Towards a More Effective
 Nuclear Many-Body Problem

Heiko Hergert
Facility for Rare Isotope Beams
\& Department of Physics and Astronomy Michigan State University

FRIB Has Commenced Operation

virtual tour: https://www.youtube.com/watch?v=iLfmwTOM3Uc

FRIB Has Commenced Operation

Crossing $N=\mathbf{2 8}$ Toward the Neutron Drip Line: First Measurement of Half-Lives at FRIB

H. L. Crawford©, ${ }^{1, *}$ V. Tripathi, ${ }^{2}$ J. M. Allmond, ${ }^{3}$ B. P. Crider, ${ }^{4}$ R. Grzywacz, ${ }^{5}$ S. N. Liddick, ${ }^{6,7}$ A. Andalib, ${ }^{6,8}$ E. Argo, ${ }^{6,8}$ C. Benetti, ${ }^{2}$ S. Bhattacharya, ${ }^{2}$ C. M. Campbell, ${ }^{1}$ M. P. Carpenter, ${ }^{9}$ J. Chan, ${ }^{5}$ A. Chester, ${ }^{6}$ J. Christie, ${ }^{5}$ B. R. Clark, ${ }^{4}$ I. Cox, ${ }^{5}$ A. A. Doetsch, ${ }^{6,8}$ J. Dopfer,,${ }^{6,8}$ J. G. Duarte, ${ }^{10}$ P. Fallon, ${ }^{1}$ A. Frotscher, ${ }^{1}$ T. Gaballah, ${ }^{4}$ T. J. Gray, ${ }^{3}$ J. T. Harke, ${ }^{10}$ J. Heideman, ${ }^{5}$ H. Heugen, ${ }^{5}$ R. Jain, ${ }^{6,8}$ T. T. King, ${ }^{3}$ N. Kitamura, ${ }^{5}$ K. Kolos, ${ }^{10}$ F. G. Kondev, ${ }^{9}$ A. Laminack, ${ }^{3}$ B. Longfellow, ${ }^{10}$ R. S. Lubna, ${ }^{6}$ S. Luitel, ${ }^{4}$ M. Madurga, ${ }^{5}$ R. Mahajan, ${ }^{6}$ M. J. Mogannam, ${ }^{6,7}$ C. Morse, ${ }^{11}$ S. Neupane, ${ }^{5}$ A. Nowicki, ${ }^{5}$ T. H. Ogunbeku, ${ }^{4,6}$ W.-J. Ong, ${ }^{10}$ C. Porzio, ${ }^{1}$ C. J. Prokop, ${ }^{12}$ B. C. Rasco, ${ }^{3}$ E. K. Ronning, ${ }^{6,7}$ E. Rubino, ${ }^{6}$ T. J. Ruland, ${ }^{13}$ K. P. Rykaczewski, ${ }^{3}$ L. Schaedig, ${ }^{6,8}$ D. Seweryniak, ${ }^{9}$ K. Siegl, ${ }^{5}$ M. Singh, ${ }^{5}$ S. L. Tabor, ${ }^{2}$ T. L. Tang, ${ }^{2}$ T. Wheeler, ${ }^{6,8}$ J. A. Winger, ${ }^{4}$ and Z. Xu ${ }^{5}$
${ }^{1}$ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{2}$ Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
${ }^{3}$ Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{4}$ Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi 39762, USA ${ }^{5}$ Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA ${ }^{6}$ Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{7}$ Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{8}$ Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{9}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{10}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{11}$ Brookhaven National Laboratory, Upton, New York 11973, USA
${ }^{12}$ Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
${ }^{13}$ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
(1) (Received 19 July 2022; accepted 14 September 2022; published 14 November 2022)

New half-lives for exotic isotopes approaching the neutron drip-line in the vicinity of $N \sim 28$ for $Z=$ 12-15 were measured at the Facility for Rare Isotope Beams (FRIB) with the FRIB decay station initiator. The first experimental results are compared to the latest quasiparticle random phase approximation and shell-model calculations. Overall, the measured half-lives are consistent with the available theoretical descriptions and suggest a well-developed region of deformation below ${ }^{48} \mathrm{Ca}$ in the $N=28$ isotones. The erosion of the $Z=14$ subshell closure in Si is experimentally confirmed at $N=28$, and a reduction in the ${ }^{38} \mathrm{Mg}$ half-life is observed as compared with its isotopic neighbors, which does not seem to be predicted well based on the decay energy and deformation trends. This highlights the need for both additional data in this very exotic region, and for more advanced theoretical efforts.

