Systematic Uncertainties Across **NOvA Measurements:** 3-Flavor, NSI, Sterile v's & Scattering

Alex Himmel, Fermilab vova for the NOvA Collaboration

‡Fermilab

Theoretical Physics Uncertainties to Empower Neutrino Experiments Institute for Nuclear Theory November 1st, 2023

Introduction

- This is a weird talk: we'll be digging through the weeds, and the *results* are all in the backups.
- Focus of this workshop is theoretical uncertainties for neutrino experiments. Here I want to focus on how those uncertainties apply across different kinds of analyses.
- Roadmap:
 - NOvA overview
 - Flux and flux uncertainties
 - The NOvA detectors and detector uncertainties
 - Our neutrino interaction model and its uncertainties
 - Summary of analyses and relative sizes of uncertainties
 - 3-flavor oscillations
 - Non-standard interactions
 - Sterile neutrino searches
 - Neutrino scattering
 - Summary, and what's coming next

The NOvA Experiment

- Long-baseline neutrino oscillation experiment
- NuMI beam: v_{μ} or \bar{v}_{μ}
- 2 functionally identical, tracking calorimeters
- Designed for oscillations,
 but we also do:
 - Neutrino cross sections
 - Astroparticle physics
 - Cosmic ray physics
 - BSM searches

How We Make Neutrinos: The NuMI Beam

How We Make Neutrinos: The NuMI Beam

Flux Uncertainties

- Flux central value and uncertainty from the **Package to Predict the Flux (PPFX)**.
 - Developed in Minerva, but now a shared tool.
 - Incorporates several external datasets to reduce hadron production uncertainties.
 - PRD 94, 092005 (2016)
- Additional sub-dominant errors related to the focusing system.
- PPFX provides uncertainties as "universes" with correlated systematic throws.
 - Cross-section analyses generally use these directly to create covariance matrices.
 - Other analyses typically use PCA to create a limited number of "knobs."

How to Detect a Neutrino

- Observe the charged particles after a neutrino interacts with a nucleus:
- Lepton
 - CC $\nu_{\mu} \rightarrow \mu^{-}$, CC $\nu_{e} \rightarrow e^{-}$
 - NC \rightarrow no visible lepton
- Hadronic shower
 - Neutrinos typically produce a proton
 - Antineutrinos typically produce a neutron
 - May one or more π^{\pm} , additional *p*, *n*, etc.
 - May also contain EM from $\pi^0 \rightarrow \gamma \gamma$

The NOvA Detectors

- Segmented liquid scintillator detectors provide 3D tracking and calorimetry
- Optimized for electron showers: ~60% active and ~6 samples per X_0

- Time resolution of a few ns, and spatial resolution of a few cm
 - Allows clear separation of individual interactions

Selecting and Identifying Neutrinos

- Most analyses use convolutional neural networks for event ID.
 - A deep-learning technique from computer vision
 - Multi-label ID shared across samples
- Event-level ID used in oscillationrelated measurements.
- Particle-level ID used in cross section measurements.
 - Works on individual "prongs," not the whole event.
 - Trained without any generator information.
- Also use likelihood-based Muon IDs for tracks.

Energy Reconstruction

• These are inputs to analysis-specific energy estimators.

- For example: v_e energy uses another particle ID CNN to separate hadronic from electromagnetic energy deposits.

Detector Uncertainties

- Often the largest category of uncertainty.
- Calibration
 - Effectively a 5% uncertainty on the calorimetric energy scale.
- Light level
 - Threshold effects
 - Amount of Cherenkov light
 - Relative brightness of protons vs. lighter particles.
- Lepton reconstruction
 - Uncertainty on conversion between muon length and energy
 - Several effects, but <1% all together.
 - Lepton angle
- Normalization
 - Detector mass account, POT accounting, etc.

3.9 cm

Neutron Response

NOvA Preliminary

- So far, this uncertainty has been based on data-simulation discrepancies in neutronenhanced samples.
 - Introduce post-hoc modifications to event energies to "correct" the above disagreements, treat as the uncertainty.
- Aiming to improve this with a more first-principles uncertainty in future analyses.
 - Note above that the disagreement seems to suggest over-production of photons by Geant's medium-energy neutron model.

Neutrino Interaction Model

- Currently using GENIE 3.0.6 → freedom to choose models
- Chose the most "theory-driven" set of models.
- Some custom tuning is still used in some circumstances.
 - Substantially less than was needed with GENIE
 2.12.2, which required tweaks to most models.

