PDF implications and potential of PVDIS at JLab

Tim Hobbs – Fermilab, IIT

30th June 2022

27 June – 1 July 2022

PVDIS and EW Physics at JLab12

INT-Seattle

i **PVDIS** and **PDF uncertainties**, flavor dependence

- 1: precision BSM searches limited by (incomplete) proton structure info
 - → many standard-candle HEP measurements PDF-limited ... including very high x ...
 - → taming PDF dependence: knowledge of hard-to-access phase-space regions
 - \rightarrow PDF studies central to NP QCD at JLab12, maps of hadron structure
- 2: closely related: flavor separation generally needs numerous expts
 - \rightarrow controlling PDF uncertainties requires knowledge of flavor dependence
 - \rightarrow complementary measurements/analyses for $d/u, \ \bar{d}/\bar{u}, \ s, \ \cdots$

highlight through: i general status of HEP PDFs; ii flavor dependence issues

iii conclusion(s): implications for EW physics and PVDIS

from NNLO analyses, state-of-the-art predictions for fundamental LHC observables → *e.g.*, total cross sections at 14 TeV

CT18 NNLO, PRD 103 (2021) 1

 significant PDF-driven uncertainties; also, systematic effects: W cross sections sensitive to inclusion of 2016 7 TeV ATLAS inclusive W/Z data

i

 \rightarrow these include σ_H , $\sin^2 \theta_W$, m_W , ...

ATLAS, 1701.07240					for example:					
Channel	$m_{W^+} - m_{W^-}$ [MeV]	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EW Unc.	PDF Unc.	Total Unc.
$W \rightarrow e v$	-29.7	17.5	0.0	4.9	0.9	5.4	0.5	0.0	24.1	30.7
$W \to \mu \nu$	-28.6	16.3	11.7	0.0	1.1	5.0	0.4	0.0	26.0	33.2
Combined	-29.2	12.8	3.3	4.1	1.0	4.5	0.4	0.0	23.9	28.0

 \rightarrow the PDF uncertainty can be a/the dominant uncertainty!

 \rightarrow frontier efforts at the HL-LHC aim for (sub)percent precision

 \rightarrow large cross-cutting effort spanning theory/expt to improve

- heightened theory accuracy (HO, power corrections)
- novel measurements (JLab12, EIC, LHC, vA)
- generator development Snowmass21, Campbell et al.: 2203.11110

Snowmass21, Amoroso et al.: 2203.13923

 \rightarrow driven by marriage of latest theory, high-energy hadronic data

$$\sigma(AB \to W/Z + X) = \sum_{n} \alpha_{s}^{n} \sum_{a,b} \int dx_{a} dx_{b} f_{a/A}(x_{a}, \mu^{2}) \hat{\sigma}_{ab \to W/Z + X}^{(n)}(\hat{s}, \mu^{2}) f_{b/B}(x_{b}, \mu^{2})$$

$$T.-J. \text{ Hou et al., PRD 103 (2021) 1. } Contemporary NNLO QCD fits$$

$$I.1_{0} \int_{0.9}^{0.9} \int_{0.8}^{0.6} \frac{10^{4}}{10^{4}} \frac{10^{3}}{10^{2}} \frac{10^{-1}}{10^{-1}} \frac{10^{-1}}{0.2} \frac{10^{-1}}{0.5} \frac{10^{-1}}{0.9} \frac{10^{-1}}{0.5} \frac{10^{-1}}{0.9} \frac{10^{-1}}{0.5} \frac{10^{-1}}{0.9} \frac{10^{-1}}{10^{-1}} \frac{10^{-1}}{0.5} \frac{10^{-1}}{0.5} \frac{10^{-1}}{0.9} \frac{10^{-1}}{10^{-1}} \frac{10^{-1}}{0.5} \frac{1$$

periodic benchmarking (PDF4LHC21) valuable to cross-check treatment of data

 \rightarrow seek methodological independence in identifying data-driven PDF features

1

theory ingredients \rightarrow <u>higher pQCD accuracy</u>

- future analyses will witness an interplay between pQCD & other dynamics
- NNLO+ necessary to stabilize scale uncertainties; especially over wide scales