DOI: 10.1103/PhysRevLett.129.212501

Need for Precision Nuclear Structure

- understanding nuclear forces (i.e., low-energy QCD), emergent phenomena (clustering, halos, ...)
- nuclear \& neutron matter equation of state
- crucial for supernovae and neutron star mergers
- nucleosynthesis
- explaining processes and resulting abundances
- searches for physics beyond the Standard Model
- nuclei and radioactive molecules offer alternatives to ever larger colliders
- neutrinoless double beta decay, CKM unitarity Tests, electric dipole moments, ...

Progress in Ab Initio Calculations

[cf. HH, Front. Phys. 8, 379 (2020)]

H. Hergert - INT Workshop 21R-1C - "Tensor Networks in Many-Body and Quantum Field Theory", INT, Seattle, Apr 5, 2023

The Roadmap

- Interactions (\& Operators) from Chiral EFT

Chiral EFT

RG

(similarity trafos)
many-body method

- symmetries of low-energy QCD
- power counting
- (Similarity) Renormalization Group
- systematically dial resolution scales (cutoffs) of theory
- trade-off: enhanced convergence \& accuracy of many-body methods vs. omitted induced $4 \mathrm{~N}, \ldots$, AN forces
- Ab Initio Many-Body Methods
- systematically improvable towards exact solution

Paradigms

- Coordinate Space
- Quantum Monte Carlo
- Lattice EFT
- Configuration Space: Particle-Hole Expansions
- Many-Body Perturbation Theory (MBPT)
- (No-Core) Configuration Interaction (aka Shell Model, (NC)SM)
- Coupled Cluster (CC)
- In-Medium Similarity Renormalization Group (IMSRG)

- Configuration Space / Coordinate Space: Geometric Expansions
- deformed HF(B) + projection
- projected Generator Coordinate Method (PGCM)

- symmetry-adapted NCSM

Paradigms

- Coordinate Space
- Quantum Monte Carlo
- Lattice EFT

Configuration Space: Particle-Hole Expansions

Recent(-ish) Reviews:

HH, Front. Phys. 8, 379 (2020)
S. Gandolfi, D. Lonardoni, A. Lovato and M. Piarulli, Front. Phys. 8, 117 (2020)
D. Lee, Front. Phys. 8, 174 (2020)
V. Somà, Front. Phys. 8, 340 (2020)
also see
"What is ab initio in nuclear theory?", A. Ekström, C. Forssén, G. Hagen, G. R. Jansen, W. Jiang, T. Papenbrock, arXiv:2212.11064

- deformed HF(B) + projection
- projected Generator Coordinate Method (PGCM)

Consistency: Oxygen Isotopes

consistent ground-state energies for the same interaction (and comparable Lattice EFT action)

Part I:

Renormalization

S. R. Stroberg, HH, S. K. Bogner and J. D. Holt, Ann. Rev. Nucl. Part. Sci 69, 307 (2019)

HH, Phys. Scripta, Phys. Scripta 92, 023002 (2017)
HH, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tuskiyama, Phys. Rept. 621, 165 (2016) S. Bogner, R. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010)

Similarity Renormalization Group

Basic Idea

continuous unitary transformation of the Hamiltonian to banddiagonal form w.r.t. a given "uncorrelated" many-body basis

