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Introduc)on
• This	is	a	weird	talk:	we’ll	be	digging	through	the	weeds,	and	
the	results	are	all	in	the	backups.	

• Focus	of	this	workshop	is	theoretical	uncertainties	for	
neutrino	experiments.	Here	I	want	to	focus	on	how	those	
uncertainties	apply	across	different	kinds	of	analyses.	

• Roadmap:
– NOvA	overview
– Flux	and	flux	uncertainties
– The	NOvA	detectors	and	detector	uncertainties
– Our	neutrino	interaction	model	and	its	uncertainties
– Summary	of	analyses	and	relative	sizes	of	uncertainties

• 3-flavor	oscillations
• Non-standard	interactions
• Sterile	neutrino	searches
• Neutrino	scattering

– Summary,	and	what’s	coming	next
2



The NOvA Experiment
• Long-baseline	neutrino	
oscillation	experiment

• NuMI	beam:	νμ or	ν̅μ
• 2	functionally	identical,	
tracking	calorimeters

• Designed	for	oscillations,	
but	we	also	do:
– Neutrino	cross	sections
– Astroparticle	physics
– Cosmic	ray	physics
– BSM	searches
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Flux Uncertainties

• Flux	central	value	and	uncertainty	from	the	Package	to	Predict	the	Flux	(PPFX).
– Developed	in	Minerva,	but	now	a	shared	tool.
– Incorporates	several	external	datasets	to	reduce	hadron	production	uncertainties.	
– PRD	94,	092005	(2016)

• Additional	sub-dominant	errors	related	to	the	focusing	system.

• PPFX	provides	uncertainties	as	“universes”	with	correlated	systematic	throws.	
– Cross-section	analyses	generally	use	these	directly	to	create	covariance	matrices.
– Other	analyses	typically	use	PCA	to	create	a	limited	number	of	“knobs.” 6



How to Detect a Neutrino

• Observe	the	charged	particles	after	a	neutrino	interacts	with	a	nucleus:
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µ-

p,	π±,	…	N

νμ

W

ν

p,	π±,	…	N

ν

Z

Charged Current Neutral Current

• Lepton
– CC	νμ	→ µ-,	CC	νe	→	e-

– NC	→	no	visible	lepton

• Hadronic	shower
– Neutrinos	typically	produce	a	proton
– Antineutrinos	typically	produce	a	neutron
– May	one	or	more	π±,	additional	p,	n,	etc.
– May	also	contain	EM	from	π0	→	γγ



• Plastic	cells	Ailled	with	liquid	
scintillator

• Arranged	in	alternating	
directions	for	3D	
reconstruction

• Light	collected	on	wavelength-
shifting	Aibers	and	carried	to	
avalanche	photodiodes

8



• Segmented	liquid	scintillator	detectors	provide	3D	tracking	and	calorimetry

• Optimized	for	electron	showers:	~60%	active	and	~6	samples	per	X0

• Time	resolution	of	a	few	ns,	and	spatial	resolution	of	a	few	cm
– Allows	clear	separation	of	individual	interactions

The NOvA Detectors
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Selecting and Identifying Neutrinos
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• Most	analyses	use	convolutional	
neural	networks	for	event	ID.
– A	deep-learning	technique	from	
computer	vision

– Multi-label	ID	shared	across	
samples

• Event-level	ID	used	in	oscillation-
related	measurements.	

• Particle-level	ID	used	in	cross	
section	measurements.
– Works	on	individual	“prongs,”	not	
the	whole	event.

– Trained	without	any	generator	
information.

• Also	use	likelihood-based	Muon	
IDs	for	tracks.
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Energy Reconstruc)on

• These	are	inputs	to	analysis-specific	energy	estimators.
– For	example:	νe	energy	uses	another	particle	ID	CNN	to	
separate	hadronic	from	electromagnetic	energy	deposits.	 11

νμ Events

νe Events

Eµ	from	length,	~4%	resolution

Ehad	from	calorimetry,	
~30%	resolution

EEM	from	calorimetry,	
~10%	resolution

NC Events



Detector Uncertainties
• Often	the	largest	category	of	uncertainty.

