: "Electroweak precision physics from beta decays to the Z pole"

INT-23-1b: "New physics searches at the precision frontier"

which form the basis to try again now

INT-26-95W: "Testing the Standard Model in charged-weak decays"


Jan 13, 2026

# Starting point: hadronic matrix elements

**Table 2**

Various contributions to  $\square_A^{\gamma W}$  in units of  $10^{-3}$ . The different columns are based on the references as indicated, but modified to correspond to the same conventions as far as possible (see main text), in particular, we use  $Q_0^2 = 2 \text{ GeV}^2$  in the separation of low- and high-energy parts and include the running of  $\alpha$  in the evaluation of the DIS region (using the corrections from Ref. [11] where necessary; modified entries are indicated by an asterisk and not assigned an uncertainty estimate). The DIS contribution enters for  $Q^2 \geq Q_0^2$  in Eq. (A.1), the rest for  $Q^2 \leq Q_0^2$ . Note that the elastic contribution from Ref. [8] is only integrated up to  $1 \text{ GeV}^2$ , which explains the slightly smaller value. The resonance and Regge regions in Refs. [6,7] are separated as indicated by Ref. [9]. For Refs. [8,10] the inelastic contributions for  $Q^2 \leq Q_0^2$  are booked in the “Regge” category. This compilation is inspired by Table I in Ref. [11].

|           | [11]    | [6,7]   | [9]     | [8]      | [10]    | our estimate |
|-----------|---------|---------|---------|----------|---------|--------------|
| Elastic   | 1.05(4) | 1.06(6) | 1.06(6) | 0.99(10) | 1.06(6) | 1.06(6)      |
| Resonance | 0.04(1) | 0.05(1) | 0.05(1) | –        | –       | 0.04(1)      |
| Regge     | 0.52(7) | 0.51(8) | 0.56(9) | 0.38*    | 0.46*   | 0.49(11)     |
| DIS       | 2.29(3) | 2.26*   | 2.26*   | 2.24*    | 2.32*   | 2.28(4)      |

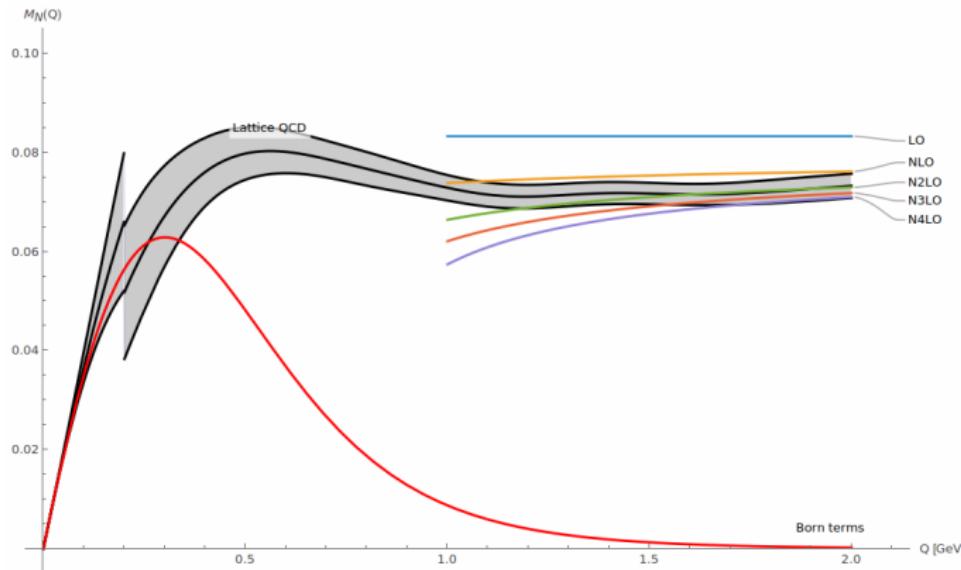


Cirigliano, Crivellin, MH, Moulson 2022

- Back in 2022, we suggested a measurement of  $K_{\mu 3}/K_{\mu 2}$  at NA62 to try and clarify the  $K_{\ell 3}$  vs.  $K_{\ell 2}$  tension
- Wanted to show “state-of-the-art” bands for  $V_{ud}$ , but this proved difficult
  - many competing calculations for “ $\gamma W$  box”  $\square_{\gamma W}$ , not clear what to do
- Performed a quick-and-dirty average to get a realistic representation of the situation at the time, but this should be done properly

## Subsequent discussions and developments

- Differences among evaluations discussed at
  - MITP 2022 organizers: M. Blanke, A. Crivellin, M. Hoferichter, C.-Y. Seng, M. Gorshteyn
  - INT 2023 organizers: V. Cirigliano, P. Shanahan, R. Stroberg
- reasons for differences among evaluations better understood
- Idea to write a “consensus note” that makes a recommendation for  $\square_{\gamma W}$
- In the meantime:
  - Lattice-QCD calculation [2308.16755](#)
  - EFT formulation [2306.03138](#)
  - QFT understanding of Fermi function [2501.17916](#)
  - NLL resummation [2510.27648](#)
- Now appears a good point to try and forge a theory consensus that takes all these developments into account
- Main goal: master formula that relates  $\tau_n$ ,  $\lambda$ ,  $V_{ud}$


## How to organize this

- Possible precedent: Muon  $g - 2$  Theory Initiative
  - similar situation, many competing SM predictions
- Pros and cons:
  - Plus: consensus recommendation community service, helps experimentalists and users outside the field, increases impact
  - Minus: citation recommendations for underlying works often ignored, even when making such lists available with minimal effort
- My personal impression: ultimately net positive, and now for neutron decay there is a strong need to converge on a consensus
- Recruiting authors: should include all relevant theory work in the last years, can start with participants of the three workshops and invite people who are missing
- Final results to be published in a journal article, also made available at a website (NTNP topical collaboration? <https://a51.lbl.gov/~ntnp/TC/>), including citation recommendations

# A possible outline

- Have an Overleaf project with rough outline
  - 1 Introduction
  - 2 Decomposition of the decay rate
  - 3 Short-distance corrections and resummation of large logarithms
  - 4 Fermi function
  - 5 Hadronic contributions
  - 6 A master formula for neutron decay
  - 7 BSM consequences
  - 8 Towards nuclear corrections
  - 9 Conclusions
- Next steps: recruit volunteers for the different sections
- In some cases additional work necessary, e.g., for the hadronic contributions
- Not just collection of results but reasonably self-contained review, e.g., to explain connection between EFT and Sirlin formalism

# Matching of hadronic integrand



- In some cases additional work necessary, e.g., for the hadronic contributions
  - New evaluation by combining lattice-QCD and phenomenological input at the level of the  $Q^2$  integrand
  - Born terms for low  $Q^2$ , pQCD for large  $Q^2$ , lattice QCD for intermediate range

## Possible future extensions

- First step neutron decay only, pure “theory exercise”
- Superallowed  $\beta$  decays
  - Not there yet, theory still in flux, expect many developments over the next years
  - Need more ab-initio calculations before it makes sense to try and forge a consensus
  - Need to involve experimentalists
  - Could be considered as a future extension in a few years
- What about  $V_{us}$ ?
  - There is already something similar [FlaviaNet, 1005.2323](#)
  - To make real progress, need new data [under analysis at NA62](#) and lattice calculations of  $f_+(0)$  and  $F_K/F_\pi$ , the latter depending on choice of isospin scheme [FLAG recommendation](#)
  - $\tau$  decays continue to be challenging, would need to check carefully in which cases theory errors can really be controlled
  - Could be considered as a future extension in a few years