PDFs and BSM searches in the EIC era

Tim Hobbs

CTEQ-TEA (Tung Et. Al.) working group

searching for physics beyond the Standard Model (BSM)

→ discovery searches

2024-02-15

e.g., examining cross sections in previously unprobed kinematical regions

testing the Standard Model through extremely fine measurements

(deviations could reveal presence of new particles/interactions!) 2

PDFs are a linchpin for BSM searches

PDF global analyses have matured to high level of precision

BSM searches, upcoming programs \rightarrow reductions to PDF uncertainties

analyses are large and challenging: (N)NNLO; NLO EW; many subtleties

statistical, methodological assumptions; theory settings; data curation; ...

significant interest in jet production, top data: connections to gluon PDF

> PDF fits, <u>SM-only</u>! ...however, data are often **inputs to BSM (EFT) analyses**

from (N)NNLO analyses, state-of-the-art predictions for fundamental LHC observables $\rightarrow e.g.$, total cross sections at 14 TeV

significant PDF-driven uncertainties; also, systematic effects: W cross sections sensitive to inclusion of 2016 7 TeV ATLAS inclusive W/Z data

5

BSM-sensitive channels limited by PDF uncertainties

 \rightarrow includes many observables: σ_H , $\sin^2 \theta_W$, M_W , \cdots

 $M_W^{\text{CDF}} = 80,433.5 \pm 6.4 \text{ (stat)} \pm 6.9 \text{ (syst) MeV}$

 \rightarrow e.g., recent CDF M_W measurement: <u>significant</u> PDF dependence

$$M_T \equiv \sqrt{2(p_T^\ell p_T^\nu - \vec{p}_T^{\ \ell} \cdot \vec{p}_T^{\ \nu})}$$

Gao, Liu, Xie: 2205.03942 [hep-ph]

δM_W in MeV	CT10	CT18	MMHT14	NNPDF4.0	CT14	MSHT20
$W^+ \langle M_T \rangle$ (NLO)	$0^{+12.1}_{-12.9}$	$+1.4^{+21.8}_{-20.0}$	$-10.3^{+11.6}_{-11.1}$	$-17.1^{+7.4}_{-7.4}$	$-16.2^{+23.5}_{-19.1}$	$-24.8^{+16.8}_{-11.9}$
$W^- \langle M_T \rangle$ (NLO)	$0^{+13.5}_{-15.2}$	$-5.7^{+14.0}_{-19.5}$	$+1.1^{+8.6}_{-10.3}$	$+7.5^{+4.9}_{-4.9}$	$-9.6^{+12.8}_{-15.3}$	$-4.5^{+8.3}_{-7.5}$
$W^{\pm} \langle M_T \rangle$ (NLO)	$0^{+9.8}_{-11.4}$	$-2.3^{+14.4}_{-16.8}$	$-4.5^{+8.2}_{-8.5}$	$-4.4^{+4.6}_{-4.6}$	$-12.8^{+16.6}_{-15.1}$	$-14.3^{+10.9}_{-8.0}$
$W^+ \langle M_T \rangle$ (LO)	$0^{+10.8}_{-11.4}$	$-6.5^{+14.1}_{-10.0}$	$-5.7^{+8.1}_{-7.1}$	$-14.1^{+5.8}_{-5.8}$	$-4.1^{+15.0}_{-12.9}$	$-14.4^{+10.2}_{-7.3}$
$W^- \langle M_T \rangle$ (LO)	$0^{+8.9}_{-11.4}$	$-7.2^{+10.1}_{-12.5}$	$+3.1^{+8.3}_{-9.9}$	$+3.5^{+4.5}_{-4.5}$	$-7.0^{+6.2}_{-8.9}$	$+2.1^{+6.3}_{-4.9}$
$W^{\pm} \langle M_T \rangle$ (LO)	$0^{+5.2}_{-7.0}$	$-0.6^{+7.6}_{-7.4}$	$-1.2^{+5.3}_{-5.9}$	$-5.0^{+3.0}_{-3.0}$	$-5.6^{+8.0}_{-8.4}$	$-5.9^{+5.9}_{-4.2}$