- flow equation for Hamiltonian $H(s)=U(s) H U^{\dagger}(s)$:

$$
\frac{d}{d s} H(s)=[\eta(s), H(s)], \quad \eta(s)=\frac{d U(s)}{d s} U^{\dagger}(s)=-\eta^{\dagger}(s)
$$

- choose $\eta(s)$ to achieve desired behavior, e.g.,

$$
\eta(s)=\left[H_{d}(s), H_{o d}(s)\right]
$$

to suppress (suitably defined) off-diagonal Hamiltonian

- consistent evolution for all observables of interest

Tailoring the Hamiltonian

SRG Evolution of an NN Interaction with the Husky and TALENT Generators [B. D. Carlsson, TALENT summer school at INT, 2013]

Dimensions for Exact Diagonalization

from: C. Yang, H. M. Aktulga, P. Maris, E. Ng, J. Vary, Proceedings of NTSE-2013

- basis-size "explosion": exponential growth
- importance truncation etc. cannot fully compensate this growth as A increases

Operator Bases for the IMSRG

- choose a basis of operators to represent the flow (make an educated guess about physics):

$$
H(s)=\sum_{i} c_{i}(s) O_{i}, \quad \eta(s)=\sum_{i} f_{i}(\{c(s)\}) O_{i}
$$

- close algebra by truncation, if necessary:

$$
\left[O_{i}, O_{j}\right]=\sum_{k} g_{i j k} O_{k}
$$

- flow equations for the coefficient (coupling constants):

$$
\frac{d}{d s} c_{k}=\sum_{i j} g_{i j k} f_{i}(\{c\}) c_{j}
$$

- "obvious" choice for many-body problems:

$$
\left\{O_{p q}, O_{p q r s}, \ldots\right\}=\left\{a_{p}^{\dagger} a_{q}, a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r}, \ldots\right\}
$$

Transforming the Hamiltonian

Decoupling in A-Body Space

goal: decouple reference state $|\Phi\rangle$ from excitations

Flow Equation

Operators

truncated at two-body level matrix is never constructed explicitly!

Standard IMSRG(2) Flow Equations

O-body Flow

1-body Flow

coefficients (couplings) of H(s)

Standard IMSRG(2) Flow Equations

$\mathrm{O}\left(\mathrm{N}^{6}\right)$ scaling
(before particle/hole distinction)
2-body Flow

Decoupling

non-perturbative resummation of MBPT series (correlations)
off-diagonal couplings are rapidly driven to zero

Decoupling

- absorb correlations into RG-improved Hamiltonian

$$
U(s) H U^{\dagger}(s) U(s)\left|\Psi_{n}\right\rangle=E_{n} U(s)\left|\Psi_{n}\right\rangle
$$

- reference state is ansatz for transformed, less correlated eigenstate:

$$
U(s)\left|\Psi_{n}\right\rangle \stackrel{!}{=}|\Phi\rangle
$$

Correlated Reference States

Correlated Reference States

MR-IMSRG: build correlations on top of already correlated state (e.g., from a method that describes static correlation well)

IMSRG-Improved Methods

XYZ define reference

* mean field or explicitly correlated

Could add self-consistency.

IMSRG
evolve
operators

XYZ
extract observables

IMSRG-Improved Methods

- IMSRG for closed and open-shell nuclei: IM-HF and IM-PHFB
- HH, Phys. Scripta, Phys. Scripta 92, 023002 (2017)
- HH, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tuskiyama, Phys. Rept. 621, 165 (2016)
- Valence-Space IMSRG (VS-IMSRG)
- S. R. Stroberg, HH, S. K. Bogner, J. D. Holt, Ann. Rev. Nucl. Part. Sci. 69, 165
- In-Medium No Core Shell Model (IM-NCSM)
- E. Gebrerufael, K. Vobig, HH, R. Roth, PRL 118, 152503
- In-Medium Generator Coordinate Method (IM-GCM)
- J. M. Yao, J. Engel, L. J. Wang, C. F. Jiao, HH PRC 98, 054311 (2018)
- J. M. Yao et al., PRL 124, 232501 (2020)