Process	Model	Reference
Quasielastic	Valencia 1p1h	J. Nieves, J. E. Amaro, M. Valverde, Phys. Rev. C 70 (2004) 055503
Form Factor	Z-expansion	A. Meyer, M. Betancourt, R. Gran, R. Hill, Phys. Rev. D 93 (2016)
Multi-nucleon	Valencia 2p2h	R. Gran, J. Nieves, F. Sanchez, M. Vicente Vacas, Phys. Rev. D 88 (2013)
Resonance	Berger-Sehgal	Ch. Berger, L. M. Sehgal, Phys. Rev. D 76 (2007)
DIS	Bodek-Yang	A. Bodek and U. K. Yang, NUINT02, Irvine, CA (2003)
Final State Int.	hN semi-classical cascade	S. Dytman, Acta Physica Polonica B 40 (2009)

Neutrino Interaction Uncertainties

v_e/v_μ cross section ratio

Radiative corrections: 2% **un**correlated for v/anti-v

Second-class currents: 2% anticorrelated for v/anti-v

(Quasi)elastic Interactions

z-expansion normalization +20%/-15% from GENIE

z-expansion a_1 - a_4 re-implemented to maintain correlations

RPA nuclear model uncertainty from MINERvA

Previously a correction, now just an uncertainty

NC Elastic M_A , η from GENIE

Neutrino Interaction Uncertainties

Resonance Interactions

CC & NC RES M_A , M_V from GENIE

BR($R \rightarrow X + 1\gamma$), BR($R \rightarrow X + 1\eta$), Angular distro. ($\Delta \rightarrow \pi N$)

Low Q^2 (<0.2 GeV²) suppression inspired by MINOS/MINERvA

DIS Interactions & Hadronization

GENIE Bodek-Yang uncertainties: A_{HT} , B_{HT} , C_{V1u} , C_{V2u}

GENIE AGKY uncertainties: $x_F 1\pi$, $p_T 1\pi$

GENIE Formation Zone

Custom Nonresonant N π production uncertainty 50% at W < 3 GeV, linearly decreasing to 5% for W > 5 GeV

FSI Tune and Uncertainties

- Using hN 2018
 - Believed more rigorous than hA model
 - Challenge: not directly reweightable
- Systematics \rightarrow Tuning to external data
 - Constructed uncertainty bands in the same spirit as work by T2K
 - PRD 99, 052007
 - 4 uncertainties:
 - Mean free path
 - 3x "fate" fractions
 - Adjust central value of model to match external data using BDT reweighting adapted from DUNE
- Ultimately gave 5-10% uncertainties on pion kinematics
 - Small uncertainty for nova analyses thanks to calorimetric reco.

2p2h/MEC/Multi-nucleon Interactions

- Using Valencia 2p2h model, better than "Empirical," but...
 - doesn't match our data well.
 - need to create uncertainties.
- 3 components to the uncertainty:
 - 1. Energy dependence
 - 2. Nucleon pair fractions
 - 3. Kinematic shape \leftarrow 2 different approaches

Common 2p2h Uncertainties

Energy Dependence

Nucleon Pair Fractions

$$\mathbf{v} \quad \frac{np}{np+nn} = 0.69 \begin{cases} +0.15\sigma \\ -0.05\sigma \end{cases}$$
$$\mathbf{\overline{v}} \quad \frac{np}{np+pp} = 0.66 \begin{cases} +0.15\sigma \\ -0.05\sigma \end{cases}$$

- Define an envelope in E_{ν} to cover energy dependence in different models.
- Uncertainty range again comes from spread among models.
- Central values are from Valencia.

2p2h Shape Uncertainty: Tuning

- Tune the central value to ND data
 - Double-gaussian fit in q_0 $|\boldsymbol{q}|$ space.
- Define shape uncertainty by coherently adjusting other cross section knobs.
 - Make 2p2h more RESlike by enhancing QE strength.
 - Make 2p2h more QElike by enhancing RES strength.
- Most NOvA analyses use the tuned central value and related uncertainty.

2p2h Shape Uncertainty: Tuning 150

- Tune the central value to ND data
 - Double-gaussian fit in q_0 $|\boldsymbol{q}|$ space.
- Define shape uncertainty by coherently adjusting other cross section knobs.
 - Make 2p2h more RESlike by enhancing QE strength.
 - Make 2p2h more QElike by enhancing RES strength.
- Most NOvA analyses use the tuned central value and related uncertainty.