 \rightarrow essential to assess PDF dependence in parallel with HO corrections (beyond LO QPM)

6

electroweak (EW) corrections also vital

• at $\mathcal{O}(\alpha_s^2)$ accuracy, EW corrections and explicit $\gamma(x, \mu^2)$ needed

Xie, TJH, Hou, Schmidt, Yan, Yuan: PRD105 (2022) 5, 054006

• important for high-energy LHC processes: *e.g.*, 13 TeV W+H production

TeV-scale NLO EW corrections dominated (60%) by single-photon (PDF) contributions

→ requires **delicate** treatment along with QCD perturbative effects

i

i necessary for electroweak precision: photon PDF

- at $\mathcal{O}(\alpha_s^2)$ accuracy, EW corrections and explicit $\gamma(x, \mu^2)$ needed

Xie, TJH, Hou, Schmidt, Yan, Yuan: PRD105 (2022) 5, 054006

х

following CT14QED, CT18QED now interfaces LUX formalism

 \mathbf{X}

$$x\gamma(x,\mu^{2}) = \frac{1}{2\pi\alpha(\mu^{2})} \int_{x}^{1} \frac{z}{z} \left\{ \int_{\frac{x^{2}m_{p}^{2}}{1-z}}^{\frac{\mu^{2}}{1-z}} \frac{Q^{2}}{Q^{2}} \alpha_{ph}^{2}(-Q^{2}) \left[\left(zp_{\gamma q}(z) + \frac{2x^{2}m_{p}^{2}}{Q^{2}} \right) F_{2}(x/z,Q^{2}) - z^{2}F_{L}(x/z,Q^{2}) \right] - \alpha^{2}(\mu^{2})z^{2}F_{2}(x/z,\mu^{2}) \right\} + \mathcal{O}(\alpha^{2},\alpha\alpha_{s})$$

<u>depends on nonperturbative inputs</u> [kinematical cuts alone can't avoid this]

8

i parametrization uncertainty: nonperturbative fitting forms

- initial PDFs still not generally calculable through rigorous QCD at $Q = Q_0 = m_c$ (to the needed precision...)
 - \rightarrow subject to complex nonperturbative dynamics
 - \rightarrow practice agnosticism w.r.t. initial parametrization

(some guidance from QCD, QCD-inspired models)

 \rightarrow explore model uncertainty with many forms

ii high-x PDFs remain dominated by large uncertainties

• much of the JLab12 (PVDIS) sensitivity probes high-x (low-W, Q) PDFs

 \rightarrow data tensions

- PDF (Hessian) uncertainties enlarge dramatically in high-*x* limit
 - \rightarrow limited data \rightarrow extrapolation

flavor separation also challenging; parsing quark sea: various precision data

• PVDIS γ -Z interference further complements standard data sets

perturbative order (α_s), interplay of data sets relevant for high-x d/u

20

0

-10

0.35 0.36 0.37 0.38 0.39 0.4

d/u(x = 0.3, Q = 100 GeV)

۲ ۲ ۳ 10 - 160 HERA I+II

---- 101 BCDMS F_2^{pro} ---- 281 D02W A_{ch}^{e}

---- 250 LHCb8ZW

- 249 CMS8W A^{μ}_{ch}

----- 245 LHCb7ZW

0.41

- influences extrapolation region behavior
- competing pulls of fitted data at high-*x* also restrict precision; *e.g.*,
 - \rightarrow BCDMS, F_2^d
 - \rightarrow LHCb, W/Z 7 TeV

11

ii

ii light-nuclear corrections: **flavor dependence**, high-*x* PDFs

• *d*-PDF information from deuteron scattering; nuclear corrections relevant

$$f^d(x,Q^2) = \int \frac{dz}{z} \int dp_N^2 \,\mathcal{S}^{N/d}(z,p_N^2) \,\widetilde{f}^N(x/z,p_N^2,Q^2)$$

CJ-CT: Accardi, TJH, Jing, Nadolsky: EPJC81 (2021) 7, 603

• corrections are generally ~percent-level, but can become larger, especially at <u>high x</u>

 impacts LHC observables; necessary for high precision

ii nuclear modifications of increasing importance with greater PDF precision

• example: nuclear effects in deuteron influence *d*-quark PDF ($x \ge 0.1$)