Application: Quenching of Gamow-Teller Decays

FRIB

P. Gysbers et al., Nature Physics 15, 428 (2019)

- empirical Shell model calculations require quenching factors of the weak axial-vector couling g_{A}
- VS-IMSRG explains this through consistent renormalization of transition operator, incl. two-body currents

Part II:
Entanglement

IMSRG Hybrid Approaches

- VS-IMSRG
[review: S. R. Stroberg, HH, S. K. Bogner, J. D. Holt, Ann. Rev. Nucl. Part. Sci 69, 307 (2019)]
- IM-NCSM
[E. Gebrerufael, K. Vobig, HH, R. Roth, PRL 118, 152503; with R. Roth, T. Mongolia, R. Wirth...]
- unbiased
- active-space CI / FCl: exponential scaling

- IM-GCM
- requires very few states $\mathbf{(O (1 0) -}$ O(100))
- biased selection of configurations and generator coordinates
extract observables

Density Matrix Renormalization Group

- How about IM-DMRG (or IMSRG + other tensor network methods)?
- aka Canonical Transformation Theory + DMRG
[S. White, JCP 117, 7472; Yanai et al. JCP 124, 194106; JCP 127, 104107; JCP 132, 024105]

- Efficient and unbiased ?

DMRG in Nuclear Physics

- valence-space / active space DMRG
- based on empirical interactions (= low-resolution)
- issues: mapping of orbitals to 1D chain, implementation of symmetries
[Papenbrock \& Dean, JPG 31, S1377 (2004); Thakur et al., PRC 78, 041303]
- recent advances: better accounting for entanglement [Legeza et al., PRC 02, 051303; Kruppa et al., JPG 48, 025107]
- inclusion of continuum possible via Gamow-DMRG [J. Rotureau et al., PRC 79, 014304; K. Fossez et al., PRC 98, 061302 and arXiv:2105.05287]
- ab initio No-Core Gamow Shell Model / DMRG based on RG-evolved two-nucleon interactions
- slow convergence an issue beyond mass $A=8-10$

vS-IMSRG + DMRG

- no-core Cl or DMRG with unevolved Hamiltonian unfeasible for mediummass nuclei (Hilbert space/ bond dimension)
- effective valence-space Hamiltonians from IMSRG
- next: no-core IM-DMRG to better understand IMSRG as a disentangler [with K. Fossez (FSU), ...]
- naively: should enable smaller bond dimensions

IMSRG as a Disentangler

- IMSRG maps interacting ground state to reference state (here, a Slater determinant)
- eigenstates with similar structure (fully paired) are mapped onto Slater determinants by the same transformation

IMSRG as a Disentangler

Pairing model $\mathrm{g}=1.20, \mathrm{pb}=0.20$

- ground-state mapping still successful for more "complex" Hamiltonian (pairing plus pair-breaking)

Prospects \& Opportunities

- entanglement-based generators for the IMSRG ?
- need to translate entanglement from wave function property into operator property, e.g., entangling power [see, e.g., Zanardi et al., PRA 62, 030301; Beane \& Farrell, Ann. Phys. 433, 168581]
- (IM)SRG transformations as disentanglers in tensor networks? Benefits compared to variational approaches?
- Tensor network structure of the IMSRG transformation / wave function $|\Psi\rangle=U(s)\left|\Phi_{\text {ref }}\right\rangle$?
- relation with tensor networks, e.g., (c)MERA ? [Haegemann et al., PRL 100, 100402], ...
- And probably many more... I'm happy to discuss!

