Chiral EFT for dark matter detection experiments

Martin Hoferichter

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern

[∂] UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

August 2, 2022

INT program 22-2b on

Dark Matter in Compact Objects, Stars, and Low-Energy Experiments

- Decomposition follows from EFT
- $\sigma_{\chi N}^{Sl}$ subsumes physics from QCD to BSM scale \hookrightarrow use EFT to keep track
- Can also use EFT for comparison with indirect detection or collider constraints (as long as EFT applies)
- Chiral EFT for hadronic/nuclear part

Direct detection of dark matter: scales

BSM scale Λ_{BSM} : \mathcal{L}_{BSM}

SMEFT Effective Operators: $\mathcal{L}_{SM} + \sum_{i,k} \frac{1}{\Lambda_{BSM}^{i}} \mathcal{O}_{i,k}$

Integrate out EW physics

- Hadronic scale: nucleons and pions → effective interaction Hamiltonian H_I Chiral EFT
- **ONUMPER Scale:** $\langle \mathcal{N} | H_l | \mathcal{N} \rangle$

 \hookrightarrow nuclear wave function Chiral EFT, NREFT

Direct detection of dark matter: scales

● Hadronic scale: nucleons and pions → effective interaction Hamiltonian H_l Chiral EFT

O Nuclear scale: $\langle \mathcal{N} | H_l | \mathcal{N} \rangle$

 \hookrightarrow nuclear wave function Chiral EFT, NREFT

Typical WIMP–nucleon momentum transfer

 $|\mathbf{q}_{\mathsf{max}}| = 2\mu_{\mathcal{N}\chi} |\mathbf{v}_{\mathsf{rel}}| \sim 200\,\mathsf{MeV} \qquad |\mathbf{v}_{\mathsf{rel}}| \sim 10^{-3} \qquad \mu_{\mathcal{N}\chi} \sim 100\,\mathsf{GeV}$

- Chiral EFT: pions, nucleons, and WIMPs as degrees of freedom Prézeau et al. 2003, Cirigliano et al. 2012, 2013, Menéndez et al. 2012, Klos et al. 2013, MH et al. 2015, Bishara et al. 2017
- NREFT: all degrees of freedom integrated out but nucleons and WIMPs Fan et al. 2010, Fitzpatrick et al. 2012, Anand et al. 2013

Effective theory of QCD based on chiral symmetry

$$\mathcal{L}_{\text{QCD}} = \bar{q}_L i \not\!\!D q_L + \bar{q}_R i \not\!\!D q_R - \bar{q}_L \mathcal{M} q_R - \bar{q}_R \mathcal{M} q_L - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

Expansion in momenta *p*/Λ_χ and quark masses *m_q* ~ *p*²
 → scale separation

- Breakdown scale: $\Lambda_{\chi} = M_{\rho} \dots 4\pi F_{\pi} \sim 1 \text{ GeV}$
- Two variants
 - SU(2): u- and d-quark dynamical, ms fixed at physical value
 - \hookrightarrow expansion in M_{π}/Λ_{χ} , usually nice convergence
 - SU(3): u-, d-, and s-quark dynamical
 - \hookrightarrow expansion in M_K/Λ_χ , sometimes tricky

Chiral EFT: a modern approach to nuclear forces

- Traditionally: meson-exchange potentials
- Chiral effective field theory
 - Based on chiral symmetry of QCD
 - Power counting
 - Low-energy constants
 - Hierarchy of multi-nucleon forces
 - Consistency of NN and 3N
 - \hookrightarrow modern theory of nuclear forces
- Long-range part related to

pion-nucleon scattering

Figure taken from 1011.1343

- Coupling to external sources L(v_µ, a_µ, s, p)
- Same LECs appear in axial current

 $\hookrightarrow \beta$ decay, neutrino interactions, dark matter

- Vast literature for v_{μ} and a_{μ} , up to one-loop level
 - With unitary transformations: Kölling et al. 2009, 2011, Krebs et al. 2016, 2019
 - Without unitary transformations: Park et al. 2003, Pastore et al. 2008, Baroni et al. 2015
- For dark matter further currents: *s*, *p*, tensor, spin-2, θ^{μ}_{μ}