CJ-CT: Accardi, TJH, Jing, Nadolsky: EPJC81 (2021) 7, 603

• comparative study: additional effects at lower-*x*; gluon impacts (from flavor correlations)

subtle interplay with nuclear corrections in large-A targets

 \rightarrow demands more attention in future (free nucleon) PDF analyses

[[]will revisit]

pulls of fitted data on d/u influenced by deuteron corrections

- L_2 sensitivity: quickly assess $\Delta \chi^2$ from upward shift of PDFs by 1σ uncertainty
 - \rightarrow useful for apples-apples comparisons, especially among Hessian fits

https://ct.hepforge.org/PDFs/ct18/figures/L2Sensitivity/

• in CJ fits *without* deuteron correction (left), large tensions at high x: γ -jet [1] vs. DIS-deuterium [4] data; especially at x > 0.5

 \rightarrow with fixed correction (right), tensions relieved significantly

CJ-CT: Accardi, TJH, Jing, Nadolsky: EPJC81 (2021) 7, 603

ii extracting high-x dependence in PDF fits

- high-x PDFs, ratios [e.g., d/u] connected to details of proton WF
- behavior at $x \to 1$ an important nonpert. discriminator
- CT18, parametrize $f_{a/A}(x, Q_0^2) = x^{A_{1,a}}(1-x)^{A_{2a}} \times \Phi_a(x)$

Η

Courtoy and Nadolsky, PRD103, 054029 (2021)

ii high-*x* sea-quark asymmetries: SeaQuest (E906) and STAR Drell-Yan data

see talk: A. Tadepalli

- potential overlap between PVDIS and PDF sensitivities of other high-*x* expts $\bar{d} > \bar{u}$
- recently-released SeaQuest data have moderate sensitivity to high-x

SeaQuest prefers larger dbar/ubar at x > 0.2; may *somewhat* reduce strange-PDF uncertainty

- interplays: treatment of nucl. data (left); inclusion of STAR *W*-prod., E866 expts. (right)
 - → E906, STAR constructively enhance dbar/ubar; removing E866 augments this effect

ii high-*x* sea-quark asymmetries: SeaQuest (E906) and STAR Drell-Yan data

- potential overlap between PVDIS and PDF sensitivities of other high-x expts $d > \bar{u}$
- L_2 sensitivities: excluding E866, minimal tensions between E906, other sets

- forthcoming study: exploration of PDF pulls in post-E906 fits...
- \rightarrow E906, STAR constructively enhance dbar/ubar; removing E866 augments this effect

ii nucleon strangeness from neutrino and Drell-Yan data

- strangeness PDF, breaking of flavor SU(3) remain highly uncertain
- CT18: indications of tension between neutrino (need nuclear corrections), precise LHC W/Z data

CT18Z NNLO, s(x, 2 GeV)

Х

17

explored in PDF4LHC21 benchmarking studies, especially for reduced PDF fits

[again, see talk: T. Cridge]

dominant experiments exert qualitatively similar pulls on strangeness in CT, MSHT

NuTeV neutrino scattering; 2016 ATLAS W/Z; HERA combined DIS data; ...

- beyond few-body systems, CT, other analyses use heavy-nuclei for flavor separation
- requires knowledge of nuclear corrections; these directly fitted by nPDF analyses
 - \rightarrow better control over *x*, *A* dependence can benefit nucleon PDF extractions

Muzakka, Duwentäster, TJH et al., 2204.13157

• more systematic studies of interdependence of nucleon, nuclear analyses needed

 \rightarrow high-*x* PVDIS from proton, nuclei helpful to building this picture

ii

ii nonperturbative theory developments: lattice QCD inputs

recent years: progress in *ab initio* hadron-structure calculations from LQCD
 → quasi-PDFs, pseudo-PDFs, quasi-TMDs, ...

there are be important synergies between PDF fitting and lattice QCD

[overlaps with PVDIS]

 lattice data can potentially inform high-x behavior of quark sea

TJH, Wang, Nadolsky, Olness, PRD100 (2019) 9, 094040

u-d at μ_F = 3GeV

19

iii nonperturbative the PVDIS and HEP PDF fits CD inputs

have illustrated: PDF flavor dependence, including high x, is an HEP frontier

20

achieving highest (PDF) impact of PVDIS: mastery of small Q

TJH and Melnitchouk, PRD77, 114023 (2008)