2p2h Shape Uncertainty: Model Spread

- Some analyses cannot use the tune due to possible signal in the ND.
 - Sterile v search
 - $|\mathbf{q}|$ - E_{av} cross section analysis
- Instead, we use the spread-among-models method in q_0 -|q| space.
- Based on spread among Valencia, SuSA, and Dytman models.
 - For scale, this just touches our ND data at 1σ .

How to Measure 3-Flavor Oscillations

- Measure v_{μ} disappearance and v_e appearance with neutrinos and antineutrinos.
- Disappearance is sensitive to $\sin^2(2\theta_{23})$ and Δm^2_{32} .
- Appearance is sensitive to θ_{23} octant, mass ordering, and $\delta_{\rm CP}$.

Extrapolating from Near to Far Detector

- Observe data-MC differences at the ND, use them to modify the FD MC.
- Extrapolate in multiple dimensions to reduce systematic uncertainty
 - Hadronic energy bins separate interaction modes as well as resolution
 - Transverse momentum bins are used just during extrapolation to account for the difference in angular acceptance due to the difference in detector size.
- Significantly reduces the impact of uncertainties correlated between detectors
 - Especially effective at rate effects like the flux $(7\% \rightarrow 0.3\%)$.

NOvA Simulation

Detector energy scale (calibration) is the leading systematic for all parameters.

It is important in ~all analyses which use calorimetric energy.

- Detector energy scale (calibration) is the leading systematic for all parameters.
 - It is important in ~all analyses which use calorimetric energy.
- Theory uncertainties are typically important, but non-leading.

- Detector energy scale (calibration) is the leading systematic for all parameters.
 - It is important in ~all analyses which use calorimetric energy.
- Theory uncertainties are typically important, but non-leading.
- Flux uncertainty is substantially reduced by extrapolation.

How to Search for Non-standard Interactions

$$\mathcal{H} = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{pmatrix} U^{\dagger} + V \begin{pmatrix} \delta_e + \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ (\varepsilon_{e\mu})^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ (\varepsilon_{e\tau})^* & (\varepsilon_{\mu\tau})^* & \varepsilon_{\tau\tau} \end{pmatrix}$$

- Uses the same v_{μ} disappearance and v_e appearance analysis with neutrinos and antineutrinos.
- Add parameters to the Hamiltonian which capture possible NSI.
 - Not dependent on a specific model.
 - Each $\varepsilon_{\alpha\beta}$ has a phase $\delta_{\alpha\beta}$
- NOvA is most sensitive to the $e\mu$ and $e\tau$ sectors via v_e appearance.
 - $\mu\tau$ sector is well covered by atmospheric experiments

Systematic Uncertainties in NSI Search

	Total	Stat	Syst
ε _{eμ}	0.23	0.21	0.09
$\mathcal{E}_{e au}$	0.64	0.63	0.11

- NSI added one unique systematic, which is a 3.7% uncertainty on the earth matter density, but its impact is small even relative to other systematics.
 - Relative breakdown is similar to δ , but I don't have a handy plot to share.

How to Search for Sterile Neutrinos

Uncertainties in Steriles

- At small Δm^2 , most signal is in the FD, so statistical uncertainties are important.
- No single dominant systematic.

 v_{μ} + NC fit

Detector

MEC

Beam Flux

Normalization

Neutrino Cross Sections

Neutron, Tau and Kaon

Systematic Uncertainty

Statistical Uncertainty

All Uncertainty

And the relative balance varies as we move around parameter space

-0.05

-0.1

Neutrino Beam

Uncertainties in Steriles

Neutrino Beam

How to Measure Neutrino Scattering

Bin width normalization

v_{μ} CC Inclusive	v_e CC Inclusive	Low <i>E</i> _{had}	$ q $ - $E_{ m avail}$	$ u_{\mu}{ m CC}\pi^{0}$	
• Differential in p_{μ} , cos $ heta_{\mu}$	• Differential in E_e , cos θ_e	• Differential in p_{μ} , cos $ heta_{\mu}$	• Differential in $ \boldsymbol{q} , E_{\text{avail}}$	• Single diff. in: p_{μ} , $\cos \theta_{\mu}$, p_{π} , $\cos \theta_{\pi}$, Q^2 , W	
 Select solely 	 Template fits 	 Select on 	 Select solely 		
based on muon ID	in Electron-ID due to high	muon ID and only 1 track	based on muon ID	 Require 1 μ- like track and 	
	backgrounds	 Aims to enhance 2p2h sensitivity 	 Aims to enhance 2p2h sensitivity 	1 γ -like prong • Template fit in π^0 -ID.	