• Effective WIMP Lagrangian for spin-1/2 SM singlet χ Goodman et al. 2010

$$\begin{aligned} \mathcal{L}_{\chi} &= \frac{1}{\Lambda^3} \sum_{q} \left[C_q^{SS} \bar{\chi} \chi \, m_q \bar{q} q + C_q^{PS} \bar{\chi} i \gamma_5 \chi \, m_q \bar{q} q + C_q^{SP} \bar{\chi} \chi \, m_q \bar{q} i \gamma_5 q + C_q^{PP} \bar{\chi} i \gamma_5 \chi \, m_q \bar{q} i \gamma_5 q \right] \\ &+ \frac{1}{\Lambda^2} \sum_{q} \left[C_q^{VV} \bar{\chi} \gamma^{\mu} \chi \, \bar{q} \gamma_{\mu} q + C_q^{AV} \bar{\chi} \gamma^{\mu} \gamma_5 \chi \, \bar{q} \gamma_{\mu} q + C_q^{VA} \bar{\chi} \gamma^{\mu} \chi \, \bar{q} \gamma_{\mu} \gamma_5 q + C_q^{AA} \bar{\chi} \gamma^{\mu} \gamma_5 \chi \, \bar{q} \gamma_{\mu} \gamma_5 q \right] \\ &+ \frac{1}{\Lambda^2} \sum_{q} \left[C_q^{TT} \bar{\chi} \sigma^{\mu\nu} \chi \, \bar{q} \sigma_{\mu\nu} q + \tilde{C}_q^{TT} \bar{\chi} \sigma^{\mu\nu} \gamma_5 \chi \, \bar{q} \sigma_{\mu\nu} q \right] + \frac{1}{\Lambda^3} \left[C_g^S \bar{\chi} \chi \, \alpha_s G_{\mu\nu}^a G_a^{\mu\nu} + \cdots \right] \end{aligned}$$

Chiral power counting

$$\partial = \mathcal{O}(p), \qquad m_q = \mathcal{O}(p^2) = \mathcal{O}(M_\pi^2), \qquad a_\mu, v_\mu = \mathcal{O}(p), \qquad \frac{\partial}{m_N} = \mathcal{O}(p^2)$$

 \hookrightarrow construction of effective Lagrangian for nucleon and pion fields

 \hookrightarrow organize in terms of chiral order ν , $\mathcal{M} = \mathcal{O}(p^{\nu})$

Classes of contributions

- Three classes of corrections:
 - Subleading one-body responses (a)
 - Radius corrections (b)
 - Two-body currents (c), (d)
- (a)+(b) just ChPT for nucleon matrix elements, but (c)+(d) genuinely new effects
- Hierarchy predicted from chiral EFT

Example: scalar currents

• For a Majorana WIMP χ : scalar quark current

$$\mathcal{L} = \sum_{q} \mathcal{C}_{q}^{SS} ar{\chi} \chi \, m_{q} ar{q} q$$

leading contribution to responses with coherent enhancement

1

- $\hookrightarrow \textbf{spin-independent scattering}$
- Need nucleon matrix elements

$$\langle N|m_q\bar{q}q|N\rangle = f_q^N m_N \qquad m_N (f_u^N + f_d^N) = \sigma_{\pi N}$$

to extract BSM information from cross section

$$\sigma_{\mathsf{SI}} = \frac{4\mu_N^2}{\pi} \left| m_N \sum_q C_q^{SS} f_q^N + \cdots \right|^2 \qquad \qquad \mu_N = \frac{m_N m_\chi}{m_N + m_\chi}$$

• $\sigma_{\pi N}$ critical for interpretation of direct-detection searches, especially in SUSY models Bottino et al. 2000, Ellis et al. 2008

• $\sigma_{\pi N} = \mathcal{O}(p^2)$ suppressed due to absence of scalar current at leading order

Two-body currents: scalar operators

- Diagram (a) scales like $\mathcal{O}(p^2)$ in the chiral counting
- In contrast to the nucleon, the pion has a leading-order scalar coupling

$$\begin{split} \mathcal{M}_{(b)} \simeq \underbrace{p \times \frac{1}{p} \times p}_{\text{nucleon line}} \times \underbrace{\frac{1}{p^2} \times p^2 \times \frac{1}{p^2}}_{\text{pion line}} \times \underbrace{p^4}_{\text{loop}} = \mathcal{O}(p^3) \\ \mathcal{M}_{(c)} \simeq \underbrace{p \times \frac{1}{p^2} \times p^2 \times \frac{1}{p^2} \times p}_{\text{pion line}} \times \underbrace{p^3}_{\delta\text{-function for spectator nucleon}} = \mathcal{O}(p^3) \end{split}$$