 $\rightarrow \gamma$ -Z interference accesses unique flavor currents in nucleon

$$A^{\rm PV} = -\left(\frac{G_F Q^2}{4\sqrt{2}\pi\alpha}\right) \left[g_A^e Y_1 \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + \frac{g_V^e}{2} Y_3 \frac{F_3^{\gamma Z}}{F_1^{\gamma}}\right] \quad A^{\rm PV} \text{ potentially subject to finite-}Q^2 \text{ corrections}$$

$$Y_{1} = \frac{1 + (1 - y)^{2} - y^{2}(1 - r^{2}/(1 + R^{\gamma Z})) - xyM/E}{1 + (1 - y)^{2} - y^{2}(1 - r^{2}/(1 + R^{\gamma})) - xyM/E} \left(\frac{1 + R^{\gamma Z}}{1 + R^{\gamma}}\right) \qquad \qquad R = \sigma_{L}/\sigma_{T} \neq 1$$

$$(= 1, \text{ Callan-Gross})$$

 in principle, could complicate PDF sensitivity of PV asymmetry

- effectively, proxy for various low-Q² corrections which must be investigated/controlled
- substantial theory, phenomenological progress over intervening years

iii

iii PVDIS will have subtle relationship with HTs, TMCs, ...

Brady, Accardi, TJH, and Melnitchouk, PRD84, 074008 (2011)

[see talks: A. Accardi, S. Li, N. Sato, ...]

• at lowest Q^2 , TMCs (and HTs) can represent multi-percent **proton** A^{PV} corrections

 \rightarrow as precision effect, ~comparable to deuteron corrections shown earlier

- <u>TMC prescription dependence mild</u>; deuteron A^{PV} (mostly) insulated from effects
 - → BSM, SMEFT analyses based on deuteron have much weaker PDF dependence [see talk: K. Simsek]
 - \rightarrow A^{PV} deuteron more sensitive to charge-symmetry violation (complement EIC)
 - → TMCs more relevant for CSV; consequential for $\gamma(x)$, CT EW phenomenology

PDF4LHC21 benchmarking: 2203.05506

- MC sampling of high-*x* PDFs can sometimes produce irregularities
 - \rightarrow *e.g.*, positive-definiteness not always guaranteed for $x \rightarrow 1$

• high-x PVDIS data: perhaps explore PDF uncertainties with representative sampling \rightarrow discriminating power Courtoy, Huston Nadolsky, Xie, Yan, Yuan: 2205.10444

iii

conclusions

- HEP analyses increasingly confront problem of taming high-*x* uncertainties
 - \rightarrow limit to EW precision, sensitivity of BSM tests
 - \rightarrow closely related to challenge of flavor separation
- QCD analysis progress: mix of theory corrections, pheno considerations
 [higher-order QCD, EW; light, heavy nuclear effects; power-suppressed corrections; ...]

- PVDIS, EW measurements at JLab12 hold intriguing possibilities
 - → significant PDF (proton), BSM/EW (deuteron) sensitivity
 - → extending HEP fits past kinematical cuts nontrivial but may be worthwhile meanwhile, could play valuable benchmarking role
 - \rightarrow clear complementarity to EIC (both PV and positron) measurements

EIC YR, 2103.05419

supplementary material -

strangeness (and other) PDF pulls have modest tolerance dependence

CT & MSHT groups, in preparation.

Х

quantifying PDF preferences of fitted data: the L, method

 $S_{f,L_2}(E)$: fast approximation of the Lagrange Multiplier scan of χ^2_E along direction of $f_a(x_i, Q_q)$.

