Progress in Ab Initio Nuclear Theory for Neutrinoless Double Beta Decay

Heiko Hergert
Facility for Rare Isotope Beams
\& Department of Physics and Astronomy Michigan State University

Progress in Ab Initio Calculations

[cf. HH, Front. Phys. 8, 379 (2020)]

H. Hergert - INT Program 23-1B - "New Physics Searches at the Precision Frontier", INT, Seattle, May 12, 2023

Nuclear Matrix Elements: Status

M. Agostini et al., to appear in RMP, arXiv: 2202.01787

[^0]
(Multi-Reference) In-Medium Similarity Renormalization Group

HH, Phys. Scripta 92, 023002 (2017)
HH, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tuskiyama, Phys. Rept. 621, 165 (2016)
HH, S. K. Bogner, T. Morris, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. C 90, 041302 (2014)
HH, S. Binder, A. Calci, J. Langhammer, and R. Roth, Phys. Rev. Lett 110, 242501 (2013)
K. Tsukiyama, S. K. Bogner, A. Schwenk, PRL 106, 222502 (2011)
S. K. Bogner, R. J. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. 65, 94

Decoupling in A-Body Space

goal: decouple reference state $|\Phi\rangle$ from excitations

Flow Equation

$$
\frac{d}{d s} H(s)=[\eta(s), H(s)]
$$

Operators

truncated at two-body level matrix is never constructed explicitly!

Correlated Reference States

Correlated Reference States

MR-IMSRG: build correlations on top of already correlated state (e.g., from a method that describes static correlation well)

IMSRG-Improved Methods

XYZ define reference

* mean field or explicitly correlated

Could add self-consistency.

IMSRG
evolve
operators

XYZ
extract observables

IMSRG-Improved Methods

- IMSRG for closed and open-shell nuclei: IM-HF and IM-PHFB
- HH, Phys. Scripta, Phys. Scripta 92, 023002 (2017)
- HH, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tuskiyama, Phys. Rept. 621, 165 (2016)
- Valence-Space IMSRG (VS-IMSRG)
- S. R. Stroberg, HH, S. K. Bogner, J. D. Holt, Ann. Rev. Nucl. Part. Sci. 69, 165
- In-Medium No Core Shell Model (IM-NCSM)
- E. Gebrerufael, K. Vobig, HH, R. Roth, PRL 118, 152503
- In-Medium Generator Coordinate Method (IM-GCM)
- J. M. Yao, J. Engel, L. J. Wang, C. F. Jiao, HH PRC 98, 054311 (2018)
extract
- J. M. Yao et al., PRL 124, 232501 (2020)

Merging IMSRG and CI: Valence-Space IMSRG

Review:
S. R. Stroberg, HH, S. K. Bogner, and J. D. Holt, Ann. Rev. Part. Nucl. Sci. 69, 165 (2019)

Full CI:
E. Gebrerufael, K. Vobig, HH, and R. Roth, Phys. Rev. Lett. 118, 152503 (2017)

Ground-State Energies

FRIB
S. R. Stroberg, A. Calci, HH, J. D. Holt, S. K.Bogner, R. Roth, A. Schwenk, PRL 118, 032502 (2017) S. R. Stroberg, HH, S. K. Bogner, J. D. Holt, Ann. Rev. Part. Nucl. Sci. 69, 307 (2019)

H. Hergert - INT Program 23-1B - "New Physics Searches at the Precision Frontier", INT, Seattle, May 12, 2023

Quenching of Gamow-Teller Decays

P. Gysbers et al., Nature Physics 15, 428 (2019)

- empirical Shell modell calculations require quenching factors of the weak axial-vector couling g_{A}
- VS-IMSRG explains this through consistent renormalization of transition operator, incl. two-body currents

Transitions

S. R. Stroberg, HH, S. K. Bogner, J. D. Holt, Ann. Rev. Part. Nucl. Sci. 69, 307 (2019) N. M. Parzuchowski, S. R. Stroberg et al., PRC 96, 034324 (2017) S. R. Stroberg et al. PRC 105, 034333 (2022)