• Calibration
– Effectively	a	5%	uncertainty	on	the	calorimetric	energy	scale.

• Light	level
– Threshold	effects
– Amount	of	Cherenkov	light

• Relative	brightness	of	protons	vs.	lighter	particles.

• Lepton	reconstruction
– Uncertainty	on	conversion	between	muon	length	and	energy

• Several	effects,	but	<1%	all	together.
– Lepton	angle

• Normalization
– Detector	mass	account,	POT	accounting,	etc.

12



Neutron Response

• So	far,	this	uncertainty	has	been	based	on	data-simulation	discrepancies	in	neutron-
enhanced	samples.	
– Introduce	post-hoc	modifications	to	event	energies	to	“correct”	the	above	disagreements,	

treat	as	the	uncertainty.

• Aiming	to	improve	this	with	a	more	first-principles	uncertainty	in	future	analyses.	
– Note	above	that	the	disagreement	seems	to	suggest	over-production	of	photons	by	

Geant’s	medium-energy	neutron	model.	 13



Neutrino Interaction Model

• Currently	using	GENIE	3.0.6	→	freedom	to	choose	
models

• Chose	the	most	“theory-driven”	set	of	models.

• Some	custom	tuning	is	still	used	in	some	
circumstances.
– Substantially	less	than	was	needed	with	GENIE	

2.12.2,	which	required	tweaks	to	most	models.	

14

Process Model Reference

Quasielastic Valencia	1p1h J.	Nieves,	J.	E.	Amaro,	M.	Valverde,	Phys.	Rev.	C	70	(2004)	055503

Form	Factor Z-expansion A.	Meyer,	M.	Betancourt,	R.	Gran,	R.	Hill,	Phys.	Rev.	D	93	(2016)

Multi-nucleon Valencia	2p2h R.	Gran,	J.	Nieves,	F.	Sanchez,	M.	Vicente	Vacas,	Phys.	Rev.	D	88	(2013)

Resonance Berger-Sehgal Ch.	Berger,	L.	M.	Sehgal,	Phys.	Rev.	D	76	(2007)

DIS Bodek-Yang A.	Bodek	and	U.	K.	Yang,	NUINT02,	Irvine,	CA	(2003)

Final	State	Int. hN	semi-classical	cascade S.	Dytman,	Acta	Physica	Polonica	B	40	(2009)

Fig:	Teppei	Katori,	“Meson	Exchange	Current	(MEC)	Models	in	Neutrino	Interaction	Generators”	AIP	Conf.Proc.	1663	(2015)	030001



Neutrino Interaction Uncertainties

15

νe/νμ cross	section	ratio
Radiative	corrections:		2%	uncorrelated	for	ν/anti-ν
Second-class	currents:	2%	anticorrelated	for	ν/anti-ν

(Quasi)elastic	Interactions
z-expansion	normalization	+20%/-15%	from	GENIE
z-expansion	a1-a4	re-implemented	to	maintain	correlations
RPA	nuclear	model	uncertainty	from	MINERvA
Previously	a	correction,	now	just	an	uncertainty

NC	Elastic	MA,	η	from	GENIE



Neutrino Interaction Uncertainties
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DIS	Interactions	&	Hadronization
GENIE	Bodek-Yang	uncertainties:	AHT,	BHT,	CV1u,	CV2u
GENIE	AGKY	uncertainties:	xF1π,	pT1π
GENIE	Formation	Zone
Custom	Nonresonant	Nπ	production	uncertainty
50%	at	W	<	3	GeV,	linearly	decreasing	to	5%	for	W	>	5	GeV

Resonance	Interactions
CC	&	NC	RES	MA,	MV	from	GENIE
BR(R→X+1γ),	BR(R→X+1η),	Angular	distro.	(∆→πN)
Low	Q2	(<0.2	GeV2)	suppression	inspired	by	MINOS/MINERvA



FSI Tune and Uncertainties
• Using	hN	2018

– Believed	more	rigorous	than	hA	model
– Challenge:	not	directly	reweightable

• Systematics	→	Tuning	to	external	data
– Constructed	uncertainty	bands	in	the	
same	spirit	as	work	by	T2K	
• PRD	99,	052007

– 4	uncertainties:
• Mean	free	path
• 3x	“fate”	fractions

– Adjust	central	value	of	model	to	match	
external	data	using	BDT	reweighting	
adapted	from	DUNE

• Ultimately	gave	5-10%	uncertainties	
on	pion	kinematics
– Small	uncertainty	for	nova	analyses	
thanks	to	calorimetric	reco.