 \hookrightarrow two-body effects as important as loop corrections

Chiral corrections only suppressed by a single chiral order

Two-body currents: axial-vector operators

- Axial-vector current can couple via pion pole
 - \hookrightarrow two-body effects proportional to c_i , including $\Delta(1232)$ enhancement
- One-body current

$$\mathbf{J}_{i,1\mathrm{b}}^{3} = \frac{1}{2} \tau_{i}^{3} \left(G_{A}^{3}(\mathbf{q}^{2}) \,\boldsymbol{\sigma}_{i} - \frac{G_{P}^{3}(\mathbf{q}^{2})}{4m_{N}^{2}} \left(\mathbf{q} \cdot \boldsymbol{\sigma}_{i} \right) \mathbf{q} \right)$$

• Two-body current

$$\begin{aligned} \mathbf{J}_{12,2b}^{3} &= -\frac{g_{A}}{2F_{\pi}^{2}} \left[\tau_{1} \times \tau_{2}\right]^{3} \left[c_{4} \left(1 - \frac{\mathbf{q}}{\mathbf{q}^{2} + M_{\pi}^{2}} \mathbf{q} \cdot\right) (\sigma_{1} \times \mathbf{k}_{2}) + \frac{c_{6}}{4} (\sigma_{1} \times \mathbf{q}) + i \frac{\mathbf{p}_{1} + \mathbf{p}_{1}'}{4m_{N}} \right] \frac{\sigma_{2} \cdot \mathbf{k}_{2}}{M_{\pi}^{2} + k_{2}^{2}} \\ &- \frac{g_{A}}{F_{\pi}^{2}} \tau_{2}^{3} \left[c_{3} \left(1 - \frac{\mathbf{q}}{\mathbf{q}^{2} + M_{\pi}^{2}} \mathbf{q} \cdot\right) \mathbf{k}_{2} + 2c_{1}M_{\pi}^{2} \frac{\mathbf{q}}{\mathbf{q}^{2} + M_{\pi}^{2}} \right] \frac{\sigma_{2} \cdot \mathbf{k}_{2}}{M_{\pi}^{2} + k_{2}^{2}} + \text{contact terms} \end{aligned}$$

- Non-relativistic EFT for dark matter Fan et al. 2010, Fitzpatrick et al. 2012, Anand et al. 2013
 - \hookrightarrow integrate out the pions
- Similar to pionless EFT for nuclear physics
 - \hookrightarrow only remaining degrees of freedom nucleons and WIMPs
- Calculation organized in terms of

$$old q \qquad oldsymbol v^ot = old + rac{old q}{2 \mu_N} \qquad old S_\chi \qquad old S_N$$

 \hookrightarrow expand in **q**, **v**^{\perp} (using **v**^{\perp} · **q** = 0)

Matching to NREFT

• Operator basis for WIMP and nucleon fields Fan et al. 2010, Fitzpatrick et al. 2012

Matching to relativistic amplitudes

$$\begin{split} \mathcal{M}_{1,\mathrm{NR}}^{SS} &= \mathcal{O}_{1}f_{N}(t) \qquad \mathcal{M}_{1,\mathrm{NR}}^{SP} = \mathcal{O}_{10}g_{5}^{N}(t) \qquad \mathcal{M}_{1,\mathrm{NR}}^{PP} = \frac{1}{m_{\chi}}\mathcal{O}_{6}h_{5}^{N}(t) \\ \mathcal{M}_{1,\mathrm{NR}}^{VV} &= \mathcal{O}_{1}\left(f_{1}^{V,N}(t) + \frac{t}{4m_{N}^{2}}f_{2}^{V,N}(t)\right) + \frac{1}{m_{N}}\mathcal{O}_{3}f_{2}^{V,N}(t) + \frac{1}{m_{N}m_{\chi}}\left(t\mathcal{O}_{4} + \mathcal{O}_{6}\right)f_{2}^{V,N}(t) \\ \mathcal{M}_{1,\mathrm{NR}}^{AV} &= 2\mathcal{O}_{8}f_{1}^{V,N}(t) + \frac{2}{m_{N}}\mathcal{O}_{9}\left(f_{1}^{V,N}(t) + f_{2}^{V,N}(t)\right) \\ \mathcal{M}_{1,\mathrm{NR}}^{AA} &= -4\mathcal{O}_{4}g_{A}^{N}(t) + \frac{1}{m_{N}^{2}}\mathcal{O}_{6}g_{P}^{N}(t) \qquad \mathcal{M}_{1,\mathrm{NR}}^{VA} = \left\{-2\mathcal{O}_{7} + \frac{2}{m_{\chi}}\mathcal{O}_{9}\right\}h_{A}^{N}(t) \end{split}$$