- B(E2) much too small: missing collectivity due to intermediate 3p3h, ... states that are truncated in IMSRG evolution (static correlation)

Capturing Collective Correlations: In-Medium Generator Coordinate Method

J. M. Yao, A. Belley, R. Wirth, T. Miyagi, C. G. Payne, S. R. Stroberg, HH, J. D. Holt, PRC 103, 014315 (2021)
J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R. Rodriguez, HH, PRL 124, 232501 (2020)
J. M. Yao, J. Engel, L. J. Wang, C. F. Jiao, HH, PRC 98, 054311 (2018)

Perturbative Enhancement of IM-GCM

M. Frosini et al., EPJA 58, 64 (2022)

- s-dependence is a built-in diagnostic tool for IM-GCM (not available in phenomenological GCM)
- if operator and wave function offer sufficient degrees of freedom, evolution of observables is unitary
- need richer references and/or IMSRG(3) for certain observables

IM-GCM: $0 \nu \beta \beta$ Decay of ${ }^{48} \mathrm{Ca}$

J. M. Yao et al., PRL 124, 232501 (2020); HH, Front. Phys. 8, 379 (2020)

- richer GCM state through cranking
- consistency between IM-GCM and IM-NCSM

$0 \nu \beta \beta$ Decay of ${ }^{48} \mathrm{Ca}$

J. M. Yao et al., PRL 124, 232501 (2020); PRC 103, 014315 (2021)

- NME from different methods consistent for consictant :ntamntions \& transition operators
(A. Belley et al., PRL 126, 042502, S. Novario r
- interpretation and features differ from e only weak correlation between NME an
not the full
story yet: improve IMSRG truncations, additional GCM correlations, include currents, ...

Counterterm in $0 \nu \beta \beta$ Operator

R. Wirth, J. M. Yao, H. Hergert, PRL 127, 242502 also see: L. Jokiniemi, P. Soriano, J. Menendez, PLB 823, 136720

- Cirigliano et al.: RG invariance of the DBD transition operator requires contact term
- determine LEC from

$$
n n \rightarrow p p e^{-} e^{-}
$$

- counter term yields robust enhancement
- varied EFT orders, RG scales, interactions

Correlations Revisited

A. Belley et al., arXiv:2210.05809 [nucl-th]; also see J. M. Yao et al., PRC 106, 014315

${ }^{76} \mathrm{Ge}$, VS-IMSRG, 34 non-implausible Δ-full N2LO interactions (cf. B.S. Hu et al., Nature Phys.)

- possible correlation with Double Gamow Teller transition, $\mathbf{2}^{+}$energies (but the latter only in ${ }^{76} \mathrm{Ge}$)

Looking Ahead

What is Next?

- Neutrinoless Double Beta Decay matrix elements for ${ }^{76} \mathrm{Ge}$ and other candidates
- studies with multiple complementary methods: IMGCM, VS-IMSRG, Coupled Cluster (w/angular momentum projection), ...
- use VS-IMSRG for heavy lifting in parameter sensitivity analysis \& UQ because IM-GCM is too costly
- accelerate IMSRG \& IM-GCM (GPUs, factorization, Machine Learning, ...)
[A. M. Romero et al., PRC 104, 054317; X. Zhang et al., PRC 107, 024304]
- Uncertainty Quantification / Sensitivity Analysis
- need cheap surrogate models (emulators)

Emulating IMSRG Flows

J. Davison, J. Crawford, S. Bogner, HH, in preparation
$\mathrm{EM}(500) \mathrm{N}^{3} \mathrm{LO}, \lambda=2.0 \mathrm{fm}^{-1}$

Dynamic Mode Decomposition emulator "learns" all flowing operator coefficients from snapshots!