Part III:
Model-Order Reduction

Control Problem Growth

- "obvious" operator basis for many-body problems:

$$
\left\{O_{p q}, O_{p q r s}, O_{p q r s t u}, \ldots\right\} \equiv\left\{a_{p}^{\dagger} a_{q}, a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r}, a_{p}^{\dagger} a_{q}^{\dagger} a_{r}^{\dagger} a_{u} a_{t} a_{s}, \ldots\right\}
$$

- state of the art: $\mathrm{O}\left(10^{8}\right)$ operators \& coupling coefficients, next-level: O(1012) or even more
- normal ordering "informs" the operator basis of physics, but doesn't change its size
- in contrast: $\mathrm{O}(10)$ interaction operators (even with 3N), $\mathrm{O}(100)$ particles - there must be lots of redundancy
\Rightarrow principal component analysis \& tensor factorization

Factorized Interactions

- $\mathrm{O}(10)$ operators, $\mathrm{O}(100)$ particles, but $\mathrm{O}\left(10^{8-10^{12}}\right)$ flow equations, basis dimension... there must be redundancy
- NN interaction: 5-10 SVD components (short range)
- Coulomb interaction: less well-behaved, but ~25-30 components sufficient (long range, no explicit scale)

Factorized Interactions

- implementing factorized SRG flow has no adverse affect on other observables / expectation values
- But: rank is inflated when we transform to single-particle coordinates (lab frame) - can tensor representations help?

Low-Rank Structures in Flow Equations

- $\eta, H_{\text {od }}$ coefficient tensors can have inherent reduced rank based on definition
- SVD rank depends on type of representation: particleparticle/ladder vs. particlehole/ring
- problem: need both representations in 2B flow equation - either ladder or ring terms prevent reduction
- next: tensor decompositions, but symmetries might cause issues (?)

Dynamic Mode Decomposition

- create snapshot matrices of discretized dynamic system

$$
\mathbf{X}=\left(\begin{array}{ll}
\mathbf{h}_{0} & \cdots \mathbf{h}_{n-1}
\end{array}\right), \quad \mathbf{X}^{\prime}=\left(\begin{array}{ll}
\mathbf{h}_{1} & \cdots \mathbf{h}_{n}
\end{array}\right)
$$

- express evolution with the help of the Koopman operator \mathbf{K}

$$
\mathbf{h}_{i+1}=\mathbf{K h}_{i} \quad \rightarrow \quad \mathbf{X}^{\prime}=\mathbf{K X}
$$

- take the Moore-Penrose pseudo-inverse \mathbf{X}^{+}to compute an (approximate) matrix representation of \mathbf{K} :

$$
\mathbf{K}=\mathbf{X}^{\prime} \mathbf{X}^{+}
$$

- solve eigenvalue problem for Koopman operator to construct reduced basis of dynamic modes

Application: Emulating IMSRG Flows

$\mathrm{EM}(500) \mathrm{N}^{3} \mathrm{LO}, \lambda=2.0 \mathrm{fm}^{-1}$

Dynamic Mode Decomposition emulator "learns" all flowing operator coefficients from snapshots!
J. Davison, J. Crawford, S. Bogner, HH, in preparation

[^0]
Application: Sensitivity Analysis \& UQ

- reduction to dominant DMD modes allows sensitivity studies \& uncertainty quantification (while still generating full $\mathrm{H}(\mathrm{s})$)
- showing 200k+ Monte Carlo samples in LEC parameter space: 4-5 order of magnitude computing time reduction

Epilogue

Summary

- Nuclear many-body theory plays a crucial role in answering a variety of fundamental questions
- need predictive ab initio theory with systematic uncertainties \& convergence to exact result
- expand capabilities: spectra, radii, transitions, clustering, bridge to dynamics /reactions...
- scalable methods: from day-to-day data analysis to leadership calculations
- (How) Can we unlock more efficiency?
- apply quantum information theory (entanglement)
- DMRG, tensor networks, ... (improve scaling)

Acknowledgments

S. K. Bogner, B. A. Brown, J. Davison, M. Hjorth-Jensen, D. Lee, R. Wirth, B. Zhu FRIB, Michigan State University
J. M. Yao