17



2p2h/MEC/Mul)-nucleon Interac)ons

• Using	Valencia	2p2h	model,	better	than	“Empirical,”	but…
– doesn’t	match	our	data	well.
– need	to	create	uncertainties.

• 3	components	to	the	uncertainty:
1. Energy	dependence
2. Nucleon	pair	fractions
3. Kinematic	shape	←	2	different	approaches

18
Fig:	Teppei	Katori,	“Meson	Exchange	Current	(MEC)	Models	in	Neutrino	Interaction	Generators”	AIP	Conf.Proc.	1663	(2015)	030001



Common 2p2h Uncertainties

Energy Dependence

• De@ine	an	envelope	in	Eν	to	
cover	energy	dependence	in	
different	models.

Nucleon Pair Fractions

• Uncertainty	range	again	
comes	from	spread	among	
models.	

• Central	values	are	from	
Valencia.

19
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2p2h Shape Uncertainty: Tuning
• Tune	the	central	value	to	
ND	data
– Double-gaussian	fit	in	
q0-	|q|	space.

• Define	shape	uncertainty	
by	coherently	adjusting	
other	cross	section	
knobs.
– Make	2p2h	more	RES-
like	by	enhancing	QE	
strength.

– Make	2p2h	more	QE-
like	by	enhancing	RES	
strength.

• Most	NOvA	analyses	use	
the	tuned	central	value	
and	related	uncertainty. 20

Raw València MEC NOvA 2p2h
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2p2h Shape Uncertainty: Model Spread

• Some	analyses	cannot	use	the	tune	due	to	possible	signal	in	the	ND.	
– Sterile	ν	search
– |q|-Eav	cross	section	analysis

• Instead,	we	use	the	spread-among-models	method	in	q0-|q|	space.
• Based	on	spread	among	Valencia,	SuSA,	and	Dytman	models.

– For	scale,	this	just	touches	our	ND	data	at	1σ. 22



• Measure	νμ	disappearance	and	νe	appearance	with	neutrinos	
and	antineutrinos.

• Disappearance	is	sensitive	to	sin2(2θ23)	and	Δm2
32.

• Appearance	is	sensitive	to	θ23	octant,	mass	ordering,	and	δCP.
23
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Extrapola)ng from Near to Far Detector

• Observe	data-MC	differences	at	the	ND,	use	them	to	modify	the	FD	MC.

• Extrapolate	in	multiple	dimensions	to	reduce	systematic	uncertainty
– Hadronic	energy	bins	separate	interaction	modes	as	well	as	resolution
– Transverse	momentum	bins	are	used	just	during	extrapolation	to	account	for	the	

difference	in	angular	acceptance	due	to	the	difference	in	detector	size.

• Significantly	reduces	the	impact	of	uncertainties	correlated	between	detectors
– Especially	effective	at	rate	effects	like	the	flux	(7%	→	0.3%).
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Systema)c Uncertain)es in 3-Flavor
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Systema)c Uncertain)es in 3-Flavor
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• Systematics	more	important	for	
primarily	νμ-measured	parameters.
– Expect	~parity	at	_inal	exposure.



Systematic Uncertainties in 3-Flavor
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• Systematics	more	important	for	
primarily	νμ-measured	parameters.
– Expect	~parity	at	final	exposure.

• Primarily	νe	measurements	are	
dominated	by	statistical	uncertainty.
– Shown	at	left	for	δ,	similar	story	for	
mass	ordering.