> \rightarrow estimated $\Delta \chi_E^2$ for experiment E when $f_a(x_i, Q_i)$ increases by its +68% c.l. PDF uncertainty

$$Y = \chi_E^2 \quad X = f_a(x_i, Q_i) \qquad S_{f,L_2} \equiv \Delta Y(\vec{z}_{m,X}) = \vec{\nabla} Y \cdot \vec{z}_{m,X}$$

CT18 NNLO, BcdF2dCor (102), Q=2 GeV

$$= \vec{\nabla} Y \cdot \frac{\vec{\nabla} X}{|\vec{\nabla} X|} = \Delta Y \cos \varphi$$

extension of L₁ sensitivity (PDFSense)
method used to explore
• HEP data pulls for CT18
Phys.Rev.D 103 (2021) 1, 014013
• PDF-Lattice sensitivities
Phys.Rev.D 100 (2019) 9, 094040
• EIC potential

EIC YR, arXiv: 2103.05419

flavor structure only from inclusive data is challenging!

note PDFs' different orders-of-mag.!

NC DIS: sensitivity to d-type quarks $\frac{1}{4}$ that of u-type

$$\sigma \propto \frac{4}{9}(u_+ + c_+) + \frac{1}{9}(d_+ + s_+ + b_+)$$

CC DIS: lower accuracy (1/10 lumi.)

 $\rightarrow u$ -quark dominates

 $\rightarrow d$ -quark $\frac{1}{2}$ of u, but harder to access in NC DIS (above)

 $\rightarrow \bar{d} + \bar{u} ~\sim~ {\rm few}~ {\rm percent}~ {\rm of}~ u$

→ for x~0.1,

$$s \approx \bar{s} \approx \bar{d} - \bar{u} < 0.1(\bar{d} + \bar{u})$$

 \rightarrow at x>0.5, no separation for $\bar{u}, \bar{d}, \bar{s}$

the electroweak sector and New Physics searches at EIC

- if measured to sufficient precision, the quark-level electroweak couplings may be sensitive to an extended EW sector, e.g., Z^\prime

$$\mathcal{L}^{\mathrm{PV}} = \frac{G_F}{\sqrt{2}} \left[\bar{e} \gamma^{\mu} \gamma_5 e \left(C_{1u} \bar{u} \gamma_{\mu} u + C_{1d} \bar{d} \gamma_{\mu} d \right) + \bar{e} \gamma^{\mu} e \left(C_{2u} \bar{u} \gamma_{\mu} \gamma_5 u + C_{2d} \bar{d} \gamma_{\mu} \gamma_5 d \right) \right]$$

$$C_{1u} = -\frac{1}{2} + \frac{4}{3}\sin^2\theta_W$$

 a unique strength of an EIC is its combination of very high precision and beam polarization, which allows the observation of parity-violating helicity asymmetries:

$$A^{\rm PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \quad (R/L : e^- \text{ beam helicities})$$

selects γ -Z interference diagrams!

TJH and Melnitchouk, PRD**77**, 114023 (2008).

$$A^{\rm PV} = -\left(\frac{G_F Q^2}{4\sqrt{2}\pi\alpha}\right) (Y_1 \ a_1 \ + \ Y_3 \ a_3)$$
$$a_1 = \frac{2\sum_q e_q \ C_{1q} \ (q+\bar{q})}{\sum_q e_q^2 \ (q+\bar{q})} \qquad a_3 = \frac{2\sum_q e_q \ C_{2q} \ (q-\bar{q})}{\sum_q e_q^2 \ (q+\bar{q})}$$

the electroweak sector and New Physics searches at EIC

- if measured to sufficient precision, the quark-level electroweak couplings may be sensitive to an extended EW sector, e.g., Z^\prime

$$\mathcal{L}^{\mathrm{PV}} = \frac{G_F}{\sqrt{2}} \left[\bar{e} \gamma^{\mu} \gamma_5 e \left(C_{1u} \bar{u} \gamma_{\mu} u + C_{1d} \bar{d} \gamma_{\mu} d \right) + \bar{e} \gamma^{\mu} e \left(C_{2u} \bar{u} \gamma_{\mu} \gamma_5 u + C_{2d} \bar{d} \gamma_{\mu} \gamma_5 d \right) \right]$$
$$C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2 \theta_W$$

- with sufficient precision, an EIC (which will be statistics-limited in these measurements) can extract $\sin^2 \theta_W$
 - this measurement is potentially sensitive to the TeV-scale in a complementary fashion to energy-frontier searches!