Uncertainties in Cross Sections

		v_{μ} CC	$v_e CC$	$ q $ - $E_{\rm av}$	v_{μ} CC π^{0}
$0.96 < \cos \theta_{\mu} < 0.98$	Flux	9.1	10.3	11.4	8.3
$\geq 0.2 \begin{bmatrix} 1 \text{ bin from} \\ 1 bin from$	E-Scale + Det Model	6.1	8.6	3.8	7.6
	Cross Section Model	1.9	9.8	5.6	4.6
	Neutron Modeling	1.5			
	Statistical		7.4		
	2p2h Model			7.1	
8.5 1 1.5 2 2.5 Muon Kinetic Energy (GeV)	Pi Charge Exchange				3.8

- Flux is universally the largest systematic, and detector modeling is usually important as well.
- 2 analyses where the theory uncertainties are large:
 - v_e CC inclusive, due to backgrounds since only a few percent of the beam
 - It's also the only analysis with non-trivial statistical uncertainty
 - Inclusive |q|- E_{avail} measurement analysis design has accepted a significant model dependence.

Why do uncertainties differ?

Analysis	Near Detector	Far Detector	Main Uncertainties
3-Flavor	Systematic Control	Signal	Statistics, Calibration
NSI	Systematic Control	Signal	Statistics
Sterile v	Signal	Signal	Variable
Cross Section	Signal	-	Flux (mostly)

- Analyses where the ND just controls systematics tend to have small flux and cross section uncertainties and are dominated by detector uncertainty.
- Analyses which use the FD for signal tend to have large statistical uncertainty.
- Analyses with possible signal in the ND have significant impact from flux and cross section uncertainties.
- Cross section measurements tend to be dominated by flux uncertainties.
 - With a couple exceptions.

Summary, and what's coming next?

- Neutrino interaction uncertainties are generally not limiting sensitivity in NOvA.
 - We want to make sure they are correct (and sufficient).
 - Reducing them will probably not substantially improve sensitivity.
- Planning to move to the same base model as DUNE for our next major production.
 - Would start to apply to post-2024 analyses.
 - Hoping by moving to a shared base model, we can collaborate on better shared interaction uncertainties for the future.
- Neutron production and response remain important uncertainties.
 - We are making progress on improved modeling and uncertainties for neutron response.
 - Requires care, since better-motivated neutron response uncertainty may leave "gaps" on the production side uncertainty. 39

100

1

1

N/ T

I MA

2020 MEC Uncertainties

Off-Axis Detectors

- 14 mrad off-axis angle
 - $2-body \pi$ decay gives narrow range of v energies
- Tune peak energy for oscillations
 - More events at oscillation max
 - Less background

Near Detector v_{μ} Spectra

NOvA Preliminary

- Used in 3F, NSI, and Sterile analyses
- Band around the MC shows the large impact of flux and cross-section uncertainties in only a single detector.
 - Includes the data-driven tune of our multinucleon model.
- This sample **predicts both** v_{μ} **signal and** v_e **signal** at the Far Detector in 3F and NSI.
 - Appearing v_e 's are still v_μ 's at the ND

Near Detector NC and v_{μ} Spectra

- These two ND spectra used in the sterile analysis.
- Again, band shows large flux and cross section uncertainties.
 - Includes non-data-driven multinucleon uncertainties
 - No cross-section tune has been used, so worse *a priori* data-MC agreement.
 - Incorporated into fit for sterile oscillations due to possible signal in the Near Detector.
- These samples both **constrain systematics** and contain **possible signal.**

Near Detector *v_e*-like Spectra

NOvA Preliminary

- Used in the 3F and NSI analyses
- The ND v_e -like spectrum contains the **background** to the appearing v_e 's at the FD.
- Largest background is the irreducible v_e/\bar{v}_e flux component.
 - 50% in neutrino-mode
 - 71% in antineutrino mode
- We use this sample to predict the background to v_e appearance.
 - Use data-driven methods to constrain the v_{e} , v_{μ} , and NC components.
 - Cannot just use the total disagreement since they extrapolate differently between dietectors.

Enhancing Sensitivity to Oscillations (3F & NSI)

v_{μ} sample

- Sensitivity depends primarily on the shape of the energy spectrum.
- Bin by *energy resolution* → bin by hadronic energy fraction

v_e sample

- Sensitivity depends primarily on separating signal from background.
- Bin by *purity* \rightarrow bins of low & high PID
- Peripheral sample:
 - Captures high-PID events which might not be contained close to detector edges.
 - No energy binning.