Systema)c Uncertain)es in 3-Flavor
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• Detector	energy	scale	(calibration)	is	the	
leading	systematic	for	all	parameters.
– It	is	important	in	~all	analyses	which	use	

calorimetric	energy.	



Systematic Uncertainties in 3-Flavor
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• Detector	energy	scale	(calibration)	is	the	
leading	systematic	for	all	parameters.
– It	is	important	in	~all	analyses	which	use	

calorimetric	energy.	

• Theory	uncertainties	are	typically	
important,	but	non-leading.	



Systema)c Uncertain)es in 3-Flavor
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• Detector	energy	scale	(calibration)	is	the	
leading	systematic	for	all	parameters.
– It	is	important	in	~all	analyses	which	use	

calorimetric	energy.	

• Theory	uncertainties	are	typically	
important,	but	non-leading.	

• Flux	uncertainty	is	substantially	reduced	
by	extrapolation.



How to Search for Non-standard Interactions

• Uses	the	same	νμ	disappearance	and	νe	
appearance	analysis	with	neutrinos	
and	antineutrinos.

• Add	parameters	to	the	Hamiltonian	
which	capture	possible	NSI.
– Not	dependent	on	a	speci_ic	model.
– Each	εαβ	has	a	phase	δαβ

• NOvA	is	most	sensitive	to	the	eμ	and	
eτ	sectors	via	νe	appearance.
– μτ	sector	is	well	covered	by	
atmospheric	experiments 31



Systematic Uncertainties in NSI Search

• NSI	added	one	unique	systematic,	which	is	a	3.7%	
uncertainty	on	the	earth	matter	density,	but	its	impact	is	
small	even	relative	to	other	systematics.
– Relative	breakdown	is	similar	to	δ,	but	I	don’t	have	a	handy	
plot	to	share.

32

Total Stat Syst
εeμ 0.23 0.21 0.09
εeτ 0.64 0.63 0.11



How to Search for Sterile Neutrinos

• Different	samples:	νμ	disappearance	and	neutral	current	disappearance	
– Potential	for	oscillation	signals	in	both	detectors	requires	a	different	
analysis	with	a	simultaneous	_it

• We	are	focusing	on	a	3+1	model,	adding	θ24,	θ34,	Δm2
41

– Treating	θ14	as	negligible	based	on	current	limits
33
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Figure 1: How the rate of NC events is affected for both detectors, for the energy spectra and L/E,
with varying �m2

41, ✓23, ✓24, ✓34, �24, and ✓14, respectively. Oscillation probabilities are smeared by
30% to account for rapid oscillations.

For the typical beam neutrino energies and ND baselines, when �m2
41 < 0.05, oscillations are not

visible in the ND. Starting at �m2
41 ⇠ 0.5 eV2, oscillations begin to be visible at low energies in the

ND, and as �m2
41 increases, the first oscillation maximum moves to higher energies. At sufficiently

high �m2
41 values, the entire ND sees rapid oscillations which can no longer be resolved and are

seen as a constant normalization shift described by

1� P (⌫µ ! ⌫s) ⇡ 1� 1

2
cos4 ✓14 cos

2 ✓34 sin
2 2✓24. (1.2.5)

For ⌫µ-CC at the ND, the oscillation probability can be approximated as

P (⌫µ ! ⌫µ) ⇡ 1� sin2 2✓24 sin
2 �41, (1.2.6)

which behaves similarly to NC disappearance except it depends only on ✓24, and in the rapid
oscillation case the normalization shift is given by (1/2) sin2 2✓24.

4

νs



Uncertainties in Steriles

• asdfa

34

• At	small	Δm2,	most	signal	is	
in	the	FD,	so	statistical	
uncertainties	are	important.

• No	single	dominant	
systematic.
– And	the	relative	balance	
varies	as	we	move	around	
parameter	space



• At	large	Δm2,	the	dominant	
effect	is	a	change	in	rate	at	
the	ND.
– Since	the	ND	has	a	large	
event	sample,	statistical	
errors	are	small.