Parametric DMD

FRIB

J. Davison, J. Crawford, S. Bogner, HH, in preparation

- Δ-full, NNLO $\mathrm{NN}+3 \mathrm{~N}$

- $e_{\max }=12$,
$E_{3 \max }=14$
- 200000+ samples

- 4-5 order of magnitude reduction in computational effort
H. Hergert - INT Program 23-1B - "New Physics Searches at the Precision Frontier", INT, Seattle, May 12, 2023

Additional Opportunities

- use wave functions to explore other NLDBD mechanisms or other transitions
- (provided the same scale and scheme is used as for the Hamiltonian)
- towards precise beta decays \& Schiff moments
- develop IM-GCM for odd nuclei
- tackle nuclei for which large multi-shell valence-spaces make VS-IMSRG difficult or prohibitive
- (sensitive) feedback on EFTs

Some References

Toward the discovery of matter creation with neutrinoless double-beta decay

Matteo Agostinit

Givanni Benato ${ }^{+}$

Jason A. Detwiler ${ }^{\text {S }}$
Jason A. Detwilers
Center for Experimental Nuclear Physics and Astrophysics and Department of Physics,
Univesity of Wastingtonc
Univesitit of Waschington,
Seastle, WA
gellis,
Seattle, WA 98115,
USA,
Javier Menendez?

Francesco Vissani"

${ }^{\text {traly }}$
(Dated: November 11, 2022)

arXiv:2202.01787

Towards Precise and Accurate Calculations of Neutrinoless Double-Beta Decay
[plus J. de Vries, HH, E. Mereghetti, S. Pastore, in prep.]

Acknowledgments

S. K. Bogner, B. A. Brown, J. Davison, M. Hjorth-Jensen, D. Lee, R. Wirth, B. Zhu FRIB, Michigan State University
J. M. Yao, X. Zhang

Sun Yat-sen University
S. R. Stroberg

University of Notre Dame
J. Engel

University of North Carolina - Chapel Hill
A. Belley, J. D. Holt, P. Navrátil TRIUMF, Canada
C. Haselby, M. Iwen, A. Zare CMSE, Michigan State University
B. Bally, T. Duguet, M. Frosini, V. Somà CEA Saclay, France

P. Arthuis, K. Hebeler, M. Heinz, R. Roth, T. Mongelli, T. Miyagi, A. Schwenk, A. Tichai TU Darmstadt

A. M. Romero

Universitat de Barcelona, Spain
T. R. Rodríguez

Universidad Complutense de Madrid, Spain
K. Fossez

Florida State University
G. Hagen, G. Jansen, J. G. Lietz, T. D. Morris, T. Papenbrock
UT Knoxville \& Oak Ridge National Laboratory
R. J. Furnstahl

The Ohio State University
and many more...

Grants: US Dept. of Energy, Office of Science, Office of Nuclear Physics DE-SC0017887, DE-SC0023516, as well as DE-SC0018083, DE-SC0023175 (SciDAC NUCLEI Collaboration)

Supplements

Transforming the Hamiltonian

Decoupling in A-Body Space

goal: decouple reference state $|\Phi\rangle$ from excitations

Flow Equation

$$
\frac{d}{d s} H(s)=[\eta(s), H(s)]
$$

Operators

truncated at two-body level matrix is never constructed explicitly!

Decoupling

non-perturbative resummation of MBPT series (correlations)
off-diagonal couplings are rapidly driven to zero

Decoupling

- absorb correlations into RG-improved Hamiltonian

$$
U(s) H U^{\dagger}(s) U(s)\left|\Psi_{n}\right\rangle=E_{n} U(s)\left|\Psi_{n}\right\rangle
$$

- reference state is ansatz for transformed, less correlated eigenstate:

$$
U(s)\left|\Psi_{n}\right\rangle \stackrel{!}{=}|\Phi\rangle
$$

[^0]: H. Hergert - INT Program 23-1B - "New Physics Searches at the Precision Frontier", INT, Seattle, May 12, 2023