 \rightarrow extracted from transverse mass template fits

 \rightarrow examine mean transverse mass as proxy

 \rightarrow large PDF variations; outdistance 1-sigma uncertainties

theory for (precision) electroweak observables: PDF dependence

theory predictions for EW boson production sensitive to high-*x* PDFs: *e.g.*, *d*(*x*) at *x* ~ 1, which is poorly constrained $x_{1,2} = \frac{M}{\sqrt{2}}e^{\pm y}$

$$\frac{d\sigma}{dy}(pp \to W^- X) = \frac{2\pi G_F}{3\sqrt{2}} x_1 x_2 \left(\cos^2\theta_C \left\{ \frac{d(x_1)\bar{u}(x_2) + \bar{u}(x_1)d(x_2)}{3\sqrt{2}} \right\} \right)^{\sqrt{3}}$$

flavor separation is crucial in these channels

see also: Accardi, TJH, Jing, Nadolsky; 2102.01107

 $+\sin^2\theta_C\{s(x_1)\bar{u}(x_2)+\bar{u}(x_1)s(x_2)\}$

PDF4LHC21 benchmarking: J.Phys.G 49 (2022) 8, 080501.

MC sampling of high-x PDFs can sometimes produce irregularities

 \rightarrow *e.g.*, positive-definiteness not always guaranteed for $x \rightarrow 1$

strong need for high-x sensitive data: (HL-)EIC

Courtoy, Huston Nadolsky, Xie, Yan, Yuan: 2205.10444

aside: PDF parametrizations, ML generative models

- → parametrization dependence, MC uncertainty sampling are serious bottlenecks to PDF precision
 - ML models (encoder-decoder networks): testbeds to disentangle PDF parametrizations
 - → can generatively predict PDFs

knowledge of the gluon content of the nucleon directly translates into constraints on SM Higgs production tensions among individual fitted experiments drive a larger PDF uncertainty

serious impediment to higher precision in PDFs and resulting theory predictions

2024-02-15

→ just inclusive DIS; many other channels with PDF sensitivity; precision QCD tests

precision QCD through jet and heavy-flavor production

DIS jet production, including through charge-current interactions, provides further access to quark-level information Arratia, Furletova, TJH, Olness, Sekula; PRD **103** (2021) 7, 074023.

 $R_s(x,Q)$ Q=10 GeV

final-state tagging provides lever arm for flavor separation (here, strangeness)

n.b.: event generation, detector sim from PYTHIA8 + DELPHES; FASTJET reconstruction

→ analogous jet measurements might be extended to nonperturbative heavy flavor

precision QCD through jet and heavy-flavor production

challenging measurement: final-state flavor tagging; Jacquet-Blondel reconstruction

reduced δ_{stat} : enhance knowledge of p_{T} spectrum

 \rightarrow appropriate for ePIC follow-up

EIC PDF sensitivity will derive from multichannel data; inclusive, tagging, ...

Arratia, Furletova, TJH, Olness, Sekula; PRD 103 (2021) 7, 074023. CC-DIS, 10GeVx275GeV, Q²>100 GeV² 10⁵ •

→ *indirect* BSM impacts through refined SM baselines

meanwhile at colliders: BSM through EFT fits

strong recent interest: <u>model-independent</u> BSM analyses

EFT-based parametrizations: e.g., SM effective field theory (SMEFT)

conceptually similar to PDF-fitting ideology

- EFT global analyses often assumed *fixed* SM calculations
 - \rightarrow PDFs not actively fitted alongside SMEFT parameters
 - \rightarrow could potentially bias resulting SMEFT analysis
- solution: develop joint SMEFT/PDF fits (field at early stage)
 Gao, Gao, TJH, Liu, and Shen; JHEP05 (2023) 003

 \rightarrow <u>this work</u>: example in context of <u>CTEQ-TEA (CT)</u> framework

- \rightarrow demonstration study focusing on select data: jet, $t\bar{t}$ production
- → examine possible PDF-SMEFT correlations

large body of recent EFT analyses

numerous SMEFT fitting frameworks and studies in recent years
 EFTFitter¹, FitMaker², HEPFit³, SFitter⁴, SMEFiT⁵, ...