• Flux,	cross-sections,	and	
detector	response	have	
~equal	contributions.

35

Uncertainties in Steriles



How to Measure Neutrino Scattering

36

νμ	CC	Inclusive νe	CC	Inclusive Low	Ehad |q|-Eavail νμ	CC	π0

•Differential	in	
pµ,	cos	θμ

• Select	solely	
based	on	
muon	ID

•Differential	in	
Ee,	cos	θe

• Template	fits	
in	Electron-ID	
due	to	high	
backgrounds

•Differential	in	
pµ,	cos	θμ

• Select	on	
muon	ID	and	
only	1	track

•Aims	to	
enhance	2p2h	
sensitivity

•Differential	in	
|q|,	Eavail

• Select	solely	
based	on	
muon	ID

•Aims	to	
enhance	2p2h	
sensitivity

• Single	diff.	in:	
pµ,	cos	θμ,	pπ,	
cos	θπ,	Q2,	W

•Require	1	µ-
like	track	and	
1	γ-like	prong
• Template	fit	in	
π0-ID.	



Uncertainties in Cross Sections

• Flux	is	universally	the	largest	systematic,	and	detector	modeling	is	
usually	important	as	well.

• 2	analyses	where	the	theory	uncertainties	are	large:
– νe	CC	inclusive,	due	to	backgrounds	since	only	a	few	percent	of	the	beam

• It’s	also	the	only	analysis	with	non-trivial	statistical	uncertainty

– Inclusive	|q|-Eavail	measurement	analysis	design	has	accepted	a	
significant	model	dependence.	 37

1	bin	from	
Low	Ehad

νμ	CC νe	CC |q|-Eav νμ	CC	π0

Flux 9.1 10.3 11.4 8.3
E-Scale	+	Det	Model 6.1 8.6 3.8 7.6
Cross	Section	Model 1.9 9.8 5.6 4.6
Neutron	Modeling 1.5
Statistical 7.4
2p2h	Model 7.1
Pi	Charge	Exchange 3.8



Why do uncertainties differ?

• Analyses	where	the	ND	just	controls	systematics	tend	to	have	small	flux	
and	cross	section	uncertainties	and	are	dominated	by	detector	uncertainty.

• Analyses	which	use	the	FD	for	signal	tend	to	have	large	statistical	
uncertainty.

• Analyses	with	possible	signal	in	the	ND	have	significant	impact	from	flux	
and	cross	section	uncertainties.

• Cross	section	measurements	tend	to	be	dominated	by	flux	uncertainties.	
– With	a	couple	exceptions.

38

Analysis Near	Detector Far	Detector Main	Uncertainties
3-Flavor Systematic	Control Signal Statistics,	Calibration
NSI Systematic	Control Signal Statistics
Sterile	ν Signal Signal Variable
Cross	Section Signal - Flux	(mostly)



Summary, and what’s coming next?

• Neutrino	interaction	uncertainties	are	generally	not	limiting	
sensitivity	in	NOvA.	
– We	want	to	make	sure	they	are	correct	(and	sufficient).
– Reducing	them	will	probably	not	substantially	improve	sensitivity.	

• Planning	to	move	to	the	same	base	model	as	DUNE	for	our	
next	major	production.
– Would	start	to	apply	to	post-2024	analyses.
– Hoping	by	moving	to	a	shared	base	model,	we	can	collaborate	on	
better	shared	interaction	uncertainties	for	the	future.

• Neutron	production	and	response	remain	important	
uncertainties.
– We	are	making	progress	on	improved	modeling	and	uncertainties	
for	neutron	response.	

– Requires	care,	since	better-motivated	neutron	response	uncertainty	
may	leave	“gaps”	on	the	production	side	uncertainty. 39



Backups



2020 MEC Uncertainties

41



• 14	mrad	off-axis	angle
– 2-body	π	decay	gives	narrow	range	
of	ν	energies

• Tune	peak	energy	for	oscillations
– More	events	at	oscillation	max
– Less	background 42

E⌫ =
0.43E⇡

1 + �2
⇡ sin

2 ✓

Off-Axis Detectors
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Near Detector νμ Spectra

• Used	in	3F,	NSI,	and	Sterile	analyses

• Band	around	the	MC	shows	the	large	
impact	of	flux	and	cross-section	
uncertainties	in	only	a	single	detector.	
– Includes	the	data-driven	tune	of	our	multi-

nucleon	model.