- Observations
 - SI: \mathcal{O}_1 , SD: combination of \mathcal{O}_4 and \mathcal{O}_6
 - Not all the O_i equally important, QCD implies relations among them

Coherence effects

- Six distinct nuclear responses Fitzpatrick et al. 2012, Anand et al. 2013
 - $M \leftrightarrow \mathcal{O}_1 \leftrightarrow SI$
 - $\Sigma', \Sigma'' \leftrightarrow \mathcal{O}_4, \mathcal{O}_6 \leftrightarrow SD$
 - $\Phi'' \leftrightarrow \mathcal{O}_3 \leftrightarrow$ quasi-coherent, spin-orbit operator
 - Δ, Φ[']: not coherent

• Quasi-coherence of Φ"

- Spin-orbit splitting
- Coherence until mid-shell
- About 20 coherent nucleons in Xe
- Interference $M \Phi'' \leftrightarrow \mathcal{O}_1 \mathcal{O}_3$
- Further coherent *M*-responses from O₅, O₈, O₁₁, but no interference with O₁ due to sum over S_χ

- EFT constraints on particle + hadronic part
- Convolution with nuclear wave function replaces traditional Helm form factor
 - \hookrightarrow nuclear shell model, ab-initio techniques
- Different options for EFT parameterizations, in terms of

Wilson coefficients at high scale

 \hookrightarrow need to specify quantum numbers of WIMP

- **2** effective couplings at QCD scale, e.g., $\sigma_{\chi N}^{SI}$, $\sigma_{\chi N}^{SD}$
 - \hookrightarrow combination of Wilson coefficients and hadronic matrix elements
- INREFT coefficients
 - $\hookrightarrow \mathsf{BSM}$ constraints obtained after matching to QCD

- Different EFT approaches basically differ by choice of scale at which EFT coefficients are determined
- All can be used to generalize the standard SI/SD picture
- Example for approach 2 (most natural from chiral-EFT perspective):

$$\begin{split} \frac{d\sigma_{\chi,N}}{dq^2} &= \frac{1}{4\pi v^2} \left| \sum_{l=\pm} \left(c_l^M - \frac{q^2}{m_N^2} \dot{c}_l^M \right) \mathcal{F}_l^M(q^2) + c_\pi \mathcal{F}_\pi(q^2) + c_0 \mathcal{F}_b(q^2) + \frac{q^2}{2m_N^2} \sum_{l=\pm} c_l^{\phi''} \mathcal{F}_l^{\phi''}(q^2) \right|^2 \\ &+ \frac{1}{4\pi v^2} \sum_{i=5,8,11} \left| \sum_{l=\pm} \xi_i(q, v_T^{\perp}) c_l^{M,i} \mathcal{F}_l^M(q^2) \right|^2 \\ &+ \frac{1}{v^2(2J+1)} \left(|a_+|^2 S_{00}(q^2) + \operatorname{Re}\left(a_+a_-^*\right) S_{01}(q^2) + |a_-|^2 S_{11}(q^2) \right) \end{split}$$

green: Wilson coefficients + hadronic matrix elements, red: nuclear structure factors

Case 1: spin-independent scattering

• All c = 0, a = 0 except for c_{+}^{M} : spin-independent scattering

$$\frac{\mathsf{d}\sigma_{\chi \mathcal{N}}}{\mathsf{d}q^2} = \frac{\sigma_{\chi N}^{\mathsf{SI}}}{4\mu_N^2 v^2} \big|\mathcal{F}_+^{\mathsf{M}}(q^2)\big|^2 \qquad \sigma_{\chi N}^{\mathsf{SI}} = \frac{\mu_N^2}{\pi} \big|c_+^{\mathsf{M}}\big|^2 \qquad \mu_N = \frac{m_N m_\chi}{m_N + m_\chi}$$