Sun Yat-sen University
S. R. Stroberg

University of Notre Dame
J. Engel

University of North Carolina - Chapel Hill
A. Belley, J. D. Holt, P. Navrátil TRIUMF, Canada
C. Haselby, M. Iwen, A. Zare CMSE, Michigan State University
B. Bally, T. Duguet, M. Frosini, V. Somà CEA Saclay, France

P. Arthuis, K. Hebeler, M. Heinz, R. Roth, T. Mongelli, T. Miyagi, A. Schwenk, A. Tichai TU Darmstadt

A. M. Romero

Universitat de Barcelona, Spain
T. R. Rodríguez

Universidad Complutense de Madrid, Spain
K. Fossez

Florida State University
G. Hagen, G. Jansen, J. G. Lietz, T. D. Morris, T. Papenbrock
UT Knoxville \& Oak Ridge National Laboratory
R. J. Furnstahl

The Ohio State University
and everyone I forgot to list...

Grants: US Dept. of Energy, Office of Science, Office of Nuclear Physics DE-SC0017887, DE-SC0023516, as well as DE-SC0018083, DE-SC0023175 (SciDAC NUCLEI Collaboration)

ICER

Postdoctoral Position @ FRIB

- focus: extensions of IMSRG Framework and applications (incl. fundamental symmetries)
- broad portfolio of nuclear theory research @ FRIB, great opportunities for collaboration
- 2 years (+ possible renewal)
- Contact me: hergert@frib.msu.edu ...
- ... or apply directly at https://careers.msu.edu/en-us/job/ 513047/research-associatefixed-term
- review of applications has started, but will continue until position is filled
- Please encourage suitable candidates to apply!

Supplements

Sources of Uncertainty

Chiral EFT

RG
(similarity trafos)

many-body method

- selection of degrees of freedom
- regulators
- truncation
- low-energy constant (LEC) uncertainties
- selection of operator basis / model space
- truncation
- symmetry restrictions
- model-space \& many-body truncation(s)
- continuum

Nuclear Interactions from Chiral Effective Field Theory

Recent(-ish) Reviews:
E. Epelbaum, H. Krebs and P. Reinert, Front. Phys. 8, 98 (2002)
M. Piarulli and I. Tews, Front. Phys. 7, 245 (2020)
R. Machleidt and F. Sammarruca, Phys. Scripta 91, 083007 (2016)

Interactions from Chiral EFT

- organization in powers $\left(Q / \Lambda_{\chi}\right)^{\nu}$ allows systematic improvement
- low-energy constants fit to NN, 3N data (future: from Lattice QCD (?))
- consistent NN, 3N, ... interactions \& operators (electroweak transitions!)

Similarity Renormalization Group

Basic Idea

continuous unitary transformation of the Hamiltonian to banddiagonal form w.r.t. a given "uncorrelated" many-body basis

- flow equation for Hamiltonian $H(s)=U(s) H U^{\dagger}(s)$:

$$
\frac{d}{d s} H(s)=[\eta(s), H(s)], \quad \eta(s)=\frac{d U(s)}{d s} U^{\dagger}(s)=-\eta^{\dagger}(s)
$$

- choose $\eta(s)$ to achieve desired behavior, e.g.,

$$
\eta(s)=\left[H_{d}(s), H_{o d}(s)\right]
$$

to suppress (suitably defined) off-diagonal Hamiltonian

- consistent evolution for all observables of interest

SRG in Two-Body Space

Induced Interactions

- \quad SRG is a unitary transformation in A-body space
- up to A-body interactions are induced during the flow:

$$
\frac{d H}{d \lambda}=[[\sum a^{\dagger} a, \sum \underbrace{a^{\dagger} a^{\dagger} a a}_{2 \text {-body }}], \sum \underbrace{a^{\dagger} a^{\dagger} a a}_{2 \text {-body }}]=\ldots+\sum \underbrace{a^{\dagger} a^{\dagger} a^{\dagger} a a a}_{3 \text {-body }}+\ldots
$$