• This	sample	predicts	both	νµ	signal	and	
νe	signal	at	the	Far	Detector	in	3F	and	NSI.
– Appearing	νe’s	are	still	νμ’s	at	the	ND

43

ν̅μ

νμ



Near Detector NC and νμ Spectra

• These	two	ND	spectra	used	in	
the	sterile	analysis.	

• Again,	band	shows	large	flux	
and	cross	section	uncertainties.
– Includes	non-data-driven	

multinucleon	uncertainties

• No	cross-section	tune	has	been	
used,	so	worse	a	priori	data-MC	
agreement.
– Incorporated	into	fit	for	sterile	

oscillations	due	to	possible	signal	
in	the	Near	Detector.

• These	samples	both	constrain	
systematics	and	contain	
possible	signal.
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NOvA PreliminaryNeutrino Beam

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Reconstructed Neutrino Energy (GeV)

0

500

1000

1500

2000

2500

 / 
1 

G
eV

3
 1

0
×

Ev
en

ts
 

 POT20 10×, 11.0 µνND CC 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Reconstructed Neutrino Energy (GeV)

0
20
40
60
80

100
120
140
160
180
200
220

Ev
en

ts
 / 

1 
G

eV

 POT equiv.20 10×, 13.6 µνFD CC 

1 10
Reconstructed Neutrino Energy (GeV)

0

50

100

150

200

250

 / 
1 

G
eV

3
 1

0
×

Ev
en

ts
 

 POT20 10×ND NC, 10.9 
Data

Nominal pred.
Beam background

Cosmic background

1 10
Reconstructed Neutrino Energy (GeV)

0

50

100

150

200

250

300

350

Ev
en

ts
 / 

1 
G

eV

 POT equiv.20 10×FD NC, 13.6 
NC

νμ



1

2

3

4

PO
T

20
10×

Ev
en

ts
 / 

11
3

10

ND data
Total MC

CCeν
NC

CCµν

NOvA Preliminary

0 1 2 3 4 5
Energy [GeV]eνReconstructed

0.5

1

1.5

PO
T

20
10×

Ev
en

ts
 / 

11
.8

3
10

Near Detector νe-like Spectra

• Used	in	the	3F	and	NSI	analyses

• The	ND	νe-like	spectrum	contains	
the	background	to	the	appearing	
νe’s	at	the	FD.

• Largest	background	is	the	
irreducible	νe/ν̅e	_lux	component.
– 50%	in	neutrino-mode
– 71%	in	antineutrino	mode

• We	use	this	sample	to	predict	the	
background	to	νe	appearance.
– Use	data-driven	methods	to	constrain	

the	νe,	νμ,	and	NC	components.
– Cannot	just	use	the	total	disagreement	

since	they	extrapolate	differently	
between	dietectors.

νe

ν̅e
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Quartile 1
σE = 6%

Enhancing Sensitivity to Oscillations (3F & NSI)

νμ sample
• Sensitivity	depends	primarily	on	the	

shape	of	the	energy	spectrum.

• Bin	by	energy	resolution	→	
bin	by	hadronic	energy	fraction

46

νe sample
• Sensitivity	depends	primarily	on	
separating	signal	from	background.

• Bin	by	purity	→	bins	of	low	&	high	PID

• Peripheral	sample:	
– Captures	high-PID	events	which	might	
not	be	contained	close	to	detector	edges.

– No	energy	binning.

Quartile 2
σE = 8%

Quar.le 3
σE = 10%

Quartile 4
σE = 12%

Mostly real νe’s



354.	Near-to-Far	Extrapolation	in	
Transverse	Momentum	at	NOvA

– Aaron	MislivecPo
st

er
s

Extrapolating Kinematics

47

Near Det.