Extrapolating Kinematics

- Containment limits the range of lepton angles more in the Near Detector than in the Far.
 - The ND is 1/5 the size of the FD.
- Mitigate by extrapolating in bins of lepton transverse momentum, *p_t*
 - Transverse to the v-beam direction
 ≈ the central axis of the detectors
- Split the ND sample into 3 bins of p_v extrapolate each separately to the FD.
 - Effectively "rebalances" the kinematics to better match between the detectors.
 - Re-sum the p_t bins before fitting.

Aaron Mislivec

Posters

Systematic Uncertainties with p_t Extrapolation

- Increased robustness also leads to a 30% reduction in cross section uncertainties.
 - Reduces the size of the systematics most likely to contain "unknown unknowns"
 - Slightly increase the sensitivity to well-understood systematics on lepton reconstruction.
- Overall systematic reduction is 5-10%,
 - The largest systematics come from the detector energy scale.

Extrapolation with Resolution Bins

Extrapolation with Resolution Bins

v_{μ} and \overline{v}_{μ} Data at the Far Detector

211 events, 8.2 background

105 events, 2.1 background ⁵¹

v_e and \overline{v}_e Data at the Far Detector

Total Observed	82	Range
Total Prediction	85.8	52-110
Wrong-sign	1.0	0.6-1.7
Beam Bkgd.	22.7	
Cosmic Bkgd.	3.1	
Total Bkgd.	26.8	26-28

Total Observed	33	Range
Total Prediction	33.2	25-45
Wrong-sign	2.3	1.0-3.2
Beam Bkgd.	10.2	
Cosmic Bkgd.	1.6	
Total Bkgd.	14.0	13-15

>4 σ evidence of $\bar{\nu}_e$ appearance

Appearance Asymmetry

$$A = \frac{P(\nu_e) - P(\bar{\nu}_e)}{P(\nu_e) + P(\bar{\nu}_e)}$$

Consistent with zero asymmetry to ~25% precision

- A=0 is not $\delta=0$

Disfavor ordering- δ combinations which generate large asymmetries.

NOvA & T2K

- NOvA and T2K make complimentary measurements.
 - Longer baseline in NOvA means a larger effect from mass ordering.
 - Combining can break δ -octantordering degeneracies.
- T2K results favor a larger asymmetry towards v_e 's
 - Short baseline leads to a similar δ range in both orderings.
 - Means NOvA & T2K are consistent in IO, but disagree in NO.
- Working hard to take advantage of the complementarity with a joint analysis!

Spectra with eµ fit

Spectra with et fit

NOvA Preliminary

NSI Parameter Intervals

- Plotting magnitude vs. phase.
 - Strong degeneracy between $\delta_{\rm CP}$ and $\delta_{\rm NSI}$, so plotting the sum.
 - Difference taken as a nuisance parameter.
- $|\varepsilon_{e\mu}| < 0.3$ and $|\varepsilon_{e\tau}| < 0.4$ for most values of δ .
 - The island in the bottom plot is related to a "double" degeneracy with neutrinos and antineutrinos.
- Including NSI parameters severely limits sensitivity to octant, ordering, and $\delta_{\rm CP}$.
 - Little impact on Δm^2_{32} and $\sin^2 \theta_{23}$

Pre-fit MC Distributions

Best fit for 3-Flavor and Systematics

Best Fit for 3+1 Sterile Neutrino

- Fit for Δm_{41}^2 vs. $\sin^2 \theta_{24}$
- No evidence for a sterile neutrinos
 - Best fit at small θ_{24} and θ_{34} with low significance
 - $-\chi^2/\text{d.o.f.} = 56.4/66$
- Competitive limits on θ_{24} for $\Delta m_{41}^2 = \sim 10 \text{ eV}^2$
- Systematics limited at large Δm_{41}^2 (Near det.)
- Statistics limited at small Δm_{41}^2 (Far det.)

- Fit for Δm_{41}^2 vs. $\sin^2 \theta_{34}$
 - Mixing between v_{τ} and a sterile v
 - Historically studied via v_{τ} appearance searches at short baselines as $\theta_{\mu\tau}$
 - Comparisons with those experiments not included
- Sensitivity due to neutral current events
 - enhanced by constraints on θ_{24} from ν_{μ} charged current events
- New constraints on θ_{34} at small Δm_{41}^2
 - Long-baseline providing sensitivity