¹Castro et al, 1605.05585; ²Ellis et al, 2012.02779; ³De Blas et al, 1910.14012; ⁴Brivio et al, 1910.03606; ⁵Hartland et al, 1901.05965; ...

 \rightarrow dedicated EFT fits within CMS, ATLAS

 \rightarrow studies related to current, future expts; *e.g.*, DIS colliders, LHC, ...

multiple talks at this meeting

• <u>disclaimer</u>: this talk \rightarrow one example of recent PDF-SMEFT activity

 \rightarrow *e.g.*, recent fits within the NNPDF-SMEFiT frameworks

Kassabov et al.: top-quark joint fit, 2303.06159

SIMUnet public code: Costantini et al, 2402.03308

→ findings here are **representative** of current PDF-SMEFT situation

- presume BSM scale above the electroweak, $\Lambda \gg M_{W,Z}$

 \rightarrow explicit non-standard degrees-of-freedom may be integrated away

 \rightarrow leaves behind basis of higher-dimensional operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}O_{i}^{(6)}}{\Lambda^{2}} + \dots$$

$$\frac{\text{High-energy}}{\text{built from SM}} \text{built from SM} \text{content!}$$

$$\frac{\text{analogous EFT} - \text{Fermi theory:}}{\text{High-energy}} \quad e^{-}$$

$$p \ll M_{W}$$

$$\frac{V_{i}}{V_{i}} = \frac{p}{V_{i}}$$

$$p \ll M_{W}$$

$$\frac{V_{i}}{V_{i}} = \frac{p}{V_{i}}$$

• BSM quantified via nonzero Wilson coefficients, $C_i \neq 0$

 \rightarrow extract from global fit alongside PDFs

selecting dominant SMEFT operators

this study: dim-6 operators only

 \rightarrow dim-8 contributions small (may be relevant for future precision!)

 \rightarrow consider several SMEFT operators associated with jet, $t\bar{t}$

jet production: contact interaction

$$O_1 = 2\pi \left(\sum_{i=1}^3 \bar{q}_{Li} \gamma_\mu q_{Li}\right) \left(\sum_{j=1}^3 \bar{q}_{Lj} \gamma^\mu q_{Lj}\right)$$

Warsaw operator basis

top production

$$O_{tu}^{1} = \sum_{i=1}^{2} (\bar{t}\gamma_{\mu}t) (\bar{u}_{i}\gamma^{\mu}u_{i}) ,$$

$$O_{td}^{1} = \sum_{i=1}^{3} (\bar{t}\gamma^{\mu}t) (\bar{d}_{i}\gamma_{\mu}d_{i}) ,$$

$$O_{tG} = ig_{s}(\bar{Q}_{L,3}\tau^{\mu\nu}T^{A}t)\tilde{\varphi}G_{\mu\nu}^{A} + \text{h.c.} ,$$

$$O_{tq}^{8} = \sum_{i=1}^{2} (\bar{Q}_{i}\gamma_{\mu}T^{A}Q_{i})(\bar{t}\gamma^{\mu}T^{A}t) ,$$

have imposed multiple symmetries on SMEFT space

nonzero Wilson coeffs.: finite SMEFT contributions to X-sections

→ pure SM, pure dim-6 SMEFT, and *interference* pieces:

$$\frac{d\sigma}{d\hat{O}} = \frac{d\sigma_{\rm SM}}{d\hat{O}} + \sum_{i} \frac{d\tilde{\sigma}_{i}}{d\hat{O}} \frac{C_{i}}{\Lambda^{2}} + \sum_{i,j} \frac{d\tilde{\sigma}_{ij}}{d\hat{O}} \frac{C_{i}C_{j}}{\Lambda^{4}}$$