Far Det.

• Containment	limits	the	range	of	
lepton	angles	more	in	the	Near	
Detector	than	in	the	Far.
– The	ND	is	1/5	the	size	of	the	FD.

• Mitigate	by	extrapolating	in	bins	of	
lepton	transverse	momentum,	pt
– Transverse	to	the	ν-beam	direction	

≈	the	central	axis	of	the	detectors

• Split	the	ND	sample	into	3	bins	of	pt,	
extrapolate	each	separately	to	the	FD.
– Effectively	“rebalances”	the	

kinematics	to	better	match	between	
the	detectors.

– Re-sum	the	pt	bins	before	fitting.



Systematic Uncertainties with pt Extrapolation

48

• Increased	robustness	also	leads	to	a	30%	reduction	in	cross	section	uncertainties.
– Reduces	the	size	of	the	systematics	most	likely	to	contain	“unknown	unknowns”
– Slightly	increase	the	sensitivity	to	well-understood	systematics	on	lepton	reconstruction.

• Overall	systematic	reduction	is	5-10%,
– The	largest	systematics	come	from	the	detector	energy	scale.	

0.06− 0.00 0.06

 )2 eV-310× ( 32
2 m∆Uncertainty in 

NOvA Preliminary

0.04− 0.00 0.04

23θ2Uncertainty in sin

Statistical Uncertainty
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Beam Flux

Lepton Reconstruction

Detector Response

Near-Far Uncor.

Neutrino Cross Sections

Neutron Uncertainty

Detector Calibration
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RPA Shape Systematic

Extrapolate the total ND spectrum

Predicted	shift	from	the	near	detector

Actual	shift	at	the	far	detector



Reconstructed neutrino energy (GeV)
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RPA Shape Systematic

Extrapolate in resolution bins

Predicted	shift	from	the	near	detector

Actual	shift	at	the	far	detector

Extrapola)on with Resolu)on Bins
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ν̅μνμ

211 events, 8.2 background 105 events, 2.1 background
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νe and ν̅e Data at the Far Detector

ν̅eνe

Total	Observed 82 Range
Total	Prediction 85.8 52-110
Wrong-sign 1.0 0.6-1.7
Beam	Bkgd. 22.7
Cosmic	Bkgd. 3.1

Total	Bkgd. 26.8 26-28

Total	Observed 33 Range
Total	Prediction 33.2 25-45
Wrong-sign 2.3 1.0-3.2
Beam	Bkgd. 10.2
Cosmic	Bkgd. 1.6

Total	Bkgd. 14.0 13-15

>4σ	evidence	of ν̅e	appearance
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Precision	measurements	of	
Δm232	(3%)	and	sin2θ23	(6%).

Best Fit
Normal	hierarchy
Δm2

32	=	(2.41±0.07)×10-3	eV2

sin2θ23	=	0.57+0.03-0.04

Prefer	non-maximal	mixing	by	1.1σ.



Appearance Asymmetry

• Consistent	with	zero	
asymmetry	to	~25%	
precision
– A=0	is	not	δ=0

• Disfavor	ordering-δ	
combinations	which	
generate	large	
asymmetries.
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A =
P (⌫e)� P (⌫̄e)

P (⌫e) + P (⌫̄e)
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No reactor 
constraint on θ13

• Disfavor	ordering-δ	
combinations	which	generate	
large	asymmetries.
– NO,	δ	=	3π/2	at	~2σ
– IO,	δ	=	π/2	at	>	3σ
– Consistent	with	or	without	
reactor	θ13	constraint.

• Adding	the	reactor	constraint	
gives	~1σ	preferences:
– Normal	Ordering
– Upper	Octant
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With reactor 
constraint on θ13

• Disfavor	ordering-δ	
combinations	which	generate	
large	asymmetries.
– NO,	δ	=	3π/2	at	~2σ
– IO,	δ	=	π/2	at	>	3σ
– Consistent	with	or	without	
reactor	θ13	constraint.