- state-of-the-art: evolve in three-body space, truncate induced four- and higher many-body forces
(Jurgenson, Furnstahl, Navratil, PRL 103, 082501; Hebeler, PRC 85, 021002; Wendt, PRC 87, 061001)
- λ-dependence of eigenvalues is a diagnostic for size of omitted induced interactions

SRG in Three-Body Space

3B Jacobi-HO Matrix Elements

$$
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=28 \mathrm{MeV}
$$

$$
\lambda=1.33 \mathrm{fm}^{-1}
$$

${ }^{3} \mathrm{H}$ ground-state (NCSM)

Compression with Random Projections

A. Zare, R. Wirth, C. Haselby, HH, M. Iwen, arXiv:2211.01315

Koopman Operator Theory

- nonlinear dynamical system:
- $\mathbf{x} \in X \subseteq \mathbb{R}^{n}, \quad \mathbf{F}^{t}: X \rightarrow X, \quad \mathbf{x}(t)=\mathbf{F}^{t}(\mathbf{x}(0))$
- flow map \mathbf{F}^{t} propagates $\mathbf{x}(0)$ forward in time
- define a set $\mathscr{G}(X)$ of observables or measurement functions $g: X \rightarrow \mathbb{C}$
- define the semi-group of Koopman operators by
- $K^{t}: \mathscr{G}(X) \rightarrow \mathscr{G}(X), \quad K^{t} g(\mathbf{x})=g\left(F^{t}(\mathbf{x})\right)$
- K^{t} is linear if $\mathscr{G}(X)$ is a linear function space, e.g., $L^{2}(\mathbb{R})$
- Describe nonlinear dynamics through a generally infinitedimensional linear operator that acts on measurements!

Koopman Operators \& IMSRG

- IMSRG flow is a nonlinear "dynamical" 'Sysistemtrt Brunton et al., arxiv:2102.12086
- Hamiltonian in (NO2B) operator algebra:

$$
H \equiv E_{0}+\sum_{p q} f_{p q}: a_{p}^{\dagger} a_{q}:+\frac{1}{4} \sum_{p q r s} \Gamma_{p q r s}: a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r}:
$$

- define $\mathbf{h} \equiv\left(\begin{array}{llllll}E_{0} & \cdots & f_{p q} & \cdots & \Gamma_{p q r s} & \cdots\end{array}\right)^{T} \ldots$
- ... and write the evolution in Koopman operator form:

$$
K^{\bar{s}} \mathbf{h}=\left(\begin{array}{llllll}
\left(U_{\bar{s}} H U_{\bar{s}}^{\dagger}\right)_{0} & \cdots & \left(U_{\bar{s}} H U_{\bar{s}}^{\dagger}\right)_{p q} & \cdots & \left(U_{\bar{s}} H U_{\bar{s}}^{\dagger}\right)_{p q r s} & \cdots
\end{array}\right)^{T}
$$

- What have we gained compared to other approaches? We can construct Koopman operators from "observations"!

Core and Valence Spaces

non-valence
particle states
valence
particle states
hole states (core)

- introduce an inert core: restrict states to the form

$$
\left.\left|\Psi_{i}\right\rangle=\left|\bar{\Psi}_{i}\right\rangle \otimes \mid \text { core }\right\rangle
$$

- basis states:

$$
\left.\left|\Phi_{v_{1}}, \ldots, v_{A_{v}}\right\rangle=a_{v_{1}}^{\dagger} \ldots a_{v_{A_{v}}}^{\dagger} \mid \text { core }\right\rangle
$$

- wave functions for $A_{v}<A\left(A_{v} \ll A\right)$ particles (core implicit)

Effective Hamiltonian

Effective Hamiltonian

\boldsymbol{P} space
(included configurations)

Q space

(excluded configurations)

Effective Hamiltonian

[^0]: H. Hergert - INT Workshop 21R-1C - "Tensor Networks in IMany-Body and Quantum rield Ineory", IN I, seattie, Apr b, 2Uટ3