 \rightarrow relevant for interference term, SMEFT-QCD computed to NLO

 \rightarrow constrain Wilson coefficients, $C(\mu_c)/\Lambda^2$, for $\mu_c = 1 \text{ TeV}$

status of theory calculations, uncertainties for all processes:

observable	μ_0	SM QCD	SM EW	SMEFT QCD	th. unc.
$t\bar{t}$ total	m_t	NNLO+NNLL	no	NLO	$\mu_{F,R}$ var.
$t\bar{t} p_T \text{ dist.}$	$m_T/2$	NNLO	NLO	NLO	$\mu_{F,R}$ var.
$t\bar{t} m_{t\bar{t}} \operatorname{dist.}$	$H_T/4$	NNLO(+NLP)	NLO	NLO	$\mu_{F,R}$ var.
$t\bar{t}$ 2D dist.	$H_T/4$	NNLO	no	NLO	no
inc. jet	$p_{T,j}$	NNLO	NLO	NLO	0.5% uncor.
dijet	m_{jj}	NNLO	NLO	NLO	0.5% uncor

learning log-likelihoods through neural net training

• quantify agreement of theory/data through χ^2 :

$$\chi^{2}(\{a_{\ell}\},\{\lambda\}) = \sum_{k=1}^{N_{\text{pt}}} \frac{1}{s_{k}^{2}} \left(D_{k} - T_{k}(\{a_{\ell}\}) - \sum_{\alpha=1}^{N_{\lambda}} \beta_{k,\alpha} \lambda_{\alpha} \right)^{2} + \sum_{\alpha=1}^{N_{\lambda}} \lambda_{\alpha}^{2}$$

 \rightarrow train a feed-forward neural network (NN) on PDF replicas

Liu, Sun, and Gao; arXiv: 2201.06586

NNs effectively learn (PDF-SMEFT) likelihood function

generate 1.2x10⁴ replicas over PDFs, SM parameters, SMEFT coeffs.

 \rightarrow validate performance on 4x10³ test set

→ strong, permille-level agreement achieved! (NB: perfect agreement corresponds to $\chi^2_{NN}/\chi^2 = 1$)

allows *rapid* exploration of combined PDF-SMEFT uncertainties

2024-02-15

T. Hobbs, INT-24-87W

explore constraints from range of LHC expts

included on top of default CT18 fitted experiments

 \rightarrow nominally fit ~112 fb⁻¹ of top data; ~67 fb⁻¹ for jet production

Experiments	$\sqrt{s}(\text{TeV})$	$\mathcal{L}(\mathrm{fb}^{-1})$	observable	$N_{\rm pt}$
* [†] LHC(Tevatron)	7/8/13(1.96)		$t\bar{t}$ total cross section	8
*† ATLAS $t\bar{t}$	8	20.3	1D dis. in $p_{T,t}$ or $m_{t\bar{t}}$	15
*† CMS $t\bar{t}$	8	19.7	2D dis. in $p_{T,t}$ and y_t	16
${\rm CMS}t\bar{t}$	8	19.7	1D dis. in $m_{t\bar{t}}$	7
*† ATLAS $t\bar{t}$	13	36	1D dis. in $m_{t\bar{t}}$	7
*† CMS $t\bar{t}$	13	35.9	1D dis. in $m_{t\bar{t}}$	7
*† CDF II inc. jet	1.96	1.13	2D dis. in p_T and y	72
*† D0 II inc. jet	1.96	0.7	2D dis. in p_T and y	110
$*^{\dagger}$ ATLAS inc. jet	7	4.5	2D dis. in p_T and y	140
$*^{\dagger}$ CMS inc. jet	7	5	2D dis. in p_T and y	158
* CMS inc. jet	8	19.7	2D dis. in p_T and y	185
[†] CMS dijet	8	19.7	3D dis. in $p_T^{ave.}$, y_b and y^*	122
[†] CMS inc. jet	13	36.3	2D dis. in p_T and y	78

*(in nominal top fits); [†](in nominal jet fits)

• for top data, correlated theory errors included via nuisance parameters; uncorr. for jets

first: sensitivity to SM QCD parameters

• simultaneously fit α_s and m_t in the absence of nonzero SMEFT coefficients

- combined jet and $t\overline{t}$ data significantly constrain strong coupling, top mass
- \rightarrow competing pulls between CMS, ATLAS $t\bar{t}$ data; lower vs higher top mass, resp.