Case 2: spin-dependent scattering

• All c = 0, $a_+ = \pm a_-$: spin-dependent scattering

$$\frac{\mathsf{d}\sigma_{\chi\mathcal{N}}}{\mathsf{d}q^2} = \frac{\sigma_{\chi\mathcal{N}}^{\mathsf{SD}}}{3\mu_N^2 v^2} \frac{\pi}{2J+1} S_{\mathsf{N}}(q^2) \qquad \sigma_{\chi\mathcal{N}}^{\mathsf{SD}} = \frac{3\mu_N^2}{\pi} |a_+|^2$$

 Xe sensitive to proton spin due to two-body currents Klos, Menéndez, Gazit, Schwenk 2013

Case 3: WIMP-pion scattering

• Only c_{π} nonzero: WIMP-pion scattering

$$\frac{\mathsf{d}\sigma_{\chi\mathcal{N}}}{\mathsf{d}q^2} = \frac{\sigma_{\chi\pi}^{\text{scalar}}}{\mu_{\pi}^2 v^2} \left| \mathcal{F}_{\pi}(q^2) \right|^2 \qquad \sigma_{\chi\pi}^{\text{scalar}} = \frac{\mu_{\pi}^2}{4\pi} |c_{\pi}|^2 \qquad \mu_{\pi} = \frac{m_{\chi} M_{\pi}}{m_{\chi} + M_{\pi}}$$

• Expression in terms of cross section depends on underlying operator, here for a scalar $\bar{\chi}\chi\bar{q}q$

Calculation of spin-dependent responses

- Main challenge: two-body currents
 - \hookrightarrow dominant contribution for even-numbered species
- Developments since 2013:
 - New information on low-energy constants c_i
 - Nuclear axial-vector current at 1-loop Baroni et al. 2016, Krebs et al. 2016
 - Improved understanding of g_A quenching in β decays

- c_i first contribute to πN scattering
- At given scheme and order, uncertainties negligible when matching in the subthreshold region MH et al. 2015, Siemens et al. 2016
- Large shifts when including loop effects Bernard et al. 2008
 → can be partially captured by

$$\frac{\delta c_1}{64\pi F_\pi^2} \qquad \frac{\delta c_3}{64\pi F_\pi^2} \qquad \frac{\delta c_3}{16\pi F_\pi^2} \qquad \frac{\delta c_6}{16\pi F_\pi^2} \qquad \frac{\delta c_6}{4\pi F_\pi^2} = -\frac{g_A^2 M_\pi}{4\pi F_\pi^2}$$

Absorbing relativistic corrections, we use

<mark>c₁</mark> [GeV ⁻¹]	<mark><i>c</i>₃</mark> [GeV ^{−1}]	<mark>C₄</mark> [GeV ^{−1}]	<mark>c₀</mark> [GeV ⁻¹]
-1.20(17)	-4.45(86)	2.96(70)	5.01(1.06)

g_A quenching in β decays

$\bullet~$ Ab initio calculation of β decays

explains origin of quenching:

- Two-body currents
- Limitations of shell model
- We adjust the normalization accordingly, use chiral prediction for q² dependence
- In practice done in terms of density of normal-ordering ρ and value of c_D:

$$\{\mathbf{C}_{D}, \rho\} = \{-6.08, 0.09 \, \text{fm}^{-3}\}$$
$$\dots \{0.30, 0.11 \, \text{fm}^{-3}\}$$

$$\rightarrow -30\%\ldots -20\%$$

New results consistent with 2013 bands

• Uncertainties reduced especially of the suppressed (even-numbered) species

Comparison to ab-initio methods

• Results shown so far use nuclear shell model for nuclear wave functions

- First results from ab-initio methods (in-medium SRG Hu et al. 2021)
 - \hookrightarrow NN and 3N interactions fully consistent with currents (eventually)

Hu et al. 2021

New experimental results and prospects

- Impressive progress in experimental sensitivity
 - \hookrightarrow should be analyzed with adequate theory

- EFT allows one to move systematically from BSM to nuclear scale
- EFT-motivated decomposition of direct-detection rate depends on choice of scale
 - \hookrightarrow in principle equivalent, but more or less efficient depending on application

• Chiral EFT:

- Directly generalizes standard SD/SI picture
- Predicts hierarchy among NREFT coefficients
- Allows one to include two-body corrections
- Constrains Hamiltonian in ab-initio approaches