• Adding	the	reactor	constraint	
gives	~1σ	preferences:
– Upper	Octant
– Normal	Ordering



NOvA & T2K

• NOvA	and	T2K	make	
complimentary	measurements.
– Longer	baseline	in	NOvA	means	a	
larger	effect	from	mass	ordering.	

– Combining	can	break	δ-octant-
ordering	degeneracies.

• T2K	results	favor	a	larger	
asymmetry	towards	νe’s
– Short	baseline	leads	to	a	similar	δ	
range	in	both	orderings.

– Means	NOvA	&	T2K	are	consistent	
in	IO,	but	disagree	in	NO.

• Working	hard	to	take	advantage	of	
the	complementarity	with	a	joint	
analysis!
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Spectra with eµ fit

NSI	not	needed
to	explain	NOvA	

spectra.

χ2	improvement	
of	only	~0.65	
for	2	additional
parameters.

58



Spectra with eτ fit

NSI	not	needed
to	explain	NOvA	

spectra.

χ2	improvement	
of	only	~0.65	
for	2	additional
parameters.
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NSI Parameter Intervals

• Plotting	magnitude	vs.	phase.
– Strong	degeneracy	between	δCP	
and	δNSI,	so	plotting	the	sum.

– Difference	taken	as	a	nuisance	
parameter.

• |εeμ|	<	0.3	and	|εeτ|	<	0.4	for	most	
values	of	δ.
– The	island	in	the	bottom	plot	is	
related	to	a	“double”	degeneracy	
with	neutrinos	and	antineutrinos.

• Including	NSI	parameters	
severely	limits	sensitivity	to	
octant,	ordering,	and	δCP.
– Little	impact	on	Δm232	and	sin2θ23
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Pre-fit MC Distributions
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Near detector 𝜈𝜇 charged current Far detector 𝜈𝜇 charged current 

Near detector neutral current 

NOvA Preliminary

Far detector neutral current ND NC

ND νμ FD νμ

FD NC
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Best fit for 3-Flavor and Systematics
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Near detector 𝜈𝜇 charged current Far detector 𝜈𝜇 charged current 

Near detector neutral current 

NOvA Preliminary

Far detector neutral current 

469 events observed
With 3-flavour mixing 

expect 450: 
291 NC 

72 beam bkg 
87 cosmics

209 events observed
With 3-flavour mixing 

expect 224: 
216 𝜈𝜇
8 bkg

ND NC

ND νμ FD νμ

FD NC
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Best Fit for 3+1 Sterile Neutrino
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Near detector 𝜈𝜇 charged current Far detector 𝜈𝜇 charged current 

Near detector neutral current 

NOvA Preliminary

Far detector neutral current 

469 events observed
With best fit
expect 453: 

291 NC 
75 beam bkg 

87 cosmics

209 events observed
With best fit 
expect 225: 

217 𝜈𝜇
8 bkg

Best sterile fit and best 3F fit nearly identical

ND NC

ND νμ FD νμ

FD NC
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IceCube• Fit	for	Δm2

41 vs.	sin2θ24
• No	evidence	for	a	
sterile	neutrinos
– Best	fit	at	small	𝜃24
and	𝜃34with	low	
significance

– 𝜒2/d.o.f. =	56.4/66

• Competitive	limits	on	
𝜃24 for	Δ𝑚!"

# =	~10	eV2	

• Systematics	limited	at	
large	Δ𝑚!"

# (Near	det.)	

• Statistics	limited	at	
small	Δ𝑚!"

# (Far	det.)
64



• Fit	for	Δm2
41	vs.	sin2θ34

– Mixing	between	𝜈𝜏 and	
a	sterile	𝜈

– Historically	studied	via	
𝜈𝜏 appearance	searches	
at	short	baselines	as	𝜃𝜇𝜏

– Comparisons	with	
those	experiments	not	
included

• Sensitivity	due	to	
neutral	current	events
– enhanced	by	
constraints	on	𝜃24 from	
𝜈𝜇 charged	current	
events

• New	constraints	on	θ34	
at	small	Δm2

41
– Long-baseline	
providing	sensitivity 65
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