(consistent with constraints from first near-threshold $m_{t\bar{t}}$ bin)

T. Hobbs, INT-24-87W

examine SMEFT uncertainties in joint PDF fit $t\bar{t}$ data

quantify SMEFT uncert. through Lagrange Multiplier (LM) scans:

 \rightarrow constraints to top-associated Wilson coefficient, C_{ta}^8/Λ^2

- modest increase in uncertainty when co-fitted with PDFs
- predominantly *quartic* shapes for $\Delta \chi^2$ reflect pure SMEFT contributions \sim ... *i.e.*, importance of quadratic EFT terms in limit-setting

pQCD correlations with top EFT coefficients $t\bar{t}$ data

 \rightarrow 2D Lagrange multiplier scans reveal correlations between fitted quantities; minimize:

• best fit coupling, mass essentially unshifted when fitted alongside EFT \rightarrow still, some deviation from rotational symmetry: non-quadratic profiles for χ^2

joint fits: very weak correlations with PDFs' x dependence

• SMEFT coefficient uncertainties depend on active fitting of PDFs:

${ m TeV^{-2}}$	nominal	PDF fixed	no the. unc.
C_{tu}^1/Λ^2	$0.14^{+0.61}_{-0.97}$	$0.14^{+0.60}_{-0.95}$	$0.14^{+0.57}_{-0.92}$
C_{tq}^8/Λ^2	$-0.80^{+2.58}_{-2.38}$	$-0.80^{+2.48}_{-2.35}$	-
C_{tG}/Λ^2	$-0.10^{+0.26}_{-0.30}$	$-0.10^{+0.25}_{-0.30}$	-

small variations in gluon PDF, unc. from co-fitting SMEFT:

T. Hobbs, INT-24-87W

analogous joint fits: jet data and contact interaction

fitted jet data modestly sensitive to C₁:

- leading SMEFT sensitivity from CMS: 13 TeV incl. jet, 8 TeV dijet data
- fixing PDFs: (slightly) larger uncertainty underestimate

${ m TeV^{-2}}$	nominal	CMS 8 dijet	CMS 8 jet	$CMS \ 13 \ jet$
PDF free	$-0.0015^{+0.0033}_{-0.0014}$	$-0.0022^{+0.0187}_{-0.0054}$	$-0.0009^{+0.0138}_{-0.0045}$	$-0.0013^{+0.0059}_{-0.0016}$
PDF fixed	$-0.0015^{+0.0024}_{-0.0014}$	$-0.0022^{+0.0180}_{-0.0051}$	$-0.0009^{+0.0131}_{-0.0049}$	$-0.0013^{+0.0026}_{-0.0015}$

more pronounced PDF correlation for jet data

jointly fitting contact interaction to jet prod. shifts gluon PDF

- effect somewhat greater at large x > 0.1
- suggests slightly stronger correlation of gluon PDF with C_1

correlations between SMEFT coefficients are mild

• co-varying top-, jet-associated coeffs. minimally effects uncertainties

 \rightarrow strongly rotationally-symmetric $\Delta \chi^2$ contours imply very weak correlations

${ m TeV}^{-2}$	C_1, C_{tG} free	fix C_1	fix C_{tG}
C_1/Λ^2	$-0.0015^{+0.0033}_{-0.0014}$	0	$-0.0015^{+0.0033}_{-0.0014}$
C_{tG}/Λ^2	$-0.120^{+0.248}_{-0.309}$	$-0.117\substack{+0.247 \\ -0.309}$	0

2024-02-15

correlations may strengthen with future expts

 increasing Weight (expt. precision) enhances SMEFT coeff. uncertainty dependence on co-fitted PDFs
 Wilson coefficient at 90% CL

• in addition, extracted SMEFT unc. depends on PDF error (tolerance) conventions

 \rightarrow both points suggest a growing need for further investigation

T. Hobbs, INT-24-87W

summary and outlook

- EIC will enter complex landscape of BSM-motivated EW experiments
- extends BSM sensitivity through PDF improvements (& QCD/EW theory)
- jet and $t\bar{t}$ data as CT PDF-EFT demonstration study; examined correlations

→ robust separation between PDFs, co-fitted EFT coefficients (potentially reassuring for contemporary EFT-only analyses)

 \rightarrow evidence of correlation between high-*x* gluon, contact interaction

 \rightarrow these will increase with growing expt precision; e.g., at HL-LHC

 \rightarrow need further theory development; more operator combinations, ...

• EIC valuable arena to explore PDF-EFT interplay; <u>UQ essential</